mpl: Micropulse Lidar

The micropulse lidar (MPL) is a ground-based, optical, remote-sensing system designed primarily to determine the altitude of clouds; however, it is also used for detection of atmospheric aerosols. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal, thereby detecting clouds and aerosols in real time.

From the time delay between each outgoing pulse and the backscattered signal, the distance to the scatterer is inferred. Post-processing of the lidar return characterizes the extent and properties of aerosols or other particles in a region.


  • Fixed
  • AMF1
  • AMF2
  • AMF3

Related Publications


Silber I, J Verlinde, S Wang, D Bromwich, A Fridlind, M Cadeddu, E Eloranta, and C Flynn. 2019. "Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica." Journal of Climate, , 10.1175/JCLI-D-19-0149.1. ONLINE.

Li J, B Jian, C Zhao, Y Zhao, J Wang, and J HUANG. 2019. "Atmospheric Instability Dominates the Long‐Term Variation of Cloud Vertical Overlap Over the Southern Great Plains Site." Journal of Geophysical Research: Atmospheres, , 10.1029/2019JD030954.

Lim K, L Riihimaki, Y Shi, D Flynn, J Kleiss, L Berg, W Gustafson, Y Zhang, and K Johnson. 2019. "Long-term retrievals of cloud type and fair-weather shallow cumulus events at the ARM SGP site." Journal of Atmospheric and Oceanic Technology, , 10.1175/JTECH-D-18-0215.1. ONLINE.

Liu J and Z Li. 2019. "Aerosol properties and their influences on low warm clouds during the Two-Column Aerosol Project." Atmospheric Chemistry and Physics, 19(14), 10.5194/acp-19-9515-2019.

Jensen M, E Bruning, D Collins, A Fridlind, P Kollias, C Kuang, D Rosenfeld, A Ryzhkov, A Varble, SD Brooks, S Collis, E Defer, J Fan, J Flynn, S Giangrande, R Griffin, J Hu, R Jackson, M Kumjian, T Logan, T Matsui, G McFarquhar, C Nowotarski, J Quaas, M Oue, R Sheesley, J Snyder, P Stier, S Usenko, S van den Heever, M van Lier Walqui, Y Wang, Y Xu, and G Zhang. 2019. Tracking Aerosol Convection Interactions ExpeRiment (TRACER) Science Plan. Ed. by Robert Stafford, DOE/SC-ARM-19-017.

Liu C and T Lavigne. 2019. One-Year Electric Field Study at the North Slope of Alaska Field Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-19-016.

McFarquhar G, R Marchand, C Bretherton, S Alexander, A Protat, S Siems, R Wood, and P DeMott. 2019. Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) Field Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-19-008.

Maahn M, F Hoffmann, M Shupe, G de Boer, S Matrosov, and E Luke. 2019. "Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?" Atmospheric Measurement Techniques, 12(6), doi:10.5194/amt-12-3151-2019.
Research Highlight

Mlawer E, D Turner, S Paine, L Palchetti, G Bianchini, V Payne, K Cady‐Pereira, R Pernak, M Alvarado, D Gombos, J Delamere, M Mlynczak, and J Mast. 2019. "Analysis of water vapor absorption in the far‐infrared and submillimeter regions using surface radiometric measurements from extremely dry locations." Journal of Geophysical Research: Atmospheres, 124(14), 10.1029/2018JD029508.

Bretherton C, I Mccoy, J Mohrmann, R Wood, V Ghate, A Gettelman, C Bardeen, B Albrecht, and P Zuidema. 2019. "Cloud, Aerosol and Boundary Layer Structure across the Northeast Pacific Stratocumulus-Cumulus Transition as observed during CSET." Monthly Weather Review, 147(6), 10.1175/MWR-D-18-0281.1.

View All Related Publications