Research

ARM’s continuous measurements and field campaigns are helping advance climate science.
 

Scientists from around the world conduct research using data from ARM’s continuous measurements and field campaigns. ARM’s contributions to atmospheric science can be seen in science publications and research highlights.

Field Campaigns

Field campaigns provide a means for scientists to augment or modify the configuration of the ARM facility to address specific science issues. Campaigns range in complexity from deploying a single instrument to deploying an ARM Mobile Facility to remote locations around the world. As a scientific user facility, any scientist can submit a proposal to do field campaigns at ARM’s atmospheric observatories.

Publications

Data from ARM’s continuous measurements and field campaigns at sites around the world are a vital asset to atmospheric researchers. Research results are published in scientific journal articles, conference publications, and presentations.

Research Highlights

Publications in scientific journals represent tangible evidence of ARM’s contribution to advances in almost all areas of atmospheric radiation and cloud research. ARM’s Research Highlights summarize recently published research results.

Recent Highlights

Light absorption by black carbon in wildfire-driven storms

7 October 2024

Fast, Jerome D

Supported by: ASR

Research area: Aerosol Processes

Pyrocumulonimbus (pyroCb) clouds form from wildfire-driven convection. PyroCb clouds contain large amounts of black carbon (BC) mixed with water and organics. BC particles have a large effect on our climate because they can absorb sunlight, but BC absorption depends on how it is mixed with other materials. Previously, the extent [...]

Read more

Modeling the glaciation of mixed-phase clouds in the laboratory

2 October 2024

Ovchinnikov, Mikhail; Wang, Aaron

Supported by: ASR

Research area: Cloud Processes

Clouds are one of the most uncertain components in numerical weather prediction and climate models. Mixed-phase clouds (those containing both supercooled liquid water and ice) can be especially challenging to represent. Theory predicts that when ice and liquid coexist in a cloud, ice crystals will grow while liquid droplets evaporate. [...]

Read more