

DOE/SC-ARM-TR-019

# Micropulse Lidar (MPL) Instrument Handbook

#### P Muradyan R Coulter

March 2020



#### DISCLAIMER

This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

# Micropulse Lidar (MPL) Instrument Handbook

P Muradyan R Coulter Both at Argonne National Laboratory

March 2020

Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research

# Acronyms and Abbreviations

| AMF      | ARM mobile facility                                                                                |
|----------|----------------------------------------------------------------------------------------------------|
| ANL      | Argonne National Laboratory                                                                        |
| APD      | avalanche photodiode                                                                               |
| ARM      | Atmospheric Radiation Measurement                                                                  |
| ARSCL    | Active Remotely Sensed Cloud Locations                                                             |
| ASI      | Ascension Island                                                                                   |
| AWARE    | ARM West Antarctic Radiation Experiment                                                            |
| CF       | Central Facility                                                                                   |
| COMBLE   | Cold-Air Outbreaks in the Marine Boundary Layer Experiment                                         |
| CW       | continuous wave                                                                                    |
| DQO      | Data Quality Office                                                                                |
| ENA      | Eastern North Atlantic                                                                             |
| FS       | fast switching                                                                                     |
| ICECAPS  | Integrated Characterization of Energy, Clouds, Atmospheric State, and<br>Precipitation over Summit |
| ΙΔΝΙ     | Los Alamos National Laboratory                                                                     |
| MAGIC    | Marine ARM GPCI Investigations of Clouds                                                           |
| MARCUS   | Measurements of Aerosals Radiation and Clouds over the Southern Ocean                              |
| MOSAIC   | Multidisciplinary Drifting Observatory for the Study of Arctic Climate                             |
| MPI      | micropulse lidar                                                                                   |
| MPI NOR  | MPL normalized                                                                                     |
| NASA     | National Aeronautics and Space Administration                                                      |
| NRB      | Normalized Relative Backscatter                                                                    |
| NSA      | North Slope of Alaska                                                                              |
| PC       | nersonal computer                                                                                  |
| 00       | quality control                                                                                    |
| RHUBC-II | Radiative Heating in Underexplored Bands II                                                        |
| SGP      | Southern Great Plains                                                                              |
| STORMVEX | Storm Peak Lab Cloud Property Validation Experiment                                                |
| SW       | shortwave                                                                                          |
| ТСАР     | Two-Column Aerosol Project                                                                         |
| TWP      | Tropical Western Pacific                                                                           |
| UK       | United Kingdom                                                                                     |
| VAP      | value-added product                                                                                |
| WAIS     | West Antarctic Ice Sheet                                                                           |
| WFR      | wide field receiver                                                                                |
|          |                                                                                                    |

# Contents

| Acro | onym                 | s and Abbreviationsi                                   | ii |  |  |  |  |  |
|------|----------------------|--------------------------------------------------------|----|--|--|--|--|--|
| 1.0  | Gen                  | eral Overview                                          | 1  |  |  |  |  |  |
| 2.0  | Con                  | Contacts1                                              |    |  |  |  |  |  |
|      | 2.1                  | Mentor                                                 | 1  |  |  |  |  |  |
|      | 2.2                  | Vendor/Instrument Developer                            | 1  |  |  |  |  |  |
| 3.0  | Dep                  | loyment Locations and History                          | 1  |  |  |  |  |  |
| 4.0  | Near                 | r-Real-Time Data Plots                                 | 6  |  |  |  |  |  |
| 5.0  | Data                 | Description and Examples                               | 6  |  |  |  |  |  |
|      | 5.1                  | Data File Contents                                     | б  |  |  |  |  |  |
|      |                      | 5.1.1 Primary Variables and Expected Uncertainty       | 6  |  |  |  |  |  |
|      |                      | 5.1.2 Dimension Variables                              | 7  |  |  |  |  |  |
|      | 5.2                  | Annotated Examples                                     | 7  |  |  |  |  |  |
|      | 5.3                  | User Notes and Known Problems                          | 7  |  |  |  |  |  |
|      | 5.4                  | Frequently Asked Questions                             | 7  |  |  |  |  |  |
| 6.0  | Data                 | u Quality                                              | 8  |  |  |  |  |  |
|      | 6.1                  | Data Quality Health and Status                         | 8  |  |  |  |  |  |
|      | 6.2                  | Data Reviews by Instrument Mentor                      | 8  |  |  |  |  |  |
|      | 6.3                  | Data Assessments by Site Scientist/Data Quality Office | 8  |  |  |  |  |  |
|      | 6.4                  | Value-Added Products                                   | 8  |  |  |  |  |  |
| 7.0  | Instr                | ument Details                                          | 9  |  |  |  |  |  |
|      | 7.1                  | Detailed Description                                   | 9  |  |  |  |  |  |
|      |                      | 7.1.1 List of Components                               | 9  |  |  |  |  |  |
|      |                      | 7.1.2 System Configuration and Measurement Methods     | 0  |  |  |  |  |  |
|      |                      | 7.1.3 Specifications                                   | 0  |  |  |  |  |  |
|      | 7.2                  | Theory of Operation                                    | 0  |  |  |  |  |  |
|      | 7.3                  | Calibration1                                           | 0  |  |  |  |  |  |
|      |                      | 7.3.1 Theory                                           | 0  |  |  |  |  |  |
|      |                      | 7.3.2 Procedures                                       | 2  |  |  |  |  |  |
|      |                      | 7.3.3 Routine and Corrective Maintenance Documentation | 2  |  |  |  |  |  |
|      | 7.4                  | Glossary                                               | 2  |  |  |  |  |  |
|      | 7.5                  | Acronyms                                               | 3  |  |  |  |  |  |
| 8.0  | 0 Citable References |                                                        |    |  |  |  |  |  |

# Figures

| 1 | An example of the co-pol and cross-pol Normalized Relative Backscatter (top and middle panels |
|---|-----------------------------------------------------------------------------------------------|
|   | respectively) as well as the profile of linear depolarization ratio (bottom panel) at the SGP |
|   | Central Facility11                                                                            |

# Tables

| 1 | ARM MPL location and deployment history. | . 2 | 2 |
|---|------------------------------------------|-----|---|
|---|------------------------------------------|-----|---|

# 1.0 General Overview

The micropulse lidar (MPL) is a ground-based, autonomous, eye-safe lidar operating at 532 nm. It operates by transmitting a short pulse of laser light through the telescope and detecting a portion of light that has been backscattered by atmospheric particulates. The backscattered energy is collected at the transceiver and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred.

This active remote-sensing instrument is generally used for real-time detection of clouds. Post-processing of the lidar return can also help characterize the extent and properties of aerosol or other particle-laden regions.

# 2.0 Contacts

### 2.1 Mentor

Paytsar Muradyan Environmental Science Division Argonne National Laboratory Phone: (630) 252-1657 Email: <u>pmuradyan@anl.gov</u>

Richard Coulter Environmental Science Division Argonne National Laboratory Phone: (630) 252-5833 Email: <u>rlcoulter@anl.gov</u>

### 2.2 Vendor/Instrument Developer

Micro Pulse LiDAR, part of Hexagon Sold through Leica Geosystems, Inc. 5051 Peachtree Corners Circle, Suite 250 Norcross, Georgia 30092 Phone: (770) 326-9500 www.micropulselidar.com

# 3.0 Deployment Locations and History

Prior to August 2006, the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility's MPLs were located at:

• Southern Great Plains (SGP), Central Facility (C1)

- North Slope of Alaska (NSA), Barrow (C1)
- Tropical Western Pacific (TWP), Manus Island, Papua New Guinea (C1)
- TWP, Nauru Island (C2)
- TWP, Darwin, Australia (C3).

These systems were non-polarized systems. In August 2006, new dual-polarization lidars were put in place that detect the backscatter light in two orthogonal linear polarization channels – "co-polarized" (co-pol/parallel) and "cross-polarized" (cross-pol/orthogonal). This allows comparison of the co-pol and cross-pol signals to distinguish between spherical (e.g., water) and non-spherical (e.g., ice) scattering particles. The dual-polarized MPL systems switched polarization states at 3–10 second intervals. Beginning in 2009, they were upgraded to "fast-switching" (FS) capability between the channels, enabling switching on every pulse (2500 Hz rate).

The location and deployment history since 2006 is given in Table 1.

|          |     | <b>G1</b> . | Diode |                                                                |
|----------|-----|-------------|-------|----------------------------------------------------------------|
| Date     | MPL | Site        | Hours | Comments                                                       |
| 11/07/06 | 102 |             |       | SWAP 1.67A->1.0W (OLD MPL)                                     |
| 5/03/07  | 104 | Darwin      |       | SWAP 0.85A->2.4uJ (low output)                                 |
| 5/15/07  | 104 | Darwin      |       | MPL removed for repair                                         |
| 5/15/07  | 101 | Darwin      |       | MPL installed                                                  |
| 10/10/07 | 106 | SGP         |       | New detector installed                                         |
| 12/19/07 | 104 | SGPTST      |       | MPL installed at SGP Central Facility Guest Instrument trailer |
| 7/14/08  | 409 | 5406        |       | MPL first tried at ANL after return from China                 |
| 9/03/08  | 409 | ANL         |       | MPL shipped to Sigma Space for repair                          |
| 9/24/08  | 101 | Darwin      |       | SWAP 1.5A->0.7W (low output)                                   |
| 9/30/08  | 102 | Manus       | 0051  | Hour status, no laser output                                   |
| 11/18/08 | 101 | Darwin      |       | SWAP 1.55A->1.0W                                               |
| 11/19/08 | 104 | FSPOL       |       | MPL FSPOL upgrade to SGP CF                                    |
| 12/02/08 | 104 | FSPOL       |       | MPL installed at SGP CF trailer                                |
| 1/27/09  | 106 | SGP         |       | New detector installed                                         |
| 2/04/09  | 102 | Manus       |       | Swap, but faulty photonics                                     |
| 2/13/09  | 108 | Nauru       |       | MPL removed to go to Darwin                                    |
| 2/26/09  | 101 | Darwin      |       | Removed for repair by Sigma Space                              |
| 2/26/09  | 108 | Darwin      |       | MPL installed                                                  |
| 2/26/09  | 409 | ANL         |       | Received from Sigma Space repaired                             |
| 2/27/09  | 104 | FSPOL       |       | Shipped to Pagosa for RHUBC-II                                 |
| 3/17/09  | 105 | NSA         | 52941 | Diode swap                                                     |
| 3/31/09  | 409 | ANL         |       | Connected at ANL for test, OK                                  |
| 4/01/09  | 106 | SFP         | 4498  | Hour status                                                    |
| 4/09/09  | 108 | Darwin      | 0256  | Hour status                                                    |
| 4/13/09  | 105 | NSA         | 22719 | Diode reset hours to 648 (27 days)                             |
| 4/23/09  | 107 | AMF         | 14363 | MPL Azores install                                             |
| 4/30/09  | 104 | FSPOL       | 11202 | Pagosa install spare diode                                     |

 Table 1.
 ARM MPL location and deployment history.

|          |      |           | Diode |                                                                   |
|----------|------|-----------|-------|-------------------------------------------------------------------|
| Date     | MPL  | Site      | Hours | Comments                                                          |
| 4/30/09  | 104  | FSPOL     | 11202 | F6-78499 fiber broken                                             |
| 8/10/09  | 104  | Chile     |       | Used laser diode installed                                        |
| 8/27/09  | 104  | Chile     |       | New laser diode installed                                         |
| 8/31/09  | 104  | Chile     |       | Try to align laser diode fiber                                    |
| 9/04/09  | 107  | AMF       |       | New laser diode installed                                         |
| 10/12/09 | 008  | Chile     |       | Remove MPL104, install MPL008                                     |
| 10/24/09 | 008  | Chile     |       | End RHUBC-II, MPL104, MPL008                                      |
| 12/01/09 | 409  | ANL       |       | Deploy MPL409 AMF2                                                |
| 01/21/10 | 008  | ANL       |       | Arrives at ANL from Chile. Misaligned laser                       |
| 01/21/10 | 4103 | ANL       | 40    | MPL 4103 IDS first tested, OK                                     |
| 01/27/10 | 104  | ANL       |       | Ship to Sigma Space for repair                                    |
| 02/22/10 | 101  | ANL       | 57    | MPL 101 IDS first tested, OK                                      |
| 03/08/10 | 4103 | ANL       |       | To Sigma Space for polarizer repair                               |
| 04/11/10 | 102  | Manu      |       | Installed new FSPOL upgrade                                       |
| 04/15/10 | 101  | ANL       |       | Shipped to Sigma Space for polarizer repair, forward to New York, |
|          |      |           |       | Greenland                                                         |
| 04/22/10 | 4103 | ANL       |       | Received from Sigma Space. Polarizer repair                       |
| 05/04/10 | 4103 | ANL       | 414   | Deployed 484 in AMF2 enclosure                                    |
| 05/26/10 | 101  | Greenland | 1389  | Installed                                                         |
| 05/31/10 | 4103 | ANL       |       | Shutdown at 484 ship to RVCONN cruise                             |
| 06/02/10 | 106  | SGP       |       | Removed from service at SGP                                       |
| 06/02/10 | 104  | SGP       | 11640 | FSPOL installed at SGP                                            |
| 06/14/10 | 4103 | RVCONN    |       | Deployed 06/14–18                                                 |
| 07/02/10 | 4103 | ANL       |       | Deployed again at 484                                             |
| 07/29/10 | 4103 | ANL       |       | Diode dying with only 1673.1 hours                                |
| 09/09/10 | 106  | NSA       |       | Shipped from Sigma Space, FSPOL upgrade                           |
| 09/13/10 | 4103 | MPL       |       | Setup at Thunderhead V1 STORMVEX                                  |
| 10/06/10 | 4103 |           | 2368  | Laser diode dying                                                 |
| 10/21/10 | 4103 |           |       | Sigma Space, liquid crystal damaged                               |
| 10/23/10 | 008  | AL        |       | Old MPL set up at ALTOS in Alaska                                 |
| 11/02/10 | 105  |           |       | MPL 105 FSPOL arrives at Manus                                    |
| 12/02/10 | 101  | Greenland | 5111  |                                                                   |
| 02/02/11 | 104  | SGP       |       | Extreme water intrusion, ship to Sigma Space                      |
| 02/04/11 | 107  |           |       | From Azores to Sigma Space for FSPOL                              |
| 04/21/11 | 101  | Greenland | 8453  |                                                                   |
| 04/21/11 | 4012 | Steamboat | 6275  |                                                                   |
| 04/21/11 | 106  | NSA       | 4986  | ftdilog.txt: ReadData(): 02780F00 01BE00A8 19242 return=19242 0   |
|          |      |           | hours |                                                                   |
| 04/21/11 | 108  | Darwin    | 38053 |                                                                   |
| 04/21/11 | 105  | Manus     | 15571 | ftdilog.txt: ReadData(): 024C0F00 019400A8 19242 return=19242 0   |
| 04/25/11 | 104  | SGP       | 17540 | Returned from repair                                              |
| 04/26/11 | 104  | SGP       |       | Switch from SigmaMPL 2.54 to 2.55                                 |
| 04/29/11 | 4103 |           |       | Arrived at Sigma Space for laser/polarizer repair                 |
| 05/02/11 | 106  |           |       | Computer shipped from NSA to SGP                                  |
| 06/08/11 | 107  |           |       | Shipped from Sigma Space to SGP, FSPOL upgrade                    |
| 06/10/11 | 106  |           |       | Returned to NSA, but not running due to SW problems               |
| 06/15/11 | 101  | Greenland |       | New laser diode installed                                         |

|          |      |           | Diode   |                                                                     |
|----------|------|-----------|---------|---------------------------------------------------------------------|
| Date     | MPL  | Site      | Hours   | Comments                                                            |
| 06/16/11 | 101  | Greenland |         | Laser diode hours changed from 9235.4 to 36.0                       |
| 06/16/11 | 102  |           |         | At Sigma Space, repair completed. Ship to Pagosa Springs for India. |
| 06/27/11 | 106  |           |         | Working at NSA with SigmaMPL 4.06                                   |
| 08/23/11 | 107  |           |         | Installed at Manus                                                  |
| 08/31/11 | 108  |           |         | Arrived at Sigma Space from Darwin, FSPOL upgrade                   |
| 09/29/11 | 4103 | Gan       | 6584    | Setup at AMF2 Maldives                                              |
| 10/13/11 | 107  | Manus     | 13064   | Running SigmaMPL2010R1.1                                            |
| 10/13/11 | 104  | SGP       | 21625   | Has been running SigmaMPL 2.54                                      |
| 10/27/11 | 106  | NSA       |         | Software upgrade from 4.06 to 2010R1.1                              |
| 01/12/12 | 409  |           |         | Installed at Kent Co. Showgrounds near Detling, Kent, UK            |
| 02/07/12 | 102  |           | 114.5   | Upgrade to FSPOL-IDS install at Nanital, Software SigmaMPL2010R1.1  |
| 02/14/12 | 409  |           |         | Removed from Kent Co. Showgrounds near Detling, Kent, UK            |
| 05/02/12 | 108  | Manus     |         | Arrived at Manus, installing SigmaMPL2010R1.1                       |
| 05/03/12 | 409  | ANL       |         | Setup at ANL 203 J160 for Demo                                      |
| 08/01/12 | 101  | ANL       |         | Returned to ANL from Greenland by Matt Shupe                        |
| 08/01/12 | 107  | Greenland |         | Installed at Greenland by Matt Shupe                                |
| 09/27/12 | 4103 | AMF2      |         | MPL installed on Horizon Spirit                                     |
| 10/04/12 | 4103 | AMF2      |         | MPL removed and shipped to Sigma Space: SHG error open circuit      |
| 10/04/12 | 409  |           |         | MPL installed on Horizon Spirit                                     |
| 10/10/12 | 105  | Darwin    |         | Upgrade installed at Darwin, IDS and SigmaMPL_2010R1.1              |
| 10/18/12 | 104  | SGP       | 30485   | MPL hard disk rebuilt                                               |
| 10/24/12 | 102  | AMF1      | 3902    |                                                                     |
| 12/13/12 | 4103 | Spirit    | 10172.7 | Installed on Spirit after repair                                    |
| 12/13/12 | 409  | ANL       |         | MPL removed from Spirit. Pump diode dead.                           |
| 01/04/13 | 4103 | Spirit    | 500     | Reset pump diode hours to 500                                       |
| 01/21/13 | 4211 | AMF1      | 952.4   | AMF1 PVC TCAP                                                       |
| 02/20/13 | 4212 |           |         | Waiting at Sandia for Deployment to Oliktok                         |
| 06/22/13 | 4103 |           |         | Removed from Spirit for repair at Sigma Space                       |
| 07/09/13 | 102  | SGP       |         | Arrived at SGP CF without native computer                           |
| 07/09/13 | 104  |           |         | Previous SGP MPL to be shipped to Sigma Space without computer      |
| 07/08/13 | 4211 |           |         | Arrives at SGP for overlap correction                               |
| 08/03/13 | 4103 | Spirit    | 11642   | Setup on Spirit for MAGIC                                           |
| 08/27/13 | 4103 |           |         | Shipped out from dockside to Sigma Space again                      |
| 09/01/13 | 4211 |           |         | AMF1, awaiting deployment to Brazil                                 |
| 09/15/13 | 4212 | OLI       |         | Arrives at Oliktok and installed                                    |
| 09/30/13 | 101  | ENA       | 20207   | Setup at ENA Azores                                                 |
| 01/01/14 | 4211 | AMF1      |         | Setup at AMF1 Brazil                                                |
| 01/03/14 | 107  | Greenland | 30279   |                                                                     |
| 01/15/14 | 4103 | AMF2      | 10602   | Installed at AMF2 Finland                                           |
| 01/01/14 | 108  |           |         | Removed from Manus. In transit to Sigma Space.                      |
| 02/04/14 | 102  | Manus     |         | Replaced 108 at Manus                                               |
| 10/02/15 | 104  |           |         | Sent for repair from SGP                                            |
| 11/10/15 | 107  |           |         | Sent for repair from Greenland                                      |
| 11/27/15 | 4103 | AMF2      |         | Installed AMF2 at McMurdo                                           |
| 12/01/15 | 4211 | AMF1      |         | Taken down and returning from AMF1 (MAO)                            |
| 01/21/16 | 102  | SGP       | 13110.5 |                                                                     |
| 01/21/16 | 105  | WAIS      |         | At McMurdo (WAIS)                                                   |

|          |      |           | Diode   |                                                                                     |
|----------|------|-----------|---------|-------------------------------------------------------------------------------------|
| Date     | MPL  | Site      | Hours   | Comments                                                                            |
| 01/21/16 | 108  | Greenland |         | Current location Greenland. Went from Norwegian icebreaker to ICECAPS               |
|          |      |           |         | before.                                                                             |
| 03/12/16 | 4211 |           |         | At Sigma Space for repair. Came from AMF1 Brazil.                                   |
| 04/26/16 | 107  | SGP       |         | Running at SGP after repairs at Sigma Space                                         |
| 05/03/16 | 104  | SGP       |         | At SGP as a spare, came from Sigma Space                                            |
| 05/11/16 | 107  | NASA      |         | At NASA for possible deployment at Ascension Island (ASI) AMF1                      |
|          |      | Goddard   |         |                                                                                     |
| 06/27/16 | 4211 | AMF1      | 24421.5 | At ASI                                                                              |
| 03/21/17 | 107  |           |         | Was not used for ASI, so NASA sent it to SGP                                        |
| 03/23/17 | 102  | SGP       |         | Switching between co-pol/cross-pol affected. Sending it to Sigma Space for          |
|          |      |           |         | LC evaluation.                                                                      |
| 03/23/17 | 104  | SGP       |         | Installed instead of MPL102                                                         |
| 03/27/17 | 104  | SGP       |         | Electrical work at the GIF trailer caused power surge, affecting the laser.         |
|          |      |           |         | Send the MPL to vendor.                                                             |
| 04/07/17 | 102  |           |         | Evaluation: Detector, LC, Laser Controller replacement                              |
| 04/12/17 | 104  |           |         | Evaluation: Replacement of athermal telescope                                       |
| 04/12/17 | 105  | AMF2      |         | WAIS MPL arrived at LANL: Send to SGP                                               |
| 04/12/17 | 4103 | AMF2      |         | AWARE MPL arrived at LANL: To be used for MARCUS                                    |
| 04/20/17 | 4212 | AMF3      |         | Not switching: Sent to Sigma Space for repair. LC replacement, Equivalent           |
|          |      |           |         | to new MPL laser replacement                                                        |
| 05/08/17 | 105  |           |         | Arrived at SGP from LANL (WAIS): keep as a spare                                    |
| 07/07/17 | 104  | OLI       |         | Arrived directly from vendor                                                        |
| 07/17/17 | 4103 | AMF2      |         | LANL for beta test: Degraded LC performance. Shipped to Sigma Space                 |
|          |      |           |         | for LC replacement and alignment.                                                   |
| 08/15/17 | 4103 | AMF2      |         | Arrived at LANL for MARCUS pack-up. No time for testing.                            |
| 10/03/17 | 105  | NSA       |         | Sent from SGP to replace 106, as MPL106 is being sent for investigating             |
|          |      |           |         | the cause of high depolarization values.                                            |
| 11/27/17 | 4212 |           |         | Sent to replace 4103 at MARCUS due to high depolarization value                     |
|          |      |           |         | problem.                                                                            |
| 03/02/17 | 101  |           |         | Received at Sigma Space, sent from ENA, for evaluation                              |
| 09/23/18 | 4211 | AMF1      |         | Running at COR                                                                      |
| 11/21/18 | 4212 | SGP       | 34542.3 | Replaced 107 at SGP                                                                 |
| 11/21/18 | 107  |           |         | Shipping to Sigma Space: unrealistic R <sup>2</sup> corrected signal nighttime peak |
| 11/30/18 | 106  |           |         | Evaluation: replace laser controller, athermal telescope, detector, LC              |
|          |      |           |         | module repair                                                                       |
| 11/30/18 | 101  |           |         | Evaluation: replace laser, telescope, detector, LC module repair                    |
| 02/18/19 | 4103 | AMF1      |         | Received at COR, replacing 4211 that was misaligned and is being sent for           |
|          |      |           |         | evaluation.                                                                         |
| 03/21/19 | 101  | AMF2      |         | At LANL for MOSAIC beta test.                                                       |
| 03/28/19 | 106  |           |         | Received at SGP to be kept as a spare.                                              |
| 04/09/19 | 106  | AMF1      |         | Sent to LANL for COMBLE                                                             |
| 05/13/19 | 4211 |           |         | Arrived at Sigma Space                                                              |
| 08/06/19 | 4103 | AMF1      |         | At COMBLE S2 (Bear Island), operating in its enclosure.                             |
| 09/10/19 | 101  | AMF2      |         | Arrived for MOSAIC. Did not pulse (laser immediately killed the diode).             |
|          |      |           |         | Atterpulse dramatically different from one done at Sigma Space. Dark                |
|          |      |           |         | black spot in the beam: laser affected. Sending it back to vendor.                  |
| 09/14/19 | 106  | AMF2      |         | Arrived for COMBLE but diverted and sent to MOSAIC.                                 |

|          |      |      | Diode   |                                                  |
|----------|------|------|---------|--------------------------------------------------|
| Date     | MPL  | Site | Hours   | Comments                                         |
| 12/06/19 | 107  | AMF1 |         | At COMBLE (ANX M1)                               |
| 02/11/20 | 4211 |      |         | Repaired MPL arrived at SGP. Keep as a spare.    |
| 02/18/20 | 4212 | SGP  | 41469.8 | Frequent energy level drops. Replaced the diode. |

# 4.0 Near-Real-Time Data Plots

Data collected by MPLs can be viewed in near-real time through the Data Quality Office's (DQO) <u>Quick</u> <u>Plot Browser</u> via selecting the desired site and "mpl" under the instrument class.

# 5.0 Data Description and Examples

The raw binary data produced by the MPL contains the signal return in the co-pol and cross-pol channels. These are ingested along with various correction files necessary for Normalized Relative Backscatter (NRB) calculation and made available to users as a "b1"-level data product. This data product can be accessed through the <u>ARM Data Discovery Tool</u> with the *SIDmplpolfsFID.b1* datastream name structure, where SID = Site ID (e.g., sgp) and FID = Facility ID (e.g., C1).

### 5.1 Data File Contents

#### 5.1.1 Primary Variables and Expected Uncertainty

The MPL has two measurement channels that record backscatter signals up to 20+ km. The primary quantity derived from this signal is the lowest detected cloud base in meters, which is a value-added product (VAP).

Additional quantities possible through post-processing of the raw signal return include the NRB profile at 532 nm. From the relative backscatter profile, other data products are possible, including multiple cloud decks, cloud and layer boundaries, cloud ice/water, and aerosol extinction and backscatter profiles.

#### **Definition of Uncertainty**

The uncertainties in reported cloud base height have several sources. There is an inherent calibration uncertainty of the timing electronics of about 2%. This translates directly into an uncertainty of  $\pm$  2% for all reported distances.

Also, the measured lidar profiles are collected in discrete "range bins" with finite width. Reported cloud heights are centered within the range bin, so cloud base heights will have an uncertainty of  $\pm 1/2$  the range resolution. Early MPL systems deployed at SGP and TWP C1 had a range resolution of 300 meters. ARM MPL systems are currently operating with 15-m resolution.

Several other uncertainties are more difficult to quantify. The MPL is an eye-safe lidar, and as such, it transmits a very low-power laser beam, typically less than ~25 mW at 532 nm. Thus, it is subject to signal-to-noise limitations in conjunction with solar background noise. Moreover, the laser beam is

attenuated or extinguished as it passes through the atmosphere. These two effects combine to make detection of high, thin clouds more difficult during the day. Furthermore, over time laser systems degrade and produce less powerful pulses, so the sensitivity of the MPL will depend on the health of the laser system in the MPL. In addition to these measurement limitations, there are other uncertainties that are difficult to quantify. Exactly "what is a cloud" is difficult to define. Algorithm differences can yield biases in reported cloud base height: while one algorithm may identify a particular atmospheric structure as being a "cloud", another algorithm may not. Thus, algorithm sensitivity is also a difficult uncertainty to quantify.

#### 5.1.2 Dimension Variables

Not applicable to this instrument.

### 5.2 Annotated Examples

Not applicable to this instrument.

### 5.3 User Notes and Known Problems

Not applicable to this instrument.

### 5.4 Frequently Asked Questions

#### What MPL datastream should I use for clouds?

Use <u>ARSCL</u> or NRB VAP profiles (<u>MPLNOR</u>). If neither is available, the b1-level MPL measurements can be used for NRB calculation detailed by Welton et al. 2001 and Campbell et al. 2002.

#### What MPL datastream should I use for aerosol products?

ARM MPL aerosol retrievals are currently in development but are not operationally available. For limited periods, aerosol products from the ARM MPL at SGP are available from NASA's <u>MPLNET</u>. For qualitative indications of aerosol, the normalized backscatter profiles from MPLNOR are excellent indicators of aerosol layers and relative abundance. Use of b1-level MPL datastreams for aerosol detection is only advised if significant corrections to the data including overlap, dead-time, and afterpulse corrections are taken into account.

#### What is the lowest cloud the MPL can detect?

The minimum detection height of the MPL is on the order of 150 m. Below that the signal is swamped by afterpulse.

# 6.0 Data Quality

### 6.1 Data Quality Health and Status

The <u>Data Quality Office</u> (DQO) website has links to several tools for inspecting and assessing MPL data quality:

- <u>DQ-Explorer</u>
- <u>DQ-Plotbrowser</u>
- <u>DQ-Zoom</u>
- <u>NCVweb</u>: Interactive web-based tool for viewing ARM data

The tables and graphs shown contain the techniques used by ARM's data quality analysts, instrument mentors, and site scientists to monitor and diagnose data quality.

## 6.2 Data Reviews by Instrument Mentor

QC frequency: Monthly QC delay: 1 week QC type: Graphical plots Inputs: Raw data Outputs: Processed backscatter profiles

Daily data quality monitoring of the MPL at all ARM sites mainly consists of visual inspection of vertical time sections of backscattered signal.

# 6.3 Data Assessments by Site Scientist/Data Quality Office

All data quality and most site scientist techniques for checking have been incorporated within <u>DQ</u> <u>Explorer</u>.

### 6.4 Value-Added Products

Many of the scientific needs of the ARM user facility are met through the analysis and processing of existing data products into value-added products (VAPs). Despite extensive instrumentation deployed at the ARM sites, there will always be quantities of interest that are either impractical or impossible to measure directly or routinely. Physical models using ARM instrument data as inputs are implemented as VAPs and can help fill some of the unmet measurement needs of the facility. Conversely, ARM produces some VAPs not in order to fill unmet measurement needs, but to improve the quality of existing measurements. In addition, when more than one measurement is available, ARM also produces "best-estimate" VAPs.

Two VAPs currently use the raw MPL datastream. Whenever possible, the following value-added products should be used in preference to the raw or b1-level MPL datastream.

- **MPLNOR**: "MPLNOR" stands for *MPL normalized*. It produces "normalized" backscatter profiles (in arbitrary units) with all known instrument artifacts removed. To improve the signal-to-noise ratio, MPLNOR applies further temporal and spatial averaging. It also reports up to three layers of clouds along with cloud base and cloud top when possible. Both a "sensitive" and "robust" cloud mask are provided where the "robust" cloud mask is simply the "sensitive" mask with some filters applied to remove false positives.
- **ARSCL**: "ARSCL" stands for *Active Remotely Sensed Cloud Locations*. It represents a composite product combining measurements from ceilometers, lidar, and radar. Lidar and radar measurements are complementary in that lidar are more sensitive to smaller particles often found in cirrus or low-water-vapor clouds. However, radar can penetrate multiple cloud decks that are impossible for lidar to penetrate. Thus, this composite product provides the best of both instruments and is currently ARM's last word on cloud detection.

# 7.0 Instrument Details

## 7.1 Detailed Description

#### 7.1.1 List of Components

The MPL consists of four main components: (1) a computer, (2) a dedicated data acquisition and lidar control system, (3) a diode-pumped Nd-YLF laser system, and (4) a co-axial transceiver for transmitting the laser pulses and detecting the collected photons. A description of each component follows.

- 1. **Computer**: Currently, laptops are used with all ARM MPL systems. All laptops use the CORE-PC operating system developed by ARM.
- 2. **Lidar control system**: The lidar control system, custom produced by Sigma Space, provides conditioned power to the photon detector and laser energy monitor. It contains an integrated A/D converter for reporting of vital system parameters to the instrument PC. It also contains the range-selectable multi-channel scalar that accumulates the range-resolved backscatter profiles.
- 3. Laser-diode-pumped Nd-YLF laser system: The laser power supply provides continuous wave (CW) laser diode infrared pump radiation to the Nd-YLF laser head within the transceiver. The power supply also controls the pulse repetition rate of the Nd-YLF laser head incorporated into the MPL transceiver (described below). Originally, all MPL systems used Spectra Physics lasers (model 7300 or "R-Series"), but as these lasers were discontinued, the lasers have been supplied by Photonics, Inc.
- 4. **Co-axial transceiver**: The "transceiver" serves as both transmitter of the outgoing laser pulses and receiver of backscattered light. Approximately 1.0 watt of infrared CW pump radiation is converted to about 25 mW pulses of green laser light (532 nm) at 2500 Hz by the Nd-YLF laser head with non-linear optical frequency doubler. The pulses of green light are passed through a linear polarizing beam splitter, a depolarizing wedge, and expanded to fill an 8" Celestron telescope. At present, all ARM MPL systems have incorporated the multi-channel scanner into the transceiver package. The laser power supply, made by Photonics, Inc. remains separate from the transceiver.

The detection optics begins with the same 8" Celestron telescope. Returning photons incident on the telescope are collected and pass through the depolarizing wedge. About half of the collected photons pass through the polarizing beam splitter cube and half are reflected. Light passing through the beam splitter is collimated and passed through two narrow-band interference filters (0.27 nm fwhm) in order to reject most of the ambient light and is ultimately focused onto a photon-counting avalanche photodiode (APD) module.

#### 7.1.2 System Configuration and Measurement Methods

The MPL is configured to operate autonomously in an unattended manner 24 hours a day, with 10-second averaging time and 15-m vertical resolution. Standard ARM deployments orient the MPL vertically (or slightly off vertical).

#### 7.1.3 Specifications

Wavelength of laser pulse: 532 nm Length of laser pulse: ~10 ns = 3 m Range resolution (height interval): 15 m Maximum range for cloud base height: 18 km Typical averaging: 10 sec

### 7.2 Theory of Operation

The principle is straightforward. A short pulse of laser light is transmitted from the telescope. As the pulse travels along, part of it is scattered by molecules, water droplets, or other objects in the atmosphere. The greater the number of scatterers, the greater the part scattered.

A small portion of the scattered light is scattered back, collected by the telescope, and detected. The detected signal is stored in bins according to how long it has been since the pulse was transmitted, which is directly related to how far away the backscatter occurred.

The collection of bins for each pulse is called a profile. A cloud would be evident as an increase or spike in the backscattered signal profile, since the water droplets that make up the cloud will produce a lot of backscatter.

### 7.3 Calibration

#### 7.3.1 Theory

Little calibration is necessary for cloud-base height determination. To fix the distance scale, it is necessary to use a calibrated-pulse generator capable of producing a trigger pulse and a second delayed pulse with an accurately known time lag. The two pulses are used to mimic a transmitted laser pulse and detected backscatter pulse with time delay relating to a simulated distance.

Absolute calibration of the magnitude of the lidar signal is much more difficult. The following instrument-level corrections are required:

- 1. **Dead-time correction**: A correction to account for the detector saturation effect when high count rates occur (strong signal return). A lookup table is provided by the vendor to correct for this detector non-linear response, which is unique for each lidar/detector.
- 2. Afterpulse correction: Afterpulse is the "detector noise" induced by the laser firing. It occurs when internally scattered laser light saturates the detector at the beginning of each sampling period and creates a near-field blind zone. The afterpulse includes the detector "dark counts"/"dark noise", which is the instrument noise related to thermal effects.
- 3. Background subtraction: Background noise due to sunlight at 523 nm.
- 4. Range-squared correction
- 5. **Overlap correction:** overlap correction as a function of range, to account for the loss in the near-field receiver efficiency.
- 6. Energy-monitor normalization.

Even after these various corrections are applied, the overall system transmittance is only coarsely known. Determination of this overall system calibration is typically obtained by comparison against other external measurements, modeled results, or both.

Figure 1 shows an example of the co-pol and cross-pol profiles (top and middle panels) on 2020-03-04 at the SGP Central Facility after applying all corrections discussed above. The bottom panel shows the linear depolarization ratio. A cloud layer is evident at 6–8 km expressed with large (shown in red) NRB values.



**Figure 1**. An example of the co-pol and cross-pol Normalized Relative Backscatter (top and middle panels respectively) as well as the profile of linear depolarization ratio (bottom panel) at the SGP Central Facility.

#### 7.3.2 Procedures

All the above-mentioned corrections are currently being provided in the b1-level data.

- The dead time corrections are supplied by the vendor with every new detector.
- Afterpulse and dark count correction procedures are performed by the site operators on a quarterly basis; these are then validated and uploaded for the ingest by the mentor.
- The overlap:
  - The overlap calibration has historically been performed by the vendor, so new overlap corrections were available only after an instrument was evaluated, tested, and repaired at the Sigma Space facility. However, SGP is also equipped with horizontal overlap calibration capability, which has occasionally been performed by the mentor and the site operators when an MPL is available at SGP.
  - ARM has added the in-field overlap calibration capability for ARM mobile facility (AMF) deployments (which were prioritized due to the accessibility and time constraint issues of these deployments) with the use of wide field receivers (WFR). The WFRs are much like the receiver inside the MPL, but with much wider field of view. These are manually operated, center-mounted receivers that sit on top the regular MPL telescope and sample the same column of the atmosphere as the MPL. The WFR measurements are collected simultaneously with a second data channel, which is then used to calibrate the MPL for overlap. The in-field overlap calibration is currently planned to be performed on an "as-needed" basis.

#### 7.3.3 Routine and Corrective Maintenance Documentation

Little maintenance is required other than routine cleaning of the viewport window and gentle cleaning of dust from the telescope. Occasionally, the software or computer may lock up, so visual confirmation that the program is operating, that the clock is updating, and that the displayed measurement agrees with reality are also required.

Both the co-pol and cross-pol signals are displayed on the local MPL computer. The low-level signal should usually show a marked difference between the co- (green) and cross- (red) polarized signal returns because there is little cross-polarized signal from aerosols or water droplets. For many clouds, the redand green-colored traces will often become similar, indicating that the signal source is ice instead of water. If there is little difference between the two signal returns for all heights and several days, there may be a problem with the polarizer, and the mentor should be notified. The laser current should usually be between 0.5 and 1.0 amp, and the laser energy should be between 2 and 7  $\mu$ J.

Daily and monthly preventative maintenance procedures are designed by the mentor and available to the site operators at all ARM sites.

### 7.4 Glossary

See the <u>ARM Glossary</u>.

### 7.5 Acronyms

lidar: light detection and ranging

Also see the ARM Acronyms and Abbreviations.

# 8.0 Citable References

Campbell, JR, DL Hlavka, EJ Welton, CJ Flynn, DD Turner, JD Spinhirne, and VS Scott. 2002. "Full-time Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Processing." *Journal of Atmospheric and Oceanic Technology* 19(4): 431–442, <u>https://doi.org/10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2</u>

Spinhirne, JD. 1993. "Micro pulse lidar." *IEEE Transactions on Geoscience and Remote Sensing* 31(1): 48–55, <u>https://doi.org/10.1109/36.210443</u>

Spinhirne, JD, JAR Rall, and VS Scott. 1995. "Compact eye safe lidar systems." *Review of Laser Engineering* 23(2): 112–118.

Welton, EJ, JR Campbell, JD Spinhirne, and VS Scott. 2001. "Global monitoring of clouds and aerosols using a network of micropulse lidar systems. In *Lidar Remote Sensing for Industry and Environment Monitoring* 4153: 151–158), <u>https://doi.org/10.1117/12.417040</u>



www.arm.gov



Office of Science