kazr: Ka ARM Zenith Radar

The Ka-band ARM Zenith Radar (KAZR) remotely probes the extent and composition of clouds at millimeter wavelengths. The KAZR is a zenith-pointing Doppler radar that operates at a frequency of approximately 35 GHz. The main purpose of this radar is to determine the first three Doppler moments (reflectivity, vertical velocity, and spectral width) at a range resolution of approximately 30 meters from near-ground to nearly 20 km in altitude.

The KAZR replaces the millimeter-wavelength cloud radar (MMCR) and uses a new digital receiver that provides higher spatial and temporal resolution than the MMCR. In addition, spectral artifacts in the data are significantly reduced in the KAZR, allowing researchers to study cloud dynamics much more closely than with the MMCR.

Measurements

Locations

  • Fixed
  • AMF1
  • AMF2
  • AMF3

Related Publications

2019

Ghate V, D Mechem, M Cadeddu, E Eloranta, M Jensen, M Nordeen, and W Smith. 2019. "Estimates of entrainment in closed cellular marine stratocumulus clouds from the MAGIC field campaign." Quarterly Journal of the Royal Meteorological Society, , 10.1002/qj.3514.

Giangrande S, D Wang, M Bartholomew, M Jensen, D Mechem, J Hardin, and R Wood. 2019. "Midlatitude Oceanic Cloud and Precipitation Properties as Sampled By the ARM Eastern North Atlantic Observatory." Journal of Geophysical Research: Atmospheres, , 10.1029/2018JD029667.
Research Highlight

Silber I, J Verlinde, M Cadeddu, C Flynn, A Vogelmann, and E Eloranta. 2019. "Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station—Part II: Radiative Impact During Different Synoptic Regimes." Journal of Geophysical Research: Atmospheres, 124(3), doi:10.1029/2018JD029471.

Ghate V, P Kollias, S Crewell, A Fridlind, T Heus, U Löehnert, M Maahn, G McFarquhar, D Moisseev, M Oue, M Wendisch, and C Williams. 2019. "The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists." Bulletin of the American Meteorological Society, 100(1), 10.1175/BAMS-D-18-0242.1.

2018

Zheng G, Y Wang, A Aiken, F Gallo, M Jensen, P Kollias, C Kuang, E Luke, S Springston, J Uin, R Wood, and J Wang. 2018. "Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes." Atmospheric Chemistry and Physics, 18(23), doi:10.5194/acp-18-17615-2018.
Research Highlight

Mason S, C Chiu, R Hogan, D Moisseev, and S Kneifel. 2018. "Retrievals of Riming and Snow Density From Vertically Pointing Doppler Radars." Journal of Geophysical Research: Atmospheres, 123(24), 10.1029/2018JD028603.

Zheng Y, D Rosenfeld, and Z Li. 2018. "The Relationships Between Cloud Top Radiative Cooling Rates, Surface Latent Heat Fluxes, and Cloud-Base Heights in Marine Stratocumulus." Journal of Geophysical Research: Atmospheres, 123(20), 10.1029/2018JD028579.
Research Highlight

Lamer K, A Fridlind, A Ackerman, P Kollias, E Clothiaux, and M Kelley. 2018. "(GO)2-SIM: a GCM-oriented ground-observation forward-simulator framework for objective evaluation of cloud and precipitation phase." Geoscientific Model Development, 11(10), 10.5194/gmd-11-4195-2018.
Research Highlight

Kassianov E, EA Riley, JM Kleiss, L Riihimaki, CN Long, V Morris, and LK Berg. 2018. Shallow cumulus macrophysical properties at midcontinental US site: integrated multiyear active and passive observations. In 23th Remote SEnsing of Clouds and the Atmosphere. SPIE, Ed. by A Comeron, et al, Bellingham, WA: SPIE.

Williams C, M Maahn, J Hardin, and G de Boer. 2018. "Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra." Atmospheric Measurement Techniques, 11(9), 10.5194/amt-11-4963-2018.
Research Highlight


View All Related Publications