kazr > Ka ARM Zenith RadarInstrument Type(s) > Baseline • Evaluation • Guest

The Ka-band ARM Zenith Radar (KAZR) remotely probes the extent and composition of clouds at millimeter wavelengths. The KAZR is a zenith-pointing Doppler radar that operates at a frequency of approximately 35 GHz. The main purpose of this radar is to determine the first three Doppler moments (reflectivity, vertical velocity, and spectral width) at a range resolution of approximately 30 meters from near-ground to nearly 20 kilometers in altitude.

The KAZR replaces the millimeter-wavelength cloud radar (MMCR) and uses a new digital receiver that provides higher spatial and temporal resolution than the MMCR. In addition, spectral artifacts in the data are significantly reduced in the KAZR, allowing researchers to study cloud dynamics much more closely than with the MMCR.

KAZR data from the 2018–2019 Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign in Argentina are now available as b1-level products. Building on the original CACTI operational data, the b1-level products feature improved data quality resulting from extensive analyses and corrections. The data are cross-calibrated to a common point, datastreams are corrected for operational issues that occurred during the campaign, and several data quality masks and basic derived products are incorporated. For more information, read the CACTI radar b1-level processing report.

Measurements

Locations

  • Fixed
  • AMF1
  • AMF2
  • AMF3

2021

Theisen A, A Lindenmaier, J Mather, J Comstock, S Collis, and S Giangrande. 2021. ARM FY2021 Radar Plan. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-TR-269.

Feldman D, A Aiken, W Boos, R Carroll, V Chandrasekar, W Collins, S Collis, J Deems, P DeMott, J Fan, A Flores, D Gochis, J Harrington, M Kumjian, LR Leung, T O'Brien, M Raleigh, A Rhoades, SM Skiles, J Smith, R Sullivan, P Ullrich, A Varble, and K Williams. 2021. Surface Atmosphere Integrated Field Laboratory (SAIL) Science Plan. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-21-004.

Varble A, S Nesbitt, P Salio, J Hardin, N Bharadwaj, P Borque, P DeMott, Z Feng, T Hill, J Marquis, A Matthews, F Mei, R Öktem, V Castro, L Goldberger, A Hunzinger, K Barry, S Kreidenweis, G McFarquhar, L McMurdie, M Pekour, H Powers, D Romps, C Saulo, B Schmid, J Tomlinson, S van den Heever, A Zelenyuk, Z Zhang, and E Zipser. 2021. "Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment." Bulletin of the American Meteorological Society, , 10.1175/BAMS-D-20-0030.1. ONLINE.

Sedlar J, A Igel, and H Telg. 2021. "Processes contributing to cloud dissipation and formation events on the North Slope of Alaska." Atmospheric Chemistry and Physics, 21(5), 10.5194/acp-21-4149-2021.

Zhang Z, Q Song, D Mechem, V Larson, J Wang, Y Liu, M Witte, X Dong, and P Wu. 2021. "Vertical dependence of horizontal variation of cloud microphysics: observations from the ACE-ENA field campaign and implications for warm-rain simulation in climate models." Atmospheric Chemistry and Physics, 21(4), 10.5194/acp-21-3103-2021.

Lavigne T, C Liu, J Hill, and E Bruning. 2021. "Observations from the one year electric field Study-North Slope of Alaska (OYES-NSA) field campaign, and their implications for observing the distribution of global electrified cloud activity." Journal of Atmospheric and Solar-Terrestrial Physics, 214, 10.1016/j.jastp.2020.105528.

Zheng Y, D Rosenfeld, and Z Li. 2021. "Sub‐cloud turbulence explains cloud‐base updrafts for shallow cumulus ensembles: First observational evidence." Geophysical Research Letters, 48(6), e2020GL091881, 10.1029/2020GL091881.
Research Highlight

Luke E, F Yang, P Kollias, A Vogelmann, and M Maahn. 2021. "New insights into ice multiplication using remote-sensing observations of slightly supercooled mixed-phase clouds in the Arctic." Proceedings of the National Academy of Sciences, 118(13), 10.1073/pnas.2021387118.

Silber I, A Fridlind, J Verlinde, A Ackerman, G Cesana, and D Knopf. 2021. "The prevalence of precipitation from polar supercooled clouds." Atmospheric Chemistry and Physics, 21(5), 10.5194/acp-21-3949-2021.
Research Highlight

McErlich C, A McDonald, A Schuddeboom, and I Silber. 2021. "Comparing satellite- and ground–based observations of cloud occurrence over high southern latitudes." Journal of Geophysical Research: Atmospheres, 126(6), e2020JD033607, 10.1029/2020JD033607.


View All Related Publications