aeri > Atmospheric Emitted Radiance InterferometerInstrument Type(s) > Baseline • External • Guest

The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth’s atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols.



  • Fixed
  • AMF1
  • AMF2
  • AMF3


Russell LM, D Lubin, I Silber, E Eloranta, J Muelmenstaedt, S Burrows, A Aiken, D Wang, M Petters, M Miller, A Ackerman, A Fridlind, M Witte, M Lebsock, D Painemal, R Chang, J Liggio, and M Wheeler. 2021. Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) Science Plan. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-21-009.

Shupe M, D Chu, D Costa, C Cox, J Creamean, G de Boer, K Dethloff, R Engelmann, M Gallagher, E Hunke, W Maslowski, A McComiskey, J Osborn, O Persson, H Powers, K Pratt, D Randall, A Solomon, M Tjernstrom, D Turner, J Uin, T Uttal, J Verlinde, and D Wagner. 2021. Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Field Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-21-007.

Turner D and U Löhnert. 2021. "Ground-based temperature and humidity profiling: combining active and passive remote sensors." Atmospheric Measurement Techniques, 14(4), 10.5194/amt-14-3033-2021.

Fridlind A, C Chiu, S Collis, J Comstock, S Giangrande, N Hickmon, M Jensen, M Kumjian, P Muradyan, R Newsom, A Sockol, M Sturm, and A Theisen. 2021. ARM Cloud and Precipitation Measurements and Science Group (CPMSG) Workshop Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-21-005.

Feldman D, A Aiken, W Boos, R Carroll, V Chandrasekar, W Collins, S Collis, J Deems, P DeMott, J Fan, A Flores, D Gochis, J Harrington, M Kumjian, LR Leung, T O'Brien, M Raleigh, A Rhoades, SM Skiles, J Smith, R Sullivan, P Ullrich, A Varble, and K Williams. 2021. Surface Atmosphere Integrated Field Laboratory (SAIL) Science Plan. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-21-004.

Varble A, S Nesbitt, P Salio, J Hardin, N Bharadwaj, P Borque, P DeMott, Z Feng, T Hill, J Marquis, A Matthews, F Mei, R Öktem, V Castro, L Goldberger, A Hunzinger, K Barry, S Kreidenweis, G McFarquhar, L McMurdie, M Pekour, H Powers, D Romps, C Saulo, B Schmid, J Tomlinson, S van den Heever, A Zelenyuk, Z Zhang, and E Zipser. 2021. "Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment." Bulletin of the American Meteorological Society, , 10.1175/BAMS-D-20-0030.1. ONLINE.

Mather J, J Comstock, N Hickmon, M Ritsche, J Hardesty, H Powers, A Theisen, B Schmid, G Prakash, and R Jundt. 2021. Decadal Vision Progress Report: Progress Towards Goals Outlined in the 2014 Decadal Vision. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-TR-270.

Devarakonda R, J Kumar, and G Prakash. 2021. Clustering-Based Predictive Analytics to Improve Scientific Data Discovery. In IEEE Big Data, pp. 5658-5661. : IEEE.

Ye J, L Liu, Q Wang, S Hu, and S Li. 2021. "A Novel Machine Learning Algorithm for Planetary Boundary Layer Height Estimation Using AERI Measurement Data." IEEE Geoscience and Remote Sensing Letters, , 10.1109/LGRS.2021.3073048. ONLINE.

Geerts B, G McFarquhar, L Xue, M Jensen, P Kollias, M Ovchinnikov, M Shupe, P DeMott, Y Wang, M Tjernstrom, P Field, S Abel, T Spengler, R Neggers, S Crewell, M Wendisch, and C Lupkes. 2021. Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) Field Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-21-001.

View All Related Publications