Mixed-Phase Arctic Cloud Experiment (M-PACE)

27 September 2004 - 21 October 2004

Lead Scientist: Johannes Verlinde

Observatory: NSA

The major objective of the Mixed-Phase Arctic Cloud Experiment (M-PACE) was to collect a focused set of observations needed to advance our understanding of the dynamical and processes in mixed-phase arctic clouds, including cloud microphysical processes and radiative transfer through these clouds.

The M-PACE consisted of four surface-based sites the two DOE-ARM NSA sites Barrow and Atqasuk supplemented by another remote sensing site at Oliktok Point and a radiosonde site in the interior. The Oliktok Point site was equipped with an ARM-like remote sensing facility, supplemented by a tethered balloon equipped with basic met, radiation and CPI capability. Aircraft equipped with the full complement of microphysical and radiation instruments documented cloud properties between these four points.

The University of North Dakota Citation was the in situ platform, while the DOE-ARM UAV served as a high-flying remote sensing platform. In addition to its standard set of microphysical measurement systems, the Citation was equipped with the NCAR CCN counter and the CSU IN counter, while the UAV had downward looking cloud radar, lidar and HIS in addition to its complement of in situ microphysical measurement systems.

Scientific Requirement (succinct statement of underlying hypothesis or technical goal for proposed research): See http://www.meteo.psu.edu/~verlinde/mpace.html*.

This experiment provided critical measurements to make progress in the development of retrieval algorithms for application at the North Slope. Moreover, it provided the physical understanding necessary to parameterize arctic cloud processes.

*Link is currently unavailable.


Zhang X, T Schneider, and C Kaul. 2020. "Sensitivity of idealized mixed‐phase stratocumulus to climate perturbations." Quarterly Journal of the Royal Meteorological Society, , 10.1002/qj.3846. ONLINE.

Zhang M, S Xie, X Liu, W Lin, K Zhang, H Ma, X Zheng, and Y Zhang. 2020. "Toward Understanding the Simulated Phase Partitioning of Arctic Single‐Layer Mixed‐Phase Clouds in E3SM." Earth and Space Science, 7(7), e2020EA001125, 10.1029/2020EA001125.
Research Highlight


Fu S, X Deng, M Shupe, and H Xue. 2019. "A modelling study of the continuous ice formation in an autumnal Arctic mixed-phase cloud case." Atmospheric Research, 228, 10.1016/j.atmosres.2019.05.021.

Zhang M, X Liu, M Diao, J D'Alessandro, Y Wang, C Wu, D Zhang, Z Wang, and S Xie. 2019. "Impacts of representing heterogeneous distribution of cloud liquid and ice on phase partitioning of Arctic mixed‐phase clouds with NCAR CAM5." Journal of Geophysical Research: Atmospheres, 124(23), 10.1029/2019JD030502.
Research Highlight

Tang S, C Tao, S Xie, and M Zhang. 2019. Description of the ARM Large-Scale Forcing Data from the Constrained Variational Analysis (VARANAL) Version 2. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-TR-222.

Schmitt C, K Sulia, Z Lebo, A Heymsfield, V Przybyo, and P Connolly. 2019. "The fall speed variability of similarly sized ice particle aggregates." Journal of Applied Meteorology and Climatology, 58(8), doi:10.1175/JAMC-D-18-0291.1.

Shi Y and X Liu. 2019. "Dust Radiative Effects on Climate by Glaciating Mixed‐Phase Clouds." Geophysical Research Letters, , doi:10.1029/2019GL082504.
Research Highlight

Gettelman A, J Truesdale, J Bacmeister, P Caldwell, R Neale, P Bogenschutz, and I Simpson. 2019. "The Single Column Atmosphere Model Version 6 (SCAM6): Not a Scam but a Tool for Model Evaluation and Development." Journal of Advances in Modeling Earth Systems, 11(5), 10.1029/2018MS001578.


Solomon A, G de Boer, J Creamean, A McComiskey, M Shupe, M Maahn, and C Cox. 2018. "The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds." Atmospheric Chemistry and Physics, 18(23), 10.5194/acp-18-17047-2018.

Grosvenor D, O Sourdeval, P Zuidema, A Ackerman, M Alexandrov, R Bennartz, R Boers, B Cairns, J Chiu, M Christensen, H Deneke, M Diamond, G Feingold, A Fridlind, A Hünerbein, C Knist, P Kollias, A Marshak, D McCoy, D Merk, D Painemal, J Rausch, D Rosenfeld, H Russchenberg, P Seifert, K Sinclair, P Stier, B van Diedenhoven, M Wendisch, F Werner, R Wood, Z Zhang, and J Quaas. 2018. "Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives." Reviews of Geophysics, 56(2), 10.1029/2017RG000593.

View All Related Publications

Campaign Data Sets

IOP Participant Data Source Name Final Data
Chad Bahrmann METAR Order Data
Maria Cadeddu Microwave Radiometer Profiler Order Data
Paul DeMott CFDC Order Data
Andrew Heymsfield Citation Order Data
Greg Kok Citation Order Data
Chuck Long Surface Flux Analysis Order Data
James Mather PARSL Order Data
Greg McFarquhar Microphysical Cloud Properties-McFarquhar-Zhang Order Data
Patrick Minnis visst Order Data
Victor Morris Total Sky Imager Order Data
Walter Oechel ameriflux-ecor Order Data
Michael Poellot Citation Order Data
Tim Tooman Proteus Order Data
David Turner AERI Order Data
David Turner MWR Retrievals Order Data
Johannes Verlinde Balloon-borne sounding system(s) Order Data
Shaocheng Xie Constrained Variational Objective Analysis Data Order Data
Shaocheng Xie Eta Model Runs Order Data
Shaocheng Xie European Centre for Medium Range Forecasting Order Data
Bernard Zak Tether Sonde Order Data