Biomass Burning Observation Project (BBOP)

1 July 2013 - 24 October 2013

Lead Scientist: Larry Kleinman

Observatory: AAF, OSC

This field campaign addressed multiple uncertainties in aerosol intensive properties, which are poorly represented in climate models, by means of aircraft measurements in biomass burning plumes. Key topics investigated were:

  1. Aerosol mixing state and morphology
  2. Mass absorption coefficients (MACs)
  3. Chemical composition of non-refractory material associated with light-absorbing carbon (LAC)
  4. Production rate of secondary organic aerosol (SOA)
  5. Microphysical processes relevant to determining aerosol size distributions and single scattering albedo (SSA)
  6. CCN activity.

These topics were investigated through measurements near active fires (0-5 hours downwind), where limited observations indicate rapid changes in aerosol properties, and in biomass burning plumes aged >5 hours. Aerosol properties and their time evolution were determined as a function of fire type, defined according to fuel and the mix of flaming and smoldering combustion at the source.

The DOE G-1 aircraft was requested from June 1 to October 30, 2013, to be based at its home location in Pasco, Washington, except for a 4-week intensive operational period (IOP) in Little Rock, Arkansas. A sampling strategy was devised that maximized opportunities to sample both fresh biomass burn emissions and aged plumes. This strategy consisted of an extended deployment of the G-1 in Pasco from July 1 – August 31, 2013, during which time targets of opportunity were exploited, and an IOP in Little Rock in September-October 2013, where prescribed agricultural burns were sampled.

This field campaign leveraged the capabilities of several new instruments or instrument combinations that were not previously used in aircraft. Morphological studies were made by electron microscopy (offline) and Single-Particle Soot Photometer (SP2) analysis. Growth of particles with diameters < 60 nm were determined by the high time resolution measurements provided by the Fast Integrated Mobility Spectrometer (FIMS). Quantitative measurements of the refractory and non-refractory components of particles containing BC were provided by the Soot Particle Aerosol Mass Spectrometer (SP-AMS). Deployment of four instruments devoted to light absorption or extinction (Particle Soot Absorption Photometer (PSAP); Photothermal Interferometer (PTI); Photoacoustic Spectrometer (PAS); and Cavity Attenuated Phase Shift (CAPS)) better quantified the inherently difficult aircraft measurement of light absorption and determination of mass absorption coefficients (MAC).

The primary measurement objective was to:

Quantify the time evolution of microphysical, morphological, chemical, hygroscopic, and optical properties of aerosols generated by biomass burning from near the time of formation onward.

The extended deployment at Pasco together with the IOP at Little Rock allows an examination of the dependence of evolution of biomass burn aerosol properties on fuel type. These properties were also be measured in plumes aged several days and compared with those of younger plumes.

The primary scientific objectives were to investigate:

  • SOA Formation Rates
  • Structure and/or Configuration of Biomass Burn Aerosol Particles
  • Aerosol Light Absorption
  • Composition of Brown Carbon (BrC)
  • Time Evolution of the Composition of Refractory Black Carbon (rBC)
  • Determination of Mass Absorption Coefficients (MAC)
  • Determination of the Time-Series for Coagulation and Condensation
  • CCN Evolution, and Relation to Condensed Organics
  • Radiative Transfer of Biomass Burns.

These will be used to:

  • Constrain processes and parameterizations in a detailed Lagrangian model to reproduce the time-dependent microphysics and chemistry of aerosol evolution
  • Incorporate time evolution information into a single-column radiative model as a first step in translating observations into a forcing per unit mass carbon burned.


William Arnott Wuyin Lin John Shilling
Jeffrey Gaffney Hans Moosmuller Jian Wang
Ernie Lewis Timothy Onasch Rahul Zaveri


Presser C, A Nazarian, D Chand, J Conny, A Sedlacek, and J Hubbe. 2020. "Simultaneous transmission/absorption photometry of particle-laden filters from wildland fires during the Biomass Burning Observation Project (BBOP) field campaign." Journal of Aerosol Science, 150, 10.1016/j.jaerosci.2020.105614.

Goldberger LA, F Mei, J Hubbe, and CD Kluzek. 2020. Navigation and Meteorological Data from Multiple Sensors on Airborne Platform (NAVMET-AIR) Value-Added Product Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-TR-255.

Mei F, D Dexheimer, J Fast, M Diao, B Geerts, A Bucholtz, L Riihimaki, C Flynn, T Thornberry, T Campos, S Springston, C Kuang, J Tomlinson, and B Schmid. 2020. ARM Aerial Instrument Workshop Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-20-010.

Goss HB, KS Dorsey, CB Ireland, MR Wasem, RA Stafford, and R Jundt. 2020. 2019 Atmospheric Radiation Measurement (ARM) Annual Report. Ed. by Kathryn Dorsey, ARM user facility. DOE/SC-ARM-19-032.

Junghenn Noyes K, R Kahn, A Sedlacek, L Kleinman, J Limbacher, and Z Li. 2020. "Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging." Remote Sensing, 12(5), 10.3390/rs12050769.


Adachi K, A Sedlacek, L Kleinman, S Springston, J Wang, D Chand, J Hubbe, J Shilling, T Onasch, T Kinase, K Sakata, Y Takahashi, and P Buseck. 2019. "Spherical tarball particles form through rapid chemical and physical changes of organic matter in biomass-burning smoke." Proceedings of the National Academy of Sciences, 116(39), 10.1073/pnas.1900129116.
Research Highlight

Bhandari J, S China, G Girotto, B Scarnato, K Gorkowski, A Aiken, M Dubey, and C Mazzoleni. 2019. "Optical properties and radiative forcing of fractal-like tar ball aggregates from biomass burning." Journal of Quantitative Spectroscopy and Radiative Transfer, 230, 10.1016/j.jqsrt.2019.01.032.

Zhou S, S Collier, D Jaffe, and Q Zhang. 2019. "Free tropospheric aerosols at the Mt. Bachelor Observatory: more oxidized and higher sulfate content compared to boundary layer aerosols." Atmospheric Chemistry and Physics, 19(3), doi:10.5194/acp-19-1571-2019.


Zhang Q, S Zhou, S Collier, D Jaffe, T Onasch, J Shilling, L Kleinman, and A Sedlacek. 2018. Understanding composition, formation, and aging of organic aerosols in wildfire emissions via combined mountain top and airborne measurements. In Multiphase Environmental Chemistry in the Atmosphere, pp. 363-385. Ed. by SW Hunt, A Laskin, and SA Nizkorodov, American Chemical Society.

Sedlacek III A, P Buseck, K Adachi, T Onasch, S Springston, and L Kleinman. 2018. "Formation and evolution of tar balls from northwestern US wildfires." Atmospheric Chemistry and Physics, 18(15), 10.5194/acp-18-11289-2018.
Research Highlight

View All Related Publications

Campaign Data Sets

IOP Participant Data Source Name Final Data
William Arnott Photoacoustic Soot Spectrometer Order Data
Peter Buseck Transmission Electron Microscopy Images Order Data
Duli Chand Nephelometer Order Data
Duli Chand Particle Soot Absorption Photometer Order Data
Jennifer Comstock Cloud Imaging Probe Order Data
Jennifer Comstock Water Content Monitor Order Data
Manvendra Dubey PICARRO- Trace Gas Concentrations Order Data
Paul Lawson Fast Cloud Droplet Probe (FCDP) Order Data
Chuck Long Shortwave Radiation Order Data
Fan Mei Cloud Condensation Nuclei Counter Order Data
Fan Mei Condensation Particle Counters Order Data
Fan Mei Standardized Navigational Data Order Data
Timothy Onasch Particle Optical Extinction Order Data
Timothy Onasch Soot Particle Aerosol Mass Spectrometer Order Data
Arthur Sedlacek Photothermal Interferometer Order Data
Arthur Sedlacek Single Particle Soot Photometer Order Data
Gunnar Senum Accelerometer Order Data
John Shilling Proton Transfer Reaction Mass Spectrometer Order Data
Stephen Springston Trace Gases Order Data
Jason Tomlinson Cloud and Aerosol Spectrometer Order Data
Jason Tomlinson Passive Cavity Aerosol Spectrometer Order Data
Jason Tomlinson Ultra High Sensitivity Aerosol Spectrometer Order Data
Jason Tomlinson Video - G1 Aircraft Order Data
Jian Wang Fast Integrated Mobility Spectrometer Order Data

OSC Data Sources

Name Full Name Browse Data
MPL Micropulse Lidar Browse Data