wacr: W-Band (95 GHz) ARM Cloud Radar

The W-band ARM Cloud Radar (WACR) systems are zenith-pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz.

The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops).

This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files.

Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

Measurements

Locations

  • Fixed
  • AMF1
  • AMF2
  • AMF3

2020

Naud C, J Booth, K Lamer, R Marchand, A Protat, and G McFarquhar. 2020. "On The Relationship Between The Marine Cold Air Outbreak M Parameter And Low‐Level Cloud Heights In The Midlatitudes." Journal of Geophysical Research: Atmospheres, , 10.1029/2020JD032465. ONLINE.

2019

Kollias P, N Bharadwaj, E Clothiaux, K Lamer, M Oue, J Hardin, B Isom, I Lindenmaier, A Matthews, E Luke, S Giangrande, K Johnson, S Collis, J Comstock, and J Mather. 2019. "The ARM Radar Network: At the Leading-edge of Cloud and Precipitation Observations." Bulletin of the American Meteorological Society, 101(5), 10.1175/BAMS-D-18-0288.1.

Kollias P, B Puigdomènech Treserras, and A Protat. 2019. "Calibration of the 2007–2017 record of Atmospheric Radiation Measurements cloud radar observations using CloudSat." Atmospheric Measurement Techniques, 12(9), 10.5194/amt-12-4949-2019.

Liu J and Z Li. 2019. "Aerosol properties and their influences on low warm clouds during the Two-Column Aerosol Project." Atmospheric Chemistry and Physics, 19(14), 10.5194/acp-19-9515-2019.

Lee H, A Fridlind, and A Ackerman. 2019. "An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations Part I: Collision-coalescence." Journal of the Atmospheric Sciences, 76(1), 10.1175/JAS-D-18-0174.1.
Research Highlight

Schiro K and J Neelin. 2019. "Deep Convective Organization, Moisture Vertical Structure and Convective Transition using Deep-Inflow Mixing." Journal of the Atmospheric Sciences, 76(4), 10.1175/JAS-D-18-0122.1.

2018

Wu P, B Xi, X Dong, and Z Zhang. 2018. "Evaluation of autoconversion and accretion enhancement factors in general circulation model warm-rain parameterizations using ground-based measurements over the Azores." Atmospheric Chemistry and Physics, 18(23), 10.5194/acp-18-17405-2018.

Zheng Y, D Rosenfeld, and Z Li. 2018. "Estimating the decoupling degree of subtropical marine stratocumulus decks from satellite." Geophysical Research Letters, 45(22), 10.1029/2018GL078382.
Research Highlight

Zheng Y, D Rosenfeld, and Z Li. 2018. "The Relationships Between Cloud Top Radiative Cooling Rates, Surface Latent Heat Fluxes, and Cloud-Base Heights in Marine Stratocumulus." Journal of Geophysical Research: Atmospheres, 123(20), 10.1029/2018JD028579.
Research Highlight

Borque P, E Luke, P Kollias, and F Yang. 2018. "Relationship Between Turbulence and Drizzle in Continental and Marine Low Stratiform Clouds." Journal of the Atmospheric Sciences, 75(12), 10.1175/JAS-D-18-0060.1.
Research Highlight


View All Related Publications