sebs: Surface Energy Balance System

The surface energy balance system (SEBS) consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements of temperature, moisture, and soil heat flow.

The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the available energy (surface energy balance) as determined from the SEBS, and provide information on wetting of the sensors for data-quality purposes.

Locations

  • Fixed
  • AMF1
  • AMF2
  • AMF3

Related Publications

2019

Tang S, S Xie, Y Zhang, and DR Cook. 2019. The QCECOR Value-Added Product: Quality-Controlled Eddy Correlation Flux Measurements. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-TR-223.

Cook DR and RC Sullivan. 2019. Eddy Correlation Flux Measurement System (ECOR) Instrument Handbook. Ed. by Robert Stafford, U.S. Department of Energy. DOE/SC-ARM/TR-052.

Cook DR and RC Sullivan. 2019. Surface Energy Balance System (SEBS) Instrument Handbook. Ed. by Robert Stafford, ARM Climate Research Facility. DOE/SC-ARM/TR-092.

Silber I, J Verlinde, M Cadeddu, C Flynn, A Vogelmann, and E Eloranta. 2019. "Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station—Part II: Radiative Impact During Different Synoptic Regimes." Journal of Geophysical Research: Atmospheres, 124(3), doi:10.1029/2018JD029471.

Sullivan R, D Cook, V Ghate, V Kotamarthi, and Y Feng. 2019. "Improved Spatiotemporal Representativeness and Bias Reduction of Satellite-Based Evapotranspiration Retrievals via Use of In Situ Meteorology and Constrained Canopy Surface Resistance." Journal of Geophysical Research: Biogeosciences, , 10.1029/2018JG004744. ONLINE.
Research Highlight

2018

Varble A, S Nesbitt, P Salio, E Zipser, S van den Heever, G McFarquhar, P DeMott, S Kreidenweis, M Jensen, P Kollias, D Romps, K Rasmussen, R Houze, Jr, R Leung, D Gochis, E Avila, CR Williams, and P Borque. 2018. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Science Plan. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-18-027.

Varble A, S Nesbit, P Salio, E Zipser, S van den Heever, G McFarquhar, P Kollias, S Kreidenweis, P DeMott, M Jensen, R Houze, Jr., K Rasmussen, R Leung, D Romps, D Gochis, E Avila, and C Williams. 2018. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Science Plan. Ed. by Robert Stafford, DOE ARM Climate Research Facility. DOE/SC-ARM-17-004.

PZ, M Alvarado, C Chiu, S DeSzoeke, C Fairall, G Feingold, A Freedman, S Ghan, J Haywood, P Kollias, E Lewis, G McFarquhar, A McComiskey, D Mechem, T Onasch, J Redemann, D Romps, D Turner, H Wang, R Wood, S Yuter, and P Zhu. 2018. Layered Atlantic Smoke Interactions with Clouds (LASIC) Field Campaign Report. Ed. by Robert Stafford, ARM Climate Research Facility. DOE/SC-ARM-18-018.

2017

Nicolas J, A Vogelmann, R Scott, A Wilson, M Cadeddu, D Bromwich, J Verlinde, D Lubin, L Russell, C Jenkinson, H Powers, M Ryczek, G Stone, and J Wille. 2017. "January 2016 extensive summer melt in West Antarctica favoured by strong El Nino." Nature Communications, 8, 15799, doi:10.1038/ncomms15799.
Research Highlight

2015

Reda I, J Konings, and Y Xie. 2015. "A method to measure the broadband longwave irradiance in the terrestrial direct solar beam." Journal of Atmospheric and Solar-Terrestrial Physics, 129(July 2015), 10.1016/j.jastp.2015.04.003.


View All Related Publications