nephelometer > NephelometerVAP Type(s) > Baseline • External • Guest

The nephelometer measures the total scattering and hemispheric backscattering of aerosol. Nephelometers are deployed in pairs, with one measuring the ambient conditions and the other measuring the scattering as a function of slowly increasing or decreasing relative humidity (RH). The combination can then be used to derive the hygroscopic growth factor as a function of RH: f(RH).

The nephelometer is part of the aerosol observing system (AOS).



  • Fixed
  • AMF1
  • AMF2
  • AMF3


Kassianov E, M Pekour, L Berg, G Chirokova, C Flynn, A Hallar, A Setyan, Q Zhang, J Uin, and J Fast. 2020. "Aerosol Total Volume Estimation from Wavelength‐ and Size‐resolved Scattering Coefficient Data: A New Method." Earth and Space Science, 7(9), e2019EA000863, 10.1029/2019EA000863.

Collaud Coen M, E Andrews, A Alastuey, T Arsov, J Backman, B Brem, N Bukowiecki, C Couret, K Eleftheriadis, H Flentje, M Fiebig, M Gysel-Beer, J Hand, A Hoffer, R Hooda, C Hueglin, W Joubert, M Keywood, J Kim, S Kim, C Labuschagne, N Lin, Y Lin, C Lund Myhre, K Luoma, H Lyamani, A Marinoni, O Mayol-Bracero, N Mihalopoulos, M Pandolfi, N Prats, A Prenni, J Putaud, L Ries, F Reisen, K Sellegri, S Sharma, P Sheridan, J Sherman, J Sun, G Titos, E Torres, T Tuch, R Weller, A Wiedensohler, P Zieger, and P Laj. 2020. "Multidecadal trend analysis of in situ aerosol radiative properties around the world." Atmospheric Chemistry and Physics, 20(14), 10.5194/acp-20-8867-2020.

Uin J and L Goldberger. 2020. Nephelometer Aboard Aircraft Instrument Handbook. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-TR-248.

Li H, G McMeeking, and A May. 2020. "Development of a new correction algorithm applicable to any filter-based absorption photometer." Atmospheric Measurement Techniques, 13(5), 10.5194/amt-13-2865-2020.

Zheng X, B Xi, X Dong, T Logan, Y Wang, and P Wu. 2020. "Investigation of aerosol-cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements." Atmospheric Chemistry and Physics, 20(6), 10.5194/acp-20-3483-2020.

Lubin D, D Zhang, I Silber, R Scott, P Kalogeras, A Battaglia, D Bromwich, M Cadeddu, E Eloranta, A Fridlind, A Frossard, K Hines, S Kneifel, W Leaitch, W Lin, J Nicolas, H Powers, P Quinn, P Rowe, L Russell, S Sharma, J Verlinde, and A Vogelmann. 2020. "AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment." Bulletin of the American Meteorological Society, 101(7), 10.1175/BAMS-D-18-0278.1.


Shen Y, A Virkkula, A Ding, K Luoma, H Keskinen, P Aalto, X Chi, X Qi, W Nie, X Huang, T Petäjä, M Kulmala, and V Kerminen. 2019. "Estimating cloud condensation nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization." Atmospheric Chemistry and Physics, 19(24), 10.5194/acp-19-15483-2019.

Varble A, S Nesbitt, P Salio, E Avila, P Borque, P DeMott, G McFarquhar, S van den Heever, E Zipser, D Gochis, R Houze, M Jensen, P Kollias, S Kreidenweis, R Leung, K Rasmussen, D Romps, and C Williams. 2019. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Field Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-19-028.

Li J, H Chen, Z Li, P Wang, X Fan, W He, and J Zhang. 2019. "Analysis of Low-level Temperature Inversions and Their Effects on Aerosols in the Lower Atmosphere." Advances in Atmospheric Sciences, 36(11), 10.1007/s00376-019-9018-9.

Burgos M, E Andrews, G Titos, L Alados-Arboledas, U Baltensperger, D Day, A Jefferson, N Kalivitis, N Mihalopoulos, J Sherman, J Sun, E Weingartner, and P Zieger. 2019. "A global view on the effect of water uptake on aerosol particle light scattering." Scientific Data, 6(1), 10.1038/s41597-019-0158-7.

View All Related Publications