mwr: Microwave Radiometer

The microwave radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is a sensitive microwave receiver that detects the microwave emissions of the vapor and liquid water molecules in the atmosphere at two frequencies: 23.8 and 31.4 GHz.

Integrated water vapor and liquid water path are derived from radiance measurements with a statistical retrieval algorithm that uses monthly derived and location-dependent linear regression coefficients.

Measurements

Locations

  • Fixed
  • AMF1
  • AMF2
  • AMF3

Related Publications

2019

Giangrande S, D Wang, M Bartholomew, M Jensen, D Mechem, J Hardin, and R Wood. 2019. "Midlatitude Oceanic Cloud and Precipitation Properties as Sampled By the ARM Eastern North Atlantic Observatory." Journal of Geophysical Research: Atmospheres, , 10.1029/2018JD029667.
Research Highlight

Tjernström M, M Shupe, I Brooks, P Achtert, J Prytherch, and J Sedlar. 2019. "Arctic Summer Airmass Transformation, Surface Inversions, and the Surface Energy Budget." Journal of Climate, 32(3), 10.1175/JCLI-D-18-0216.1.

Silber I, J Verlinde, M Cadeddu, C Flynn, A Vogelmann, and E Eloranta. 2019. "Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station—Part II: Radiative Impact During Different Synoptic Regimes." Journal of Geophysical Research: Atmospheres, 124(3), doi:10.1029/2018JD029471.

Ghate V, P Kollias, S Crewell, A Fridlind, T Heus, U Löehnert, M Maahn, G McFarquhar, D Moisseev, M Oue, M Wendisch, and C Williams. 2019. "The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists." Bulletin of the American Meteorological Society, 100(1), 10.1175/BAMS-D-18-0242.1.

Wagner T, P Klein, and D Turner. 2019. "A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer." Bulletin of the American Meteorological Society, 100(1), 10.1175/BAMS-D-17-0165.1.

Schiro K and J Neelin. 2019. "Deep Convective Organization, Moisture Vertical Structure and Convective Transition using Deep-Inflow Mixing." Journal of the Atmospheric Sciences, 76(4), 10.1175/JAS-D-18-0122.1.

Zeng X, G Skofronick-Jackson, L Tian, A Emory, W Olson, and R Kroodsma. 2019. "Analysis of the Global Microwave Polarization Data of Clouds." Journal of Climate, 32(1), 10.1175/JCLI-D-18-0293.1.

2018

Wu P, B Xi, X Dong, and Z Zhang. 2018. "Evaluation of autoconversion and accretion enhancement factors in general circulation model warm-rain parameterizations using ground-based measurements over the Azores." Atmospheric Chemistry and Physics, 18(23), 10.5194/acp-18-17405-2018.

Mason S, C Chiu, R Hogan, D Moisseev, and S Kneifel. 2018. "Retrievals of Riming and Snow Density From Vertically Pointing Doppler Radars." Journal of Geophysical Research: Atmospheres, 123(24), 10.1029/2018JD028603.

Jia X, J Quan, Z Zheng, X Liu, Q Liu, H He, and Y Liu. 2018. "Impacts of anthropogenic aerosols on fog in North China Plain." Journal of Geophysical Research: Atmospheres, 124(1), 10.1029/2018JD029437.


View All Related Publications