hsrl > High Spectral Resolution LidarInstrument Type(s) > Baseline • Guest

High-spectral-resolution lidar (HSRL) systems collect data about clouds and aerosols.

These systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile.

Like the Raman lidar, but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight.

ARM operates two HSRL systems, one at the Barrow, North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2), which is deployed at various locations on field campaigns.

Locations

  • Fixed
  • AMF1
  • AMF2
  • AMF3

Active Locations

Facility Name Start Date
Gunnison, CO; AMF2 (main site for SAIL) 2021-08-22

2022

Brendecke J, X Dong, B Xi, and X Zheng. 2022. "Maritime Aerosol and CCN profiles derived from ship‐based measurements over Eastern North Pacific during MAGIC." Earth and Space Science, 9(4), e2022EA002319, 10.1029/2022EA002319.

Silber I and M Shupe. 2022. "Insights on sources and formation mechanisms of liquid-bearing clouds over MOSAiC examined from a Lagrangian framework." Elementa: Science of the Anthropocene, 10(1), 10.1525/elementa.2021.000071.

Silber I, R Jackson, A Fridlind, A Ackerman, S Collis, J Verlinde, and J Ding. 2022. "The Earth Model Column Collaboratory (EMC2) v1.1: an open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models." Geoscientific Model Development, 15(2), 10.5194/gmd-15-901-2022.
Research Highlight

Shupe M, M Rex, B Blomquist, P Persson, J Schmale, T Uttal, D Althausen, H Angot, S Archer, L Bariteau, I Beck, J Bilberry, S Bucci, C Buck, M Boyer, Z Brasseur, I Brooks, R Calmer, J Cassano, V Castro, D Chu, D Costa, C Cox, J Creamean, S Crewell, S Dahlke, E Damm, G de Boer, H Deckelmann, K Dethloff, M Dütsch, K Ebell, A Ehrlich, J Ellis, R Engelmann, A Fong, M Frey, M Gallagher, L Ganzeveld, R Gradinger, J Graeser, V Greenamyer, H Griesche, S Griffiths, J Hamilton, G Heinemann, D Helmig, A Herber, C Heuzé, J Hofer, T Houchens, D Howard, J Inoue, H Jacobi, R Jaiser, T Jokinen, O Jourdan, G Jozef, W King, A Kirchgaessner, M Klingebiel, M Krassovski, T Krumpen, A Lampert, W Landing, T Laurila, D Lawrence, M Lonardi, B Loose, C Lüpkes, M Maahn, A Macke, W Maslowski, C Marsay, M Maturilli, M Mech, S Morris, M Moser, M Nicolaus, P Ortega, J Osborn, F Pätzold, D Perovich, T Petäjä, C Pilz, R Pirazzini, K Posman, H Powers, K Pratt, A Preußer, L Quéléver, M Radenz, B Rabe, A Rinke, T Sachs, A Schulz, H Siebert, T Silva, A Solomon, A Sommerfeld, G Spreen, M Stephens, A Stohl, G Svensson, J Uin, J Viegas, C Voigt, P von der Gathen, B Wehner, J Welker, M Wendisch, M Werner, Z Xie, and F Yue. 2022. "Overview of the MOSAiC expedition—Atmosphere." Elementa: Science of the Anthropocene, 10(1), 10.1525/elementa.2021.00060.
Research Highlight

Kalogeras P and A Battaglia. 2022. "Improving Millimeter Radar Attenuation Corrections in High Latitude Mixed Phase Clouds via Radio-Soundings and a Suite of Active and Passive Instruments." IEEE Transactions on Geoscience and Remote Sensing, 60, 10.1109/TGRS.2022.3142533.


View All Related Publications