ecor: Eddy Correlation Flux Measurement System

The eddy correlation (ECOR) flux measurement system provides half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide. The ECOR uses the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, air temperature, water vapor density, and CO2 density. The system includes:

  • A fast-response, 3D wind sensor (sonic anemometer) to record the orthogonal wind components and the speed of sound (SOS), which is used to derive the air temperature;
  • An open-path infrared gas analyzer (IRGA) to obtain the water vapor density and CO2 density; and
  • An IRGA to obtain the methane density (at the NSA and OLI sites only).

ECOR systems are deployed where other methods for measuring surface fluxes, such as Energy Balance Bowen Ratio systems (EBBR), are difficult to use.

Locations

  • Fixed
  • AMF1
  • AMF2
  • AMF3

Related Publications

2018

Cook DR. 2018. Eddy Correlation Flux Measurement System (ECOR) Instrument Handbook. Ed. by Robert Stafford, U.S. Department of Energy. DOE/SC-ARM/TR-052.

Varble A, S Nesbit, P Salio, E Zipser, S van den Heever, G McFarquhar, P Kollias, S Kreidenweis, P DeMott, M Jensen, R Houze, Jr., K Rasmussen, R Leung, D Romps, D Gochis, E Avila, and C Williams. 2018. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Science Plan. Ed. by Robert Stafford, DOE ARM Climate Research Facility. DOE/SC-ARM-17-004.

Torn MS, L Kueppers, SC Biraud, and DP Billesbach. 2018. Portable Flux Tower Deployments Field Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-18-022.

Xiao H, L Berg, and M Huang. 2018. "The Impact of Surface Heterogeneities and Land-Atmosphere Interactions on Shallow Clouds Over ARM SGP Site." Journal of Advances in Modeling Earth Systems, 10(6), 10.1029/2018MS001286.
Research Highlight

Ma H, S Klein, S Xie, C Zhang, S Tang, Q Tang, C Morcrette, K Van Weverberg, J Petch, M Ahlgrimm, L Berg, F Cheruy, J Cole, R Forbes, W Gustafson, M Huang, Y Liu, W Merryfield, Y Qian, R Roehrig, and Y Wang. 2018. "CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States." Journal of Geophysical Research: Atmospheres, 123(5), 10.1002/2017JD027194.
Research Highlight

Turner D, V Wulfmeyer, A Behrendt, T Bonin, A Choukulkar, R Newsom, W Brewer, and D Cook. 2018. "Response of the Land-Atmosphere System Over North-Central Oklahoma During the 2017 Eclipse." Geophysical Research Letters, 45(3), 10.1002/2017GL076908.
Research Highlight

2017

Phillips T, S Klein, H Ma, Q Tang, S Xie, I Williams, J Santanello, D Cook, and M Torn. 2017. "Using ARM Observations to Evaluate Climate Model Simulations of Land-Atmosphere Coupling on the U.S. Southern Great Plains." Journal of Geophysical Research: Atmospheres, 122(21), doi:10.1002/2017JD027141.
Research Highlight

Nicolas J, A Vogelmann, R Scott, A Wilson, M Cadeddu, D Bromwich, J Verlinde, D Lubin, L Russell, C Jenkinson, H Powers, M Ryczek, G Stone, and J Wille. 2017. "January 2016 extensive summer melt in West Antarctica favoured by strong El Nino." Nature Communications, 8, 15799, doi:10.1038/ncomms15799.
Research Highlight

Bagley J, L Kueppers, D Billesbach, I Williams, S Biraud, and M Torn. 2017. "The influence of land cover on surface energy partitioning and evaporative fraction regimes in the US Southern Great Plains." Journal of Geophysical Research: Atmospheres, 122(11), 10.1002/2017JD026740.
Research Highlight

Zhuang Y, R Fu, J Marengo, and H Wang. 2017. "Seasonal variation of shallow-to-deep convection transition and its link to the environmental conditions over the Central Amazon." Journal of Geophysical Research: Atmospheres, 122(5), 10.1002/2016JD025993.


View All Related Publications