ecor > Eddy Correlation Flux Measurement SystemInstrument Type(s) > Baseline • Guest

The eddy correlation (ECOR) flux measurement system provides half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide. The ECOR uses the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, air temperature, water vapor density, and CO2 density. The system includes:

  • A fast-response, 3D wind sensor (sonic anemometer) to record the orthogonal wind components and the speed of sound (SOS), which is used to derive the air temperature;
  • An open-path infrared gas analyzer (IRGA) to obtain the water vapor density and CO2 density; and
  • An IRGA to obtain the methane density (at the NSA and OLI sites only).

ECOR systems are deployed where other methods for measuring surface fluxes, such as energy balance Bowen ratio systems (EBBR), are difficult to use.

Uncorrected turbulent fluxes are available in the 30ecor datastream. It is recommended that routine ECOR corrections are applied to the data prior to use, and corrected fluxes are available in the 30qcecor VAP. In October 2019 the ECOR systems at SGP were upgraded with newer-model instruments, including the addition of a microprocessor allowing both uncorrected and corrected fluxes in a single datastream, ecorsf, and eliminating the need for the ECOR VAP at these sites.


  • Fixed
  • AMF1
  • AMF2
  • AMF3


Geerts B, G McFarquhar, L Xue, M Jensen, P Kollias, M Ovchinnikov, M Shupe, P DeMott, Y Wang, M Tjernstrom, P Field, S Abel, T Spengler, R Neggers, S Crewell, M Wendisch, and C Lupkes. 2021. Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) Field Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-21-001.


Dai Y, I Williams, and S Qiu. 2020. "Simulating the effects of surface energy partitioning on convective organization: Case study and observations in the US Southern Great Plains." Journal of Geophysical Research: Atmospheres, 126(2), e2020JD033821, 10.1029/2020JD033821.
Research Highlight

Wei X, P Chan, and Z Kuang. 2020. "Two‐Point Mixing, Buoyancy Sorting, and Updraft Dilution in the RACORO Campaign." Geophysical Research Letters, 47(23), e2020GL090674, 10.1029/2020GL090674.

Dorsey K and D Feldman. 2020. Surface Atmosphere Integrated Field Laboratory. Ed. by Rolanda Jundt, ARM user facility. DOE/SC-ARM-20-016.

Serra Y, A Rowe, D Adams, and G Kiladis. 2020. "Kelvin Waves during GOAmazon and Their Relationship to Deep Convection." Journal of the Atmospheric Sciences, 77(10), 10.1175/JAS-D-20-0008.1.
Research Highlight

Tai S, J Fast, W Gustafson, D Chand, B Gaudet, Z Feng, and R Newsom. 2020. "Simulation of Continental Shallow Cumulus Populations using an Observation‐Constrained Cloud‐System Resolving Model." Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002091, 10.1029/2020MS002091.
Research Highlight

Tang S, S Xie, and M Zhang. 2020. Description of the Three-Dimensional Large-Scale Forcing Data from the 3D Constrained Variational Analysis (VARANAL3D). Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-TR-253.

Williams I, J Lee, J Tadić, Y Zhang, and H Chu. 2020. "Modeling spatial heterogeneity in surface turbulent heat flux in the US Southern Great Plains." Journal of Geophysical Research: Atmospheres, 125(13), e2019JD032255, 10.1029/2019JD032255.
Research Highlight

Hamada Y, A Ayers, R Matamala, and D Cook. 2020. Atmosphere-Biosphere Interaction Study Field Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-20-004.

Qiu S and I Williams. 2020. "Observational evidence of state‐dependent positive and negative land‐surface feedback on afternoon deep convection over the Southern Great Plains." Geophysical Research Letters, 47(5), e2019GL06622, 10.1029/2019GL086622.
Research Highlight

View All Related Publications