2020 ARM Decadal Vision

DRAFT

15 June 2020

Table of Contents

Introduction	3
The updated ARM Decadal Vision	4
 T1. Provide comprehensive and impactful field measurements to support scientific advancement of atmospheric process understanding T1.1 Establishment of an observatory in the southeast United States for a multi-year study conclouds, aerosols, and land-atmosphere interactions T1.2 Implementation of a new research aircraft to modernize and expand ARM's aerial measure capabilities T1.3 Pursue the implementation of new measurement capabilities and operation of existing in in new ways at ARM observatories T1.4. Coordinated use of intensive operation periods to maximize the potential of complex AR instruments and guest instruments T1.5. Deployment of multiple facilities or observatories to support multi-scale analysis 	5 nvective 6 rement 6 sstruments 7
 T2. Achieve the maximum scientific impact of ARM measurements through engage with data including the application of advanced data analytical techniques T2.1. Empower ARM staff to engage with data to enhance measurement characterization and t datasets for advanced data analytical techniques T2.2. Development of closure studies and other internal analyses to create internally consister sets for measurement characterization and application to process studies T2.3. Apply advanced data analytical techniques to enable automated quality assessment, the identification of parametric relationships, and enhanced instrument operations 	13 to prepare 13
 T3. Enable advanced data analytics and community use of complex ARM datasets to the advancement of computing infrastructure and data analysis tools T3.1 Develop a flexible computing environment that makes use of internal high-performance of infrastructure and data analysis tools T3.2 Developing software tools to enable data access and analysis T3.3 Enabling open-source software practices to support sharing of code among ARM staff and ARM user community 	15 computing 16 16
 T4. Amplify the impact of ARM measurements on earth system models (ESM) by example. ARM and ESM frameworks to facilitate the application of ARM data to ESM develop. T4.1. Apply the LASSO observation-model framework to new meteorological regimes and genering implementation over any ARM observatory. T4.2 Organize ARM measurements around virtual field campaigns to facilitate access to broad related data and support observation-model collaborative projects. T4.3 Exploit model configurations and tools such as single column models, regionally refined regiment simulators to effectively link ARM data to ESMs. T4.4 Use model simulations to inform the optimum deployment and operation of ARM instrum specific science goals. 	eralize for 18 sets of 18 mesh, and 19
Summary and Look Ahead	20
References	21
Appendix A: Science Drivers and Community Needs	23
Data Needs to Support Current Atmospheric Science Issues	23
Engaging with the Modeling Community	25
Appendix B: Continued Engagement with the Science Community	25

Introduction

The Atmospheric Radiation Measurement (ARM) user facility was established in 1989 by the U.S Department of Energy (DOE) Office of Biological and Environmental Research (BER) to provide an observational basis for studying the Earth's climate. ARM began collecting observations in 1992 and was designated a user facility in 2003. The facility includes a network of extensively instrumented long-term fixed-location observatories and mobile facilities. The ARM facility also includes an aerial component to augment these ground-based measurements. Because of the diversity of in-situ and remotely obtained observations, ARM's data management infrastructure is designed to collect, process, and deliver data to the research community (U.S. Department of Energy, 1990; Stokes and Schwartz, 1994; Ackerman and Stokes, 2003; Mather and Voyles, 2013; Turner and Ellingson, 2017).

The mission of the ARM facility is:

(to provide) the atmospheric research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in atmospheric, climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth's surface.

Over the past decade there have been many significant changes to the ARM facility including the addition of new measurement capabilities (Mather and Voyles, 2013), the creation of a new mobile facility at Oliktok, Alaska; a new fixed-location observatory in the Eastern North Atlantic (ENA); the cessation of operations in the Tropical Western Pacific after 18 years (Mather, 2015); development of new aerial measurement capabilities (Schmid et al., 2014; de Boer et al., 2018); the implementation of high-performance computing capabilities; and the development of a high-resolution modeling framework to better link ARM observations with cloud-resolving, regional, and large-scale Earth system models (Gustafson et al, 2020).

The ARM facility is currently comprised of three mobile facilities and three fixed-location observatories. In addition to ENA, the other two fixed-location observatories are the Southern Great Plains (SGP), which has been operating in Oklahoma since 1992, and the North Slope of Alaska (NSA), which has been operating since 1997. The mobile facility deployment to Oliktok was planned as an intermediate length deployment of approximately five to seven years. The remaining two mobile facilities are deployed for shorter term projects of order six months to several years.

While the ARM mission will continue unchanged into the future, the vision and supporting activities require updating, in order to respond to evolving scientific challenges provided by the research community, new technological and operational opportunities identified by ARM management, and evolving strategic priorities within the DOE Earth and Environmental System Sciences Division (EESSD). The purpose of this document is to describe the updated vision, with supporting activities, in order to address increasingly

complex science challenges related to ARM's mission over the next five to ten years. This update is based on input from the science community, ARM staff, and other stakeholders. and can be summarized as follows:

A summary of input provided for this analysis and plans to continue engagement are described in Appendices A and B.

The updated ARM Decadal Vision

The DOE Earth and Environmental System Sciences Division has a vision to advance the predictability of the Earth system, where science programs and user facilities work collaborate in order to address the most difficult research challenges facing the scientific community. EESSD is also committed to providing the community scientific and technical capabilities in three areas, i.e., involving the atmospheric sciences; environmental system sciences; and earth and environmental system modeling. The ARM facility has been identified as the most important DOE investment to sustain the atmospheric sciences, i.e., as a means to satisfy the vision of EESSD. Over the next decade, EESSD is likely to more fully exploit emerging opportunities to more rapidly advance the science, including e.g. more advanced sensor and observing networks, data analytics involving machine learning, high performance computing, and hybrid modeling (various combinations of Large Eddy Simulation, cloud-resolving models, ultra-high resolution Earth system models, and data assimilation). EESSM is also encouraging strengthened coordination, collaboration, and/or partnering with other agencies, as a means to more rapidly advance the science. As ARM moves into the next decade, its vision will evolve with more sophisticated scientific questions and emerging technological opportunities.

The updated vision for ARM,

The Vision of the ARM Facility is to provide the research community with the best possible suites of field observations, supporting data, and state-of-the-art data analytics capabilities in order to address the most difficult atmospheric science challenges involving clouds, aerosols, and the Earth's energy balance.

The updated ARM Vision will be sustained by activities organized within four themes:

- 1. Provide comprehensive and impactful field measurements to support scientific advancement of atmospheric process understanding
- 2. Achieve the maximum scientific impact of ARM measurements through increased engagement with observational data by ARM staff, including the application of advanced data analytical techniques
- 3. Enable advanced data analytics and community use of complex ARM datasets through the advancement of computing infrastructure and data analysis

4. Accelerate and amplify the impact of ARM measurements on earth system models (ESM) by exploiting ARM and ESM frameworks to facilitate the application of ARM data to ESM development

These themes follow a progression beginning with enhancing ARM measurement capabilities according to the needs of the science community. The second theme focuses on characterizing ARM measurements and extracting as much information as possible from these measurements through efforts related to data analytics. ARM data has expanded in diversity, complexity and volume over the past 28 years and that is expected to continue. The third theme focuses on data services and how ARM can continue to improve these services to facilitate the use of ARM data. Finally, the ultimate goal of the ARM facility is to support the improved representation of physical atmospheric processes in earth system models. To some extent, this will follow from improved understanding that occurs when the science community utilizes ARM data in process studies. However, the fourth theme explores ways in which ARM can engage more directly with the modeling community.

The activities described in the following sections associated with these four themes do not represent a work plan. Some of these activities are already in progress, but others are intended to reflect needs that have been heard from the science community or facility development that supports these needs. We do plan to organize our efforts in the coming years around these themes and pursue the activities described here. However, we will also continue to engage with the community and adjust priorities according to that input as discussed in Appendix B.

T1. Provide comprehensive and impactful field measurements to support scientific advancement of atmospheric process understanding

The core mission of the ARM facility continues to focus on the advancement in understanding of atmospheric processes; however, the capacity of the facility and the technical opportunities to provide measurements have evolved. ARM is an operational facility in that it provides continuous observations at its ground-based facilities but, at the same time, it is a research facility in that it always strives to provide the highest level of information possible at its observatories to maximize their science impact.

We plan to achieve this enhanced science impact by deploying observatories where they are most needed by the science community, by providing the most comprehensive and useful measurements possible, and by expanding the spatial footprint of ARM measurements. The activities outlined below would aid ARM in enhancing its impact in one or more of these areas.

T1.1 Establishment of an observatory in the southeast United States for a multi-year study convective clouds, aerosols, and land-atmosphere interactions

In 2018, DOE sponsored a workshop to explore regions for which the atmospheric science community would particularly benefit from the suites of measurements provided by ARM's mobile observatories (U.S. Department of Energy, 2019). The discussions included consideration of areas that would benefit from multi-year deployments due to significant interannual variability or a focus on rare meteorological events. One of the highlighted regions was the southeast United States and that region has been selected by DOE for deployment of the third mobile facility (currently in Oliktok, Alaska). Planning is already underway for this deployment and operations are planned to start in possibly as early as 2023. This site is expected to provide valuable data to address a set of emerging science challenges. For example, this deployment will allow a focused study on the relative importance of local forcing on the development of convection, where boundary layer dynamics and land-atmosphere interactions in a heterogenous landscape are expected to be particularly important. ARM will be exploring strategies such as ancillary facilities, aerial measurements, and networks from collaborating organizations to characterize this heterogeneity. This region is additionally known to be a significant source region for secondary organic aerosols so it will provide a valuable dataset for studying aerosol processes and aerosol cloud interactions.

The same 2018 mobile facility workshop identified other areas with continued measurement needs. These were high-latitudes, mountainous and complex terrain, marine regions, and regions with organized deep convection. ARM will be supporting a study in complex terrain through the Surface Atmosphere Integrated Field Laboratory (SAIL) campaign beginning in 2021.

T1.2 Implementation of a new research aircraft to modernize and expand ARM's aerial measurement capabilities

Another facility development activity that is already well underway is the replacement of the ARM G-1 turboprop aircraft with a Challenger 850 regional jet. Aerial measurements provide spatial context for the ARM ground-based measurements and provide information, such as the chemical composition of aerosols aloft or the microphysical properties of cloud droplets, via in situ measurements that are not possible from remote sensors. From 2010 through 2018, the primary source of ARM aerial measurements was the dedicated G-1 aircraft. Over this period, the G-1 was used to support each of the current ARM fixed-location sites and was deployed as part of several mobile facility deployments in the United States, Brazil, and Argentina; however, the G-1 was built in 1961 and it was becoming clear the G-1 would need to be replaced. A community workshop was held in 2015 to review aerial measurement needs and a decision was made in 2017 to secure funding for a new aircraft. The G-1 was retired at the beginning of 2019.

A rigorous alternatives assessment process ultimately led to selection of the Challenger 850 (or its commercial counterpart, the CRJ-200) as the next ARM research aircraft. A

Challenger 850 regional jet was purchased in May 2019. The aerial facility team is currently pursuing the modification of that aircraft to prepare it for research applications. The modification process includes the addition of wing pylons and fuselage mounting points for deploying instruments as well as internal infrastructure to mount racks and distribute power and provide connectivity throughout the aerial laboratory.

The Challenger 850 aircraft is expected to be ready for science flights in 2023. It will provide in situ measurements as the G-1 did for nearly a decade while expanding on the capabilities of the G-1 in terms of maximum altitude, payload capacity, and endurance. The final numbers for each of these areas will not be known until the completion of modifications; however, they will represent a significant enhancement in each case. With these expanded capabilities, it is expected that the impact of the Challenger will provide opportunities beyond those of its predecessors. As will be seen in the next section, plans are also underway to further expand the capabilities of the Challenger by pursuing new measurement capabilities.

T1.3 Pursue the implementation of new measurement capabilities and operation of existing instruments in new ways at ARM observatories

The ARM facility currently operates over 400 instruments at six ground-based observatories and 50 instruments for aerial platforms. These measurement capabilities address a broad range of science targets and represent the most comprehensive set of continuously operating atmospheric measurements in the world. Nevertheless, there are opportunities to address currently unmet measurement needs and to improve or augment existing measurements.

Explore new measurement capabilities for the new Challenger aircraft

The first order of business for the outfitting of the new Challenger aircraft will be to implement and upgrade instruments that had been used on the G-1. However, there is significant interest in expanding on these capabilities. In March 2020, a workshop was held to review measurement capabilities for piloted aircraft along with miniaturized instruments suitable for UAS and TBS platforms. This workshop provided extensive information about new or emerging instruments that could be used to further enhance the capabilities of the Challenger aircraft as well as other small ARM aerial measurement platforms. Over the coming few years ARM will identify opportunities to enhance aerial measurement capabilities by matching high priority science needs with new measurement capabilities.

Provide measurements of arctic aerosol at Utqiagvik

At Utqiagvik, ARM and NOAA have collaborated to operate a small set of instruments providing measurements of physical and optical properties within the adjacent NOAA baseline observatory beginning in 1997 (McComiskey and Ferrare, 2016). Over the past decade, aerosol measurements have expanded at the other ARM locations but not at Utqiagvik. In recent years, the AMF3 observatory at Oliktok has provided aerosol measurements in the perturbed Prudhoe Bay region. With the planned relocation of the AMF3 from Oliktok to the Southeast United States in 2021-22 the gap in aerosol measurements in the arctic will become more of an issue, with no on-going support for aerosol studies in that region. Therefore, it is proposed that there should be a review of priorities for the aerosol network and an augmentation of capabilities at Utqiagvik including support for studies of aerosol processes and aerosol-cloud interactions. It is expected that some augmentation of aerosol measurements at Utqiagvik is needed but the scope of that enhancement will be subject to review.

Provide comprehensive aerosol size distributions

The aerosol science community has often identified particle size distributions as a measurement that is fundamental to understanding a range of related properties and processes (e.g. McComiskey and Sisterson, 2018). ARM operates aerosol particle size spectrometers that span the desired size range from ~10 nm to ~30 μ m; however, currently only the SGP has the complete set of size spectrometers to span this range. There is a need to review the current set of particle size spectrometers and develop a strategy to deploy instruments that provide the full size distribution across the ARM observatories. Finding a solution to this gap will be a high priority.

Expand the use of advanced lidar and associated data products to expand understanding of the vertical structure of the thermodynamic state and aerosol properties

ARM operates a variety of lidar systems with diverse capabilities providing information about cloud boundaries, air motion, thermodynamic structure, and aerosol properties. The latter two areas are more challenging in terms of instrument cost and complexity as well as in the process of extracting accurate retrievals of the target parameters. ARM is in the process of implementing a three-wavelength lidar capability, initially at the SGP observatory to apply techniques developed originally for airborne platforms for retrieving vertical profiles of aerosol properties (Müller et al., 2014). This system is expected to represent a significant step forward with respect to providing aerosol properties aloft, and particularly, near cloud level, on a continuous basis. Realizing the full potential of this instrument will require an investment in providing a very well characterized data set and implementing the retrievals on a continuous basis.

ARM already has the capability of measuring profiles of temperature and humidity using Raman lidar; however, this capability is only available at three locations (currently SGP, ENA, and AMF3) due to the cost and complexity of this instrument. There are several new and emerging options in this space, and we will be closely watching for opportunities to provide this capability

more broadly. Profiles and fluxes of water vapor are frequently raised as high-priority measurements.

Provide measurements of liquid water content in the presence of precipitation

Liquid water path, the column integral of liquid water content, is a critical parameter for constraining cloud processes. Microwave radiometers are most commonly used to determine liquid water path; however, these instruments have a significant issue when it is raining. Water coats the radiometer window, which results in a positive bias in the retrieval. Radiometers often incorporate heating and/or a strong fan to mitigate this issue but these strategies have not been successful in eliminating this problem. The inability to apply liquid water path measurements in precipitating conditions has been a significant limiting factor to studying cloud processes.

There have been some ideas put forward from the community on this issue so we propose that a small ad hoc group be assembled that brings together ARM staff and interested parties from the science community to identify possible solutions.

Enhancing the capabilities of the ARM radar network to better probe ice properties and deep convection

ARM operates vertical profiling and scanning radars at a range of frequencies targeting different atmospheric properties. However, there are enhancements that could be made to the radar network to address specific science needs. Several examples are triple-frequency sampling for the retrieval of ice properties, adaptive scanning, and phased-array radar for evaluation of rapidly evolving convective structures.

During the 2015 mobile facility deployment to Finland (BAECC), ARM operated a dualfrequency scanning cloud radar (ka- and X-band) and a vertically-pointing W-band radar. This combination of three frequencies that has proved to be valuable for deriving properties of ice (e.g. Kneifel et al., 2016). Quantitative information about ice properties is very important but challenging, so this has been a very promising development. This combination of frequencies is not typically deployed at ARM observatories but as we consider how to deploy most effectively the ARM radars, providing the ability for triplewavelength profiling radars should be a consideration in regions where ice processes are important.

Another challenging target for radars is deep convection. Scanning radars are used to observe the spatial distribution and temporal evolution of convective systems; however, deep convection can evolve rapidly, making it difficult to effectively capture the evolution of a cell using conventional scanning strategies. ARM is pursuing the implementation of adaptive scanning for its C-band radar to focus on this cell evolution problem. With adaptive scanning, the radar modifies its scanning geometry to track specific targets on the basis of certain detected parameters (e.g. radar echo strength).

Implementing adaptive scanning with the C-band radar would represent an important step forward; however, like most weather radars, the C-band radar uses a mechanical positioner with a relatively slow scan speed, so it will be limited in its ability to track the evolution of a convective cell. Phased-array radars offer a solution to this problem. These radars scan the radar beam electronically, and therefore, can scan much faster than a mechanical system. Phased array radars offer an excellent solution for studying the detailed evolution of convection cells but currently they are quite expensive and are not widely available. ARM will track their evolution and look for opportunities to implement a phased-array radar for convective studies - either as part of the ARM measurement suite or as a guest instrument.

Expanding applications of Tethered Balloon Systems (TBS) to obtain detailed observations of the planetary boundary layer at multiple ARM observatories

ARM TBS capabilities have matured significantly since first deployed at Oliktok in 2015 and TBS are now being flown on an episodic basis at both Oliktok (de Boer et al., 2019) and the SGP. TBS have the ability of carrying relatively large payloads for relatively low cost. ARM plans to expand its use of TBS to other ARM observatories, including mobile facilities and expand its measurement capabilities. TBS currently have an altitude limit of about a kilometer but can provide detailed measurements of multiple parameters within the planetary boundary. A particularly important target for TBS is aerosol profiling. Aerosol profiles are very difficult to obtain via remote sensing alone. A small aerosol particle size spectrometer is already part of the standard TBS payload but ARM has also started to experiment with filter sampling for off-line analysis in collaboration with the Environmental Molecular Science Laboratory (EMSL). This has the potential to provide significant information about particle composition. These samples could also be used to identify the concentration of INP aloft. Additionally, in the coming year, ARM will be flying a guest instrument that measures concentrations of cloud condensation nuclei (CCN) on a continuous basis. Having CCN measurements near cloud base would be valuable for cloudaerosol interaction studies. For environments where boundary layer clouds are low enough for the TBS, this platform can also provide measurements of cloud droplet size distributions and other microphysical properties.

Developing Unmanned Aerial System (UAS) capabilities to provide extensive in situ cloud and aerosol measurements over ARM sites

UAS excel at being highly maneuverable and providing high spatial resolution samples with a small to moderate payload. ARM has experimented with small UAS but given the prevalence of these small systems is focusing on the development of mid-size systems capable of carrying in excess of 25 kg. Operations of mid-size and large UAS face technical and regulatory challenges but they have the potential to provide high-spatial and temporal resolution measurements of aerosols, clouds, and the atmospheric state over ARM sites. ARM is currently developing a mid-size UAS with a payload capacity of approximately 45 kg. A suite of miniaturized instruments has been obtained and integrated into this system. The goal is to first obtain measurements of aerosol in clear air and then to take on the more challenging cloud sampling problem. The ultimate goal for mid-size UAS is to obtain frequent cloud property measurements over ARM sites to obtain in situ measurements for cloud microphsyics retrieval development and for studying processes such as entrainment that would benefit from exploring the fine structure of clouds. Achieving the goal of incloud UAS measurements will require working with federal regulators to ensure safe operations in that environment.

Maintaining a sustainable measurement network

It is important to acknowledge that the addition of new measurement capabilities requires resources, for the initial deployment, data product development, and on-going operation and data processing. data product development, and processing. There is a perpetual demand for new measurement capabilities and developing technologies periodically provide opportunities to fill gaps. Therefore, when adding new instruments to the ARM network it is important to make space for the new capabilities by removing, or scaling back, facility elements to maintain a high-level of support for remaining instruments and datastreams. ARM has developed an objective process for reviewing capabilities by examining their alignment with the ARM program mission weighed against quantitative metrics, such as science impact through publications and citations, cost of operation and maintenance, and instrument uptime. We will use this process to help maintain a sustainable measurement network. We will also explore other creative solutions to effectively manage resources such as the proposed use of intensive periods discussed in the next section.

T1.4. Coordinated use of intensive operation periods to maximize the potential of complex ARM instruments and guest instruments

Complex instruments such as scanning radars and certain aerosol instruments take significantly higher levels of maintenance than most ARM instruments and may require extended off-line periods for maintenance and characterization. This is challenging in terms of managing resources and unless a strategic operations plan is developed and followed, a key instrument may be off-line at particularly inopportune times. Meanwhile, users of ARM aerosol measurements have noted that aerosol process studies are most effective when ARM measurements are combined with guest instruments.

Recent workshops led by two ARM user groups, the Aerosol Measurements and Science Group (AMSG) and the Clouds and Precipitation Measurements and Science Group (CPMSG)) have noted that both of these issues can be addressed by focusing operation of complex instruments around intensive operation periods. The strategy would be to define several periods per year, at one or more ARM observatories that would represent intensive operation periods. These periods would be driven by science community needs and would be advertised in advance with an invitation for the community to propose guest instrument deployments. This coordination would significantly increase the chances of obtaining a critical mass of observations for various science applications and would generally increase the visibility of the event to the community as multiple investigators engaged. Additionally, ARM would organize its characterization and implementation of relevant instruments to optimize performance during the intensive periods and to configure instruments to best serve the goals of that period as identified by the science community. Through this coordination, the value of measurements during the intensive period would be significantly enhanced relative to normal operations.

T1.5. Deployment of multiple facilities or observatories to support multi-scale analysis

ARM observatories provide extensive measurements at a single geographical point but typically do not provide significant information about the surrounding region (with the SGP extended facility network and measurements provided by scanning radars and the aerial facility being notable exceptions). Process studies, such as the evolution of deep convection, sometimes depend on regional measurements so there would be significant value in expanding efforts to modify sampling strategies to obtain additional spatial information. Here we propose that ARM consider creative ways to deploy facility components to provide this spatial information when it is critical for advancing the core science questions associated with a deployment.

Satellite measurements and networks from other organizations are sometimes used to augment ARM measurements and they should be used on a more regular basis and in a more coordinated way when developing a spatial sampling strategy. Aerial measurements will also continue to be used to provide spatial information on an episodic basis. But we will also consider the strategic deployment of ground-based measurements. For example, ARM could redeploy the SGP boundary layer profiling stations to observe spatial variability in boundary layer structure. These were originally designed to be portable and could be relocated to other sites around the SGP or another ARM observatory. Alternately, ARM could design compact and modular observing systems that would enable spatial sampling of small sets of parameters, such as surface fluxes, in conjunction with mobile facilities. One could even imagine the deployment of two or more ARM observatories in tandem to measure the evolution of atmospheric properties along a natural gradient (US Department of Energy, 2014; Stacey and Hungate, 2018). To conduct such a multi-observatory experiment, ARM could have a special facility call that invited proposals that made use of multiple facilities.

T2. Achieve the maximum scientific impact of ARM measurements through engagement with data including the application of advanced data analytical techniques

There have been frequent discussions with the user community and among ARM staff in recent years that emerging analytical tools, such as those readily available machine learning libraries, have the potential to amplify the value of ARM measurements. Application of machine learning, for example, has the potential to aid in the identification of data quality issues, the estimation of measurement uncertainties, and revealing complex relationships among parameters. However, these techniques require that the underlying data have been well characterized.

In the previous section we explored potential new measurement opportunities. In this section we consider how additional benefit can be extracted from existing measurements through a focus on data analysis. We begin with discussion of the fundamental work that needs to be done with ARM data by ARM staff and progress to potential applications of advanced data analytics.

T2.1. Empower ARM staff to engage with data to enhance measurement characterization and to prepare datasets for advanced data analytical techniques

A typical ARM observatory deployment provides on the order of 50 different measurements ranging from basic meteorological parameters and the surface radiation budget to profiles signals from active remote sensing instruments that provide information about aerosol and hydrometeors. ARM engages with the science community to identify techniques that derive geophysical parameters from advanced measurements to develop Value Added Products (VAPs) that will be useful to the broader science community. Historically, ARM has relied on the science community for the development of new VAP algorithms and that is likely to continue to be the norm; however, there is much that ARM can do to facilitate the extraction of information from measurements through application of machine learning and more fundamental analysis to support advanced analytical techniques.

For an investigator to derive useful information from a measurement, or combinations of measurements, they need to have a good understanding of the characteristics of that measurement. It is proposed that ARM should devote resources to the analysis of measurements and to communicate the results of these analyses to enhance the application of these data by users. These analyses should include statistical characterization of measurement distributions, identification of measurement anomalies, assessment of measurement uncertainties, characterization of effective spatial and temporal resolution, and quantification of parametric relationships among measurements. Additionally, ARM should provide software tools to enable this work by the user community to leverage its broader analytical capacity.

T2.2. Development of closure studies and other internal analyses to create internally consistent data sets for measurement characterization and application to process studies

In addition to characterizing individual measurements, it is valuable to analyze groups of related measurements. For example, in closure studies, groups of measured parameters are used to predict another measured parameter. The accuracy of the prediction provides information about the uncertainty in the measurements or understanding of the expected relationship.

As mentioned in the previous section on new measurements, ARM has begun to fly small aerosol sensors on tethered balloons and is working toward similar measurements on UAS. From these measurements, one could calculate the vertical profile of aerosol properties such as optical extinction. ARM also operates lidars at ARM observatories that provide this same quantity. Providing these in situ measurements on a frequent basis in addition to the remote sensors would enable a closure study to be conducted on the column aerosol optical properties. It is proposed that ARM would organize and quality control all of these measurements into an integrated dataset to support aerosol process studies. Other examples of closure studies include comparing particle size distributions to total particle mass or integrating water content to obtain total water path.

In another example of multi-variable analysis, groups of measurements can be used to characterize the state of the environment to define an atmospheric regime. The parameters used to define the regime could be drawn exclusively from ARM measurements or they could be taken in part from external sources, such as satellite observations or even model reanalysis. Once identified, data from a particular regime will be tagged to help researchers find data that meet certain criteria (such as conditions conducive for a certain phenomenon of interest) but it could also be used to refine analysis of measurement behavior. In the previous section, an argument was made for characterization of parameters. If a parameter is constrained by a particular regime, then the distribution of a parameter may take a form particular to that regime. This would aid the identification of outliers and advance the understanding of measurement uncertainty.

T2.3. Apply advanced data analytical techniques to enable automated quality assessment, the identification of parametric relationships, and enhanced instrument operations

Carrying out a closure study, as described in the previous section, results in a data set that is internally self-consistent, or the degree of inconsistency becomes much better understood. With such a multivarable dataset, it becomes possible to move ahead with more advanced analytic tools. State-of-the-art machine learning and data analytics algorithms and high-performance computing offers opportunities to realize the potential for new understanding in atmospheric processes and phenomena observed during the long history of ARM observations.

We propose to develop and apply platforms to support scalable parallel machine learning algorithms for data quality analysis of ARM data to gain new insights in processes captured by not one but an array of co-located sensors/instruments in tandem. These applications have the potential to aid in assessing data quality by helping to identify data outliers and to support the development of new value-added products or provide a constraint for model parameterizations by identifying relationships among parameters. Infrastructure and tools developed would be targeted towards improving the operational efficiency of ARM data quality analysis and integrated with existing data quality operations.

In addition to extracting information from ARM measurements, machine learning and similar applications can help with field operations. We plan to explore the use of edge computing in ARM instrument fields. This has several potential applications. By applying quality assessment algorithms at the instrument, it may be possible to identify instrument problems in near real-time. It may also be possible to identify alternate instrument operational states. A relatively simple example of this would be making the decision to save Doppler spectra from a radar or lidar. Doppler spectra contain important information, but they only contain useful information under certain conditions and they can dominate data storage requirements. Therefore, an automated mechanism to decide accurately when to save spectra would be valuable. Another example is providing real-time adjustment to instrument scanning strategies.

Adaptively operating instruments has emerged as an effective technique for focusing measurements on specific atmospheric conditions. In adaptive mode, the operation of an instrument is modified in response to the physical conditions it is measuring. ARM currently has implemented an algorithm for switching operating modes for the radar wind profiler between wind sampling and precipitation modes using a set of specific preselected criteria. Likewise, precipitation radar scans have been adapted real-time to track storms as they advect through the observation domain using human decision making. Artificial intelligence (AI) provides a framework for training automated algorithms that could adapt to the operating conditions for various instruments either in isolated ways or as an integrated system that adapts together based on a specific set of science questions. Examples might include tracking convective cells and the environmental conditions leading up to and during storm events using scanning radar and lidar, or modifying sampling intervals when specific aerosol conditions occur.

T3. Enable advanced data analytics and community use of complex ARM datasets through the advancement of computing infrastructure and data analysis tools

The ARM Data Center currently holds over 2 Petabytes of data from over 11,000 datasets and these numbers are steadily increasing. To advance the data analysis applications discussed in the previous section and the usability of ARM data by the science community, it is important to continue to develop ARM computing platforms and tools.

In this section we discuss plans to expand computing infrastructure to support growing volume and expanding processing applications and develop tools and software practices that would facilitate user engagement with ARM data.

T3.1 Develop a flexible computing environment that makes use of internal highperformance computing infrastructure and data analysis tools

The ARM Data Center constantly assesses computational requirements associated with the application of ARM data and continues to develop mechanisms such as the implementation of computational clusters to meet those needs.

ARM Computing Environment (ACE) strives to address the computational needs of ARM infrastructure and science communities by providing a range of computing hardware and software solutions. Operational and research computing across ARM ranges from processing of high-volume ARM data sets to high-resolution modeling as well as emerging big data science and machine learning/AI. To support heterogeneous and increasing computational requirements, we plan to expand ACE's hybrid computing environment to include an appropriate mix of high-performance computing and cloud computing resources for seamless access and an improved computing experience to adaptively meet the wide range of computing, memory and storage needs of ARM.

T3.2 Developing software tools to enable data access and analysis

With the expansion of ARM data volume for data sets from instruments such as scanning radars or ARM model simulations, there have been requests from the science community to enable local computing at the ARM Data Center. We propose to develop an ARM Data Workbench (ADW) which will be a revolutionary way to interact with the vast amount of data ARM has to offer. This workbench will give users the tools to find, visualize and even create their own mash-up data products. Utilizing technologies like Apache Cassandra and Spark, we have access to all the data for select datastreams readily available. This gives the ability to filter data and apply equations to make a unique data product to the community's needs.

The workbench would be an extension to the current data discovery and would provide the tools for users to select data by conditional statements or date range. The workbench would provide a platform for the users to bring-in any open-source, equation-based calculations and run the analysis on the selected data intervals.

It is clear that tools are needed to facilitate access to ARM data sets and the capabilities described for the workbench represent ideas for what would be valuable to the science community; however, before embarking on the development of such a system, we would engage with focus groups to assess interest and determine functionality that would have the greatest impact.

T3.3 Enabling open-source software practices to support sharing of code among ARM staff and with the ARM user community

ARM makes use of a wide variety of software tools. In many cases, tools developed for one purpose may be adaptable for other applications. There is an increasing need for users to develop code in an open manner. ARM has implemented a new strategy to share and enable users to contribute open source code. ARM has restructured its presence on Github, resulting in three Github organizations. The ARM-DOE organization will only host ARM supported repositories, such as the Python-ARM Radar Toolkit (Py-ART), the ARM Data Integrator (ADI), and the Atmospheric data Community Toolkit (ACT). One organization will be dedicated to hosting software from the user community and another will be a development area for ARM infrastructure and data users to try out new ideas. ARM will utilize metadata from the DOE Office of Science and Technical Information (OSTI) to provide users information about the codes through our data discovery interface.

As ARM works towards more community driven open source software and tools like Py-ART and ACT, new opportunities will arise to advance the processing capabilities and the way in which data is provided to end users. The ability to easily integrate codes from these open-source tools could potentially allow for the easy integration of these codes into processing on demand in which users could easily specify additional processing they want to be applied to the data.

T4. Amplify the impact of ARM measurements on earth system models (ESM) by exploiting ARM and ESM frameworks to facilitate the application of ARM data to ESM development

The ultimate purpose for the ARM facility is to support the improvement of models that extend from cloud-resolving on regional scales to the large-scale Earth system models such as E3SM. Over the years, ARM data have been used to improve the representation of radiation, aerosols, and cloud processes in climate models through direct application of ARM data and through intermediate process studies (Randall et al., 2016). These same modes of engagement, as well as supporting model development indirectly through support of process-level understanding, continue to be important; however, we have taken steps to be more proactive in pursuing these opportunities to impact models and plan to continue to advance these strategies in the coming years. These strategies include

implementing a high-resolution modeling framework to bridge scales and creating direct connections to the modeling community through diagnostics based on ARM data and supporting single column model cases over ARM sites.

T4.1. Apply the LASSO observation-model framework to new meteorological regimes and generalize for implementation over any ARM observatory

Building on the long-used method of using high-resolution, limited area models to link ARM observations with large-scale models, ARM recently developed and implemented the LES ARM Symbiotic Simulation and Observation (LASSO) workflow (Gustafson et al., 2020). LASSO includes LES simulations over an ARM site, forcing datasets used to initiate the simulations, model output bundled with ARM observations, and automated model diagnostics based on ARM observations. Over the past five years, LASSO has been applied at the SGP site with a focus on summer shallow convection. Application of LASSO has led to an improvement in related ARM measurements (e.g. for liquid water path and boundary layer turbulence), a flurry of research related to boundary layer processes at the SGP, and a remarkable library of LES simulations that is being used for parameterization development and studies of shallow cumulus properties.

ARM is now turning the application of LASSO to the study of deep convection with an initial focus on the recent mobile facility deployment to Argentina (CACTI). Deep convection was observed on 80 separate days during CACTI. The addition of LASSO simulations to the rich CACTI data set will support analysis of deep convection dynamics and its relationship to observed cloud properties.

While work is moving ahead with the deep convection case, there is also strong community interest in additional meteorological regimes (Gustafson et al, 2019) and in particular, marine stratocumulus, arctic clouds and stable boundary layers. It is expected that each of these scenarios will be implemented over time and that additional cases will be identified as ARM measurements are obtained in new environments. The ultimate goal is to develop LASSO into a sufficiently flexible framework that could be implemented over virtually any ARM observatory where it is determined that the simulations would provide significant scientific benefit.

T4.2 Organize ARM measurements around virtual field campaigns to facilitate access to broad sets of related data and support observation-model collaborative projects

The data tagging mentioned in association with meteorological regimes, in section T2.2, is planned to be part of a larger effort to classify the data with respect to topics such as data quality or meteorological conditions. Another envisioned application of metadata tagging is to link together a set of data products that intended for use toward a common project. Such an array of data sets, tagged for specific time periods, would constitute a virtual field campaign. Organizing data around a virtual field campaigns, would provide a valuable

technique to facilitate the use of ARM data by modeling groups - or other communities that are less familiar with ARM data. Like a real field campaign, a virtual field campaign would focus on a particular set of science goals at a particular location but unlike a real field campaign, it could draw on routine measurements.

A common historic practice for linking modeling teams with observations has been to define a focused project involving an observation case, or, set of cases. These activities typically involve a significant amount of up-front work to organize the project datasets. Virtual field campaigns that are organized through metadata tags would lower the barrier to setting up a modeling project based around measurements (U.S. Department of Energy, 2016).

T4.3 Exploit model configurations and tools such as single column models, regionally refined mesh, and instrument simulators to effectively link ARM data to ESMs

One of the motivations for LASSO is to provide a link between high-resolution ARM measurements and global-scale models. However, ARM data have also been used to evaluate large-scale models directly. One mechanism that has been used to do this is application of Single Column Models (SCM) in which a single column from a global-scale model is run over an ARM site using the same type of dynamic forcing that is used to run a high-resolution limited area model like the one used in LASSO. Many SCM cases have already been developed around ARM sites. We plan to continue working with the E3SM community to identify cases, particularly those associated with LASSO simulations or virtual campaigns, which have been identified as period of particular scientific interest. We believe that building on this case library could lead to a powerful strategy for using ARM data for model development. Given an SCM case library that spans a wide variety of meteorological regimes over ARM observatories, diagnostic tests could be applied across these cases, allowing ARM data to be used in a standard way to perform rapid tests on model parameterization perturbations. In this way, the ARM-SCM case library would serve as a testbed for efficient model testing and development across a range of conditions.

While we expect that SCMs will continue to provide a valuable link between ARM observations and global-scale models, it is also becoming increasingly meaningful to compare ARM measurements from a global-scale model directly as the resolution of these models increases and with the ability to run a model with increased resolution over a particular domain. For example, the E3SM SCREAM model will be available for further development and refinement on 3 km resolution, where ARM data have the potential to be assimilated or exercised for validation. Furthermore, E3SM and other models have the ability to run using a regionally refined mesh, i.e., able to overlay within an ARM observing domain. Running a global-scale model at high-resolution over an ARM site would provide a framework very much like LASSO with a direct connection between ARM observations and a global-scale model. We propose to pursue projects with modeling centers to carry out this type of direct observation-model comparison.

ESMs run at high resolution or SCMs run over an ARM site represent model configuration that help link ARM data to ESMs. A precondition for this work, or any effort to apply ARM data to model output is to ensure that the model output has the same physical meaning as the measurements. ARM typically works to generate higher-order data products to achieve this, however, in some cases it may be more effective to modify the model output to mimic a measurement. For example, an instrument may have sensitivity constraints that limits its ability to observe the full natural range of a parameter, whereas a model does not have that constraint. Instrument simulators have long been used as a solution to this problem. In an instrument simulator, the instrument response is applied to the output field in a model and the model generates a parameter that is more directly comparable to a physical measurement. Simulators have been developed for ARM instruments (e.g. Zhang et al., 2018) but more could be done in this area. We propose engaging with the modeling community to develop a strategy for developing instrument simulators that would be most effective in confronting model simulations with ARM data.

T4.4 Use model simulations to inform the optimum deployment and operation of ARM instruments for specific science goals

The activities discussed in this section so far have focused on how to apply ARM data to the evaluation of models more efficiently, but models can also be used to inform measurement strategies. Observing System Simulation Experiments (OSSEs) have been used extensively in the weather forecasting community to understand the impacts of assimilating new measurements into forecast models. An Artificial-Intelligence informed OSSE has potential to change the way that ARM develops instrument scan strategies and siting instruments. Training AI systems on existing datasets, such as ARM, weather radar, and satellite data, coupled with high-resolution modeling can inform field campaign deployments, instrument siting, and aircraft flight patterns.

Summary and Look Ahead

ARM has been providing measurements to the science community for the past 28 years with a mission to enhance the understanding of atmospheric processes and the representation of those processes in earth system models. In recent years, ARM has expanded measurement capabilities to better serve the science community toward fulfilling this mission.

In this document we have outlined a vision for the next five to ten years that is based on needs expressed by the science community and the facility enhancements that we believe are necessary to address those needs. There are a number of new capabilities identified in this document but the overarching vision that ties the themes together is to increase the impact of ARM instruments on advancing science issues relevant to DOE and the broader science community. This overarching driver led to the sequence of focus areas beginning with filling measurement gaps and increased attention to data analysis. Work on ARM data services will be required to support this analysis and to better enable the user community to engage with increasingly complex ARM data. Finally, with the disparity in spatial scales and the separate that is inherent between the observation and modeling communities, we have laid out thoughts on how to increase the use of ARM measurements by the earth system modeling community.

Within these broad themes, this decadal vision identifies specific examples of how progress can be made in each area. In the coming years we expect that specific priorities will shift as needs of the community are clarified and evolve.

References

Cziczo, D.J., L. Ladino, Y. Boose, Z.A. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017. Measurements of ice nucleating particles and ice residuals. Meteorological Monographs, DOI:10.1175/AMSMONOGRAPHS-D-16-0008.1.

de Boer, G., et al., 2018. A bird's eye view: development of an operational ARM Unmanned Aerial capability for atmospheric research in arctic Alaska. Bull. Amer. Meteo. Soc., 99, 1197-1212, DOI:10.1175/BAMS-D-17-0156.1.

de Boer G, D Dexheimer, F Mei, J Hubbe, C Longbottom, P Carroll, M Apple, L Goldberger, D Oaks, J Lapierre, M Crume, N Bernard, M Shupe, A Solomon, J Intrieri, D Lawrence, A Doddi, D Holdridge, M Hubbell, M Ivey, and B Schmid. 2019. Atmospheric observations made at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign. *Earth System Science Data*, 11(3), 10.5194/essd-11-1349-2019.

Gustafson W, A Vogelmann, Z Li, X Cheng, K Dumas, S Endo, K Johnson, B Krishna, T Toto, and H Xiao. 2020. The Large-Eddy Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic Simulation and Observation (LASSO) Activity for Continental Shallow Convection. *Bull. Amer. Meteo. Soc.*, 10.1175/BAMS-D-19-0065.1. ONLINE.

Knopf, D.A., P.A. Alpert, and B. Wang, 2018. The role of organic aerosol in atmospheric ice nucleation: a review. ACS Earth Space Chem., 2, 168-202, DOI:10.1021/acsearthspacechem.7b00120.

Mather JH and JW Voyles. 2013. The ARM Climate Research Facility: A Review of Structure and Capabilities. Bull. Amer. Meteo. Soc., 94(3), 10.1175/bams-d-11-00218.1.

Mather J. 2015. <u>2014 Annual Report.</u> Ed. by Robert Stafford, DOE ARM Climate Research Facility. DOE/SC-ARM-14-033.

Mather., JH, 2016. *Decadal Vision Progress Report: Implementation Plans and Status for the Next Generation ARM Facility*. U.S. DOE, Office of Science, Office of Biological and Environmental Research. DOE/SC-ARM-16-036.

McComiskey, A. and R.A. Ferrare, 2016. Aerosol physical and optical properties in the ARM program. Meteorological Monographs, 57, 21.1-21.17, DOI:10.1175/AMSMONOGRAPHS-D-15-0047.1.

McComiskey, A., and D. Sisterson, 2018. ARM Aerosol Measurement Science Group Strategic Planning Workshop 2017. U.S. DOE, Office of Science, Office of Biological and Environmental Research. DOE/SC-ARM-TR-207.

Müller, D, CA Hostetler, RA Ferrare, SP Burton, E Chemyakin, A Kolgotin, JW Hair, AL Cook, DB Harper, RR Rogers, RW Hare, CS Cleckner, MD Obland, J Tomlinson, LK Berg, and B Schmid. 2014. "Airborne Multiwavelength High Spectral Resolution Lidar (HSRL-2) observations during TCAP 2012: Vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US." Atmospheric Measurement Techniques 7(10): 3487-3496, doi:10.5194/amt7-3487-2014.

Schmid, B, and Coauthors, 2014: The DOE ARM Aerial Facility. Bull. Amer. Meteor. Soc., 95, 723–742, doi:10.1175/ BAMS-D-13-00040.1.

Stacey, G., and B.A. Hungate, 2018. *Scientific User Research Facilities and Biological and Environmental Research: Review and Recommendations.* A report from the Biological and Environmental Research Advisory Committee. Report available online at: <u>https://science.osti.gov/ber/berac/Reports</u>.

Turner, D.D., and R.G. Ellingson, 2017. The Atmospheric Radiation Measurement Program: The First 20 Years. Meteorological Monographs, DOI:10.1175/AMSMONOGRAPHS-D-15-0047.1.

U.S. Department of Energy, 2016. *Accelerated Climate Modeling for Energy (ACME), Atmospheric Radiation Measurement (ARM) Climate Research Facility - Atmospheric System Research (ASR) Coordination Worksh.* U.S. DOE, Office of Science, Office of Biological and Environmental Research. DOE/SC-0182.

U.S. Department of Energy, 2019a. *Cloud and Precipitation Measurements and Science Group Charter*. U.S. DOE, Office of Science, Office of Biological and Environmental Research. DOE/SC-ARM-19-001.

U.S. Department of Energy. 2019b. *Atmospheric Radiation Measurement (ARM) User Facility ARM Mobile Facility Workshop Report*, DOE/SC-0197 Office of Biological and Environmental Research, U.S. Department of Energy Office of Science, Germantown, Maryland, USA.

U.S. Department of Energy. 2019c. *Atmospheric Radiation Measurement (ARM) User Facility ARM Mobile Facility Workshop Report*, DOE/SC-0197 Office of Biological and Environmental Research, U.S. Department of Energy Office of Science, Germantown, Maryland, USA.

Zhang Y, S Xie, S Klein, R Marchand, P Kollias, E Clothiaux, W Lin, K Johnson, D Swales, A Bodas-Salcedo, S Tang, J Haynes, S Collis, M Jensen, N Bharadwaj, J Hardin, and B Isom. 2018. <u>"The ARM Cloud Radar Simulator for Global Climate Models: A New Tool for Bridging Field Data and Climate Models.</u>" *Bulletin of the American Meteorological Society*, 99(1), 10.1175/BAMS-D-16-0258.1.

Appendix A: Science Drivers and Community Needs

ARM continually engages with the science community and needs will evolve but this section briefly outlines needs and opportunities that have been expressed over the past several years.

Data Needs to Support Current Atmospheric Science Issues

While the ARM facility serves the broad atmospheric research community, it is most tightly linked to the DOE Atmospheric System Research (ASR) program. ASR supports research that advances understanding of processes among aerosols, clouds, precipitation, radiation, thermodynamic and dynamic structure, and the land surface. These applications span a broad range of physical phenomena so alignment with ASR priorities is often also supportive of broader community needs.

The ASR program is currently organized into four science working groups that provide focus on components of the broader set of processes:

- Aerosol Processes
- Warm Boundary Layer Processes
- Convective Processes
- High-Latitude Processes

ARM has been engaging with these working groups as well as facility constituent groups representing aerosol and cloud processes as well as groups from the broader science community to identify important science gaps that ARM is well positioned to support. Through these discussions, a number of needs have been identified. Important examples of these needs include:

for Aerosol Processes

- Size distributions spanning the full range of aerosol particles (from a few nanometers to a few 10s of micrometers)
- More complete information about aerosol composition
- Increased frequency of ice nucleating particle measurements
- Vertical profiles of aerosol properties
- Wide range of aerosol measurements (e.g. detailed composition and size distribution) to constrain models

The aerosol processes group also identified needs for structural change including a greater focus on intensive operation periods, during which, more complete sets of aerosol measurements could be obtained. They also identified a need to spend more time characterizing measurements through detailed analysis and intercomparisons with instruments from other networks.

for Warm Boundary Layer Processes

- Joint measurements of cloud droplet and precipitation properties
- Robust measurements of boundary layer structure including vertical motion
- Measurements of heat and moisture fluxes over the underlying surface (ocean and land)

for Convective Processes

- Covariability of convective dynamics and cloud microphysics
- High quality retrievals of ice properties
- Rapidly evolving cloud structure
- 3D thermodynamic environment
- Measurements of convection in varying meteorological regimes

for High Latitude Processes

- Detailed information about microphysical properties (including phase)
- Ice properties
- Surface fluxes/energy budget over heterogeneous surfaces
- Assessment of local sources vs. long-range transport of water, heat and aerosols

Each of the cloud areas also identified the need for co-variability of aerosol properties with cloud microphysical properties. The combined cloud and precipitation constituent group also identified needs for structural changes including the use of open-source software to facilitate the implementation of advanced data processing algorithms and generally improve efficiency within the community by facilitating code-sharing.

A number of these needs represent significant measurement challenges. In some cases, such as the measurement of cloud droplet properties in the presence of precipitation, new measurement capabilities may need to be developed. In other cases, such as detailed

measurements of aerosol composition, ARM may need to collaborate with the research community to augment ARM measurements with research-grade instruments for intensive periods.

However, it is expected that significant progress can be made toward many of these measurement needs through careful implementation and subsequent analysis of existing ARM instruments. Therefore, looking ahead at the next ten years, there will be a particular focus on extracting information from existing ARM instruments through operations coordinated toward specific science goals and an increased emphasis on data analysis.

Engaging with the Modeling Community

In considering how ARM can enhance its impact on science, it is also important to consider how ARM measurements can most effectively impact model development. The use of ARM data for the advancement in understanding of atmospheric processes is indirectly beneficial to atmospheric model development but there are additional steps that can be taken. DOE held a workshop in 2015 that sought to identify opportunities to enhance the linkages among ARM measurements, ASR research and DOE modeling activities (U.S. Department of Energy, 2016). Specific actions identified at that workshop include:

- Collaborate on problem areas in model performance with a focus on priorities that can best be informed by ARM observations
- Focus on model-forcing datasets and other parameters that characterize the environment for relating local measurements with the larger domain
- Construct virtual field campaigns that organize existing data around science themes
- Explore impacts of surface heterogeneity on the atmosphere
- Focus on statistical relationships among parameters
- Implement a multi-scale framework linking models and observations
- Make use of instrument simulators to relate observations to model output

ARM has made progress on each of these areas including the development of the LES modeling framework (Gustafson, 2020); however, there is much more that could be done. Perhaps most important is fostering and developing relationships between ARM and modeling groups to ensure that ARM efforts are applied in this arena in the most effective ways.

Appendix B: Continued Engagement with the Science Community

The overarching themes of the ARM decadal vision cover a progression from strategies to enhance the impact of ARM measurements, to data analysis activities and data services to strategies to support the use of ARM data for model development. Examples are outlined for each theme that align with needs that have been identified by the science community but these specific examples are likely to evolve. A brief summary of current science priorities was given in the "Science Drivers" section. Those science drivers were based on several workshops but are also consistent with messages we have heard from the community over the past few years.

Looking ahead, it is expected that science priorities will evolve. To remain engaged with evolving priorities, it will be important to convey the scope of current ARM activities and provide a mechanism for the community to comment on those priorities and suggest new directions. Discussions of measurement needs with the Cloud and Precipitation Measurement and Science Group led to a framework that helps to document those needs and develop priorities. The framework involves defining the following elements for each identified measurement (or data product) need:

- Overarching science question
- Specific measurements or data products needed to address the gap
- Proposed strategy to address the gap
- Maturity of the proposed strategy (is research and development required?)
- Readiness of ARM to implement the strategy (e.g. in an appropriate location)
- Impact of implementing this capability
- Link between the proposed activity and modeling

Using this supporting information for identified needs, ARM will develop specific priorities and communicate those priorities through the ARM website. Going forward, ARM will solicit input regarding needs on an on-going basis with significant updates to the priorities expected on an annual basis. To ensure that input reflects broad community needs, ARM will be looking for input from organizations that represent those needs including the ASR working groups as well as science team leads from other programs. Selected actions as well as submitted ideas and the submission form for new ideas will be available on the "Future Directions" portion of the ARM website.