The Properties of Individual Aerosol Particles Sampled over North Slope of Alaska during ISDACE

Alla Zelenyuk, Dan Imre, Peter Liu, Anne Marie Macdonald, and Richard Leaitch
SPLAT II

- Provides in *real-time* the size and internal composition of individual particles in 50 nm to 3 µm size range
- Measures refractory and non-refractory aerosol fractions in each particle
- Yields size distributions \(d_{va}\) and number concentrations
- Sampling rate: sizes up to 2000 p/sec, 20-50 of which are also chemically characterized
- High sensitivity to small particles: detects 40% of 100 nm particles
- High overall sensitivity: detects 1 p/sec for an aerosol sample of 1 p/cm³ with d>100 nm
During ISDAC SPLAT II participated in all 27 flights that lasted over 100 hrs.

It measured the size of tens of millions particles and characterized the composition of over 3 million of them.

SPLAT II was sampling particles alternately through the aerosol inlet, to characterize the composition and size of the overall aerosol population, and through the CVI inlet to characterize the composition and size of particles that served as CCN and IN.

Examples: April 19, Flight 25 & 26
April 19th, Flight 25

Barrow

Fairbanks
April 19th, Flight 25 Vertical Profiling

- **# of particles detected sec⁻¹**
- **CNC # particles cm⁻³**

![Graphs showing particle detection and CNC counts over time](image-url)
We measure the vacuum aerodynamic size distributions of particles larger than ~50 nm.

Here are a few examples from flight 25.

We also determine the size distributions of particles with specific compositions, which yields their effective density.
Two individual particle mass spectra

A biomass burning particle

A Ca-dominated dust particle containing a small amount of sulfate that served as an ice cloud nucleus
April 19 Data Classification

Composition of 140,000 particles
We classify the mass spectral data and display the results in a circular dendogram that is exploitable.

The data for flights 25 and 26 show that the vast majority of the particles fits into 5 major types:

- sulfate with some organics
- BB
- BB with sulfate
- Organics
- Others
Composition and temporal evolution of 140,000 particles

We can also look at the changes in particle composition as a function of time.

Here we show an example of a movie with 5 minute resolution.

The two flight are clearly visible.
April 19 Time Evolution

Temporal evolution of the composition of 140,000 particles

Here is a closer look at the time evolution. Again, the two flights are visible and one can easily see that the particle compositions are undergoing significant changes with time.
Time Evolution of 3 Particle Classes

Composition and temporal evolution of 140,000 particles

Example: Pick 3 classes and follow as a function of time
Classes marked as 1sulfate_org and BB sulfate are nicely correlated during both flights. In contrast class 2sulfate_org shows very different behavior during F 25 from 20:00 to 21:15, and 3:00 to 3:30 during F 26.
April 19th, Flight 25, 10 sec resolution

PRELIMINARY DATA

Aerosol Extinction (Mm$^{-1}$)

Smoke

SSA(550 nm) ~ 0.95

Angstrom Exponent (450-700 nm) ~ 1.8

Particles Detected/CC
April 19th, Flight 25, 10 sec resolution

A plot of the number of particles detected by SPLAT as a function of altitude. When the aircraft hit the heavily polluted layer, SPLAT saturated and turned itself off. But the pattern is pretty clear.

BB particles make up a significant fraction of the number of particles, especially at lower altitudes. We also see that particles at lower altitude are more spherical during this time period.

The number concentration of BB particles increases rapidly when the aircraft hits the polluted layer.
Time Evolution of “Special” Particle Classes

F 26
It looks like there is correlation between when SPLAT detects these metallic and dust particles and when the 2DP detects ice crystals.

This is not true for sea-salt particles.

Sea-salt particles seem to be very nicely correlated with the FSSP 100 counts.
During ISDAC SPLAT II participated in all 27 flights (100+ hrs).

10s of millions particles were sized and over 3 million of them chemically characterized.

SPLAT II characterized the composition and size of the overall aerosol population, and provided artifacts-free information on composition and size of particles that served as CCN and IN.

SPLAT II measured a wide range of particle compositions, including sulfates mixed with organics, nitrates mixed with organic, processed and freshly emitted sea-salt, a few dust particles, and biomass burning particles. Many of these particle types appeared in aerosol layers that had horizontal and vertical filamentous structures. Biomass burning particles, many of which were transported from Asia, were rather prevalent over the North Slope of Alaska during the campaign.

Time, size and type of each particle is being put into the ARM archive.