Tower Camera (TWR CAM) Instrument Handbook

M Stuefer T Gordon

March 2018
DISCLAIMER

This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Tower Camera (TWR CAM) Instrument Handbook

Revision 1

M Stuefer
T Gordon
Both at University of Alaska, Fairbanks

March 2018

Work supported by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM</td>
<td>Atmospheric Radiation Measurement</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device</td>
</tr>
<tr>
<td>CMOS</td>
<td>complementary metal oxide semiconductor</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DQR</td>
<td>Data Quality Report</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>GNDRAD</td>
<td>ground radiometer</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>HDTV</td>
<td>high-definition television</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>NSA</td>
<td>North Slope of Alaska</td>
</tr>
<tr>
<td>PHP</td>
<td>PHP: Hypertext Preprocessor</td>
</tr>
<tr>
<td>POE</td>
<td>Power over Ethernet</td>
</tr>
<tr>
<td>PTZ</td>
<td>pan-tilt-zoom</td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>THREDDS</td>
<td>Thematic Real-Time Environmental Distributed Data Services</td>
</tr>
<tr>
<td>TWR CAM</td>
<td>tower camera</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
</tbody>
</table>
Contents

Acronyms and Abbreviations .. iii

1.0 Instrument Title .. 1

2.0 Mentor Contact Information .. 1

3.0 Vendor/Developer Contact Information .. 2

4.0 Instrument Description .. 2

5.0 Measurements Taken .. 3

6.0 Links to Definitions and Relevant Information .. 3

 6.1 Data Object Description .. 3

 6.2 Data Ordering .. 4

 6.3 Data Plots ... 4

 6.4 Data Quality .. 5

 6.5 Calibration Database .. 5

7.0 Technical Specification .. 6

 7.1 Units ... 6

 7.2 Range .. 7

 7.3 Accuracy ... 7

 7.4 Repeatability ... 7

 7.5 Sensitivity .. 7

 7.6 Uncertainty .. 7

 7.7 Input Voltage ... 7

 7.8 Input Values ... 8

 7.9 Output Values ... 8

8.0 Instrument System Functional Diagram .. 8

9.0 Instrument/Measurement Theory ... 8

10.0 Setup and Operation of Instrument ... 8

 10.1 Hardware Requirements and Installation Instructions ... 8

 10.2 Operating an AXIS Dome Camera ... 9

11.0 Software .. 11

12.0 Calibration .. 13

13.0 Maintenance .. 13

14.0 Safety ... 14

15.0 Citable References ... 14
Figures

1. Tower camera at the ARM Barrow site, close-up and atop the tower
2. The AXIS Q6045-E Mk II PTZ Dome Network Camera currently installed on the topmost boom of the NSA-C1 40m tower
3. A sample JPG image from the 40m tower camera at NSA C-1 in Barrow
4. A search for 40m tower camera imagery on the ARM Data Discovery website shows users the date range available for download
5. Data Quality Reports filed for the 40m tower camera
6. Camera and midspan installation diagrams from AXIS Q6045-E Mk II Installation Guide
7. The window that a user sees upon accessing an AXIS camera for the first time
8. A screenshot of the live camera feed from the AXIS Q6045-E Mk II 40-meter tower camera at Barrow; the field of view normally stays on the 10m Tip Tower pictured here
9. AXIS camera can be configured underneath the ‘Setup’ menu on the AXIS GUI
10. The main window of the AXIS IP Utility software
11. A sample Python script for automating image capture using presets
1.0 Instrument Title

U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility tower camera at the 40m tower at the Barrow (known officially as Utqiaġvik) ARM North Slope of Alaska (NSA)-C1 observatory.

![Tower camera at the ARM Barrow site, close-up and atop the tower.](image)

Figure 1. Tower camera at the ARM Barrow site, close-up and atop the tower.

2.0 Mentor Contact Information

Martin Stuefer
University of Alaska, Fairbanks
2158 N Koyukuk Street
Fairbanks, Alaska 99775-7320
Phone: (907) 474-6477
FAX: (907) 474-7290
Email: mstuefer@alaska.edu

Telayna Gordon
University of Alaska, Fairbanks
2158 N Koyukuk Street
Fairbanks, Alaska 99775-7320
Phone: (907) 474-2742
Email: tgordon10@alaska.edu
3.0 Vendor/Developer Contact Information

Corporate Headquarters
AXIS Communications AB
Emdalavägen 14
Lund, Sweden
SE-223 69 Lund
Tel: +46 46 272 18 00
Fax: +46 46 13 61 30

United States Sales Office
AXIS Communications Inc.
300 Apollo Drive
Chelmsford, Massachusetts 01824
+1 978 614 2000
+1 978 614 2100

Please refer to the AXIS website for a listing of more sales offices around the world.

4.0 Instrument Description

The NSA-C1 Utqiaġvik tower camera is installed at a height of 40 meters above the ground at the topmost boom of the meteorological tower. The camera’s main field of view is directed at the tundra south of the tower, where the 10m Tip Tower is located. The camera captures images of the Tip Tower and the surrounding ground every 30 minutes. Since September 2017, the camera model is the AXIS Q6045-E Mk II PTZ Dome Network Camera.

Figure 2. The AXIS Q6045-E Mk II PTZ Dome Network Camera currently installed on the topmost boom of the NSA-C1 40m tower.
5.0 Measurements Taken

The NSA-C1 40m tower camera images, taken every 30 minutes, provide a qualitative look at the progression of the seasons at Utqiaġvik. The tower camera images are useful for determining the fractional snow or vegetation cover. Additionally, the camera provides a glimpse of on-site weather conditions, showing the changing weather and/or ground conditions.

The camera is primarily focused on the NSA-C1 10m Tip Tower, where a collection of radiometers measuring broadband reflected shortwave energy and longwave irradiances (GNDRAD) are installed. The 40m tower photos of this area offer insight into the factors affecting radiative energy exchange at the NSA-C1 site.

Figure 3. A sample JPG image from the 40m tower camera at NSA C-1 in Barrow.

6.0 Links to Definitions and Relevant Information

6.1 Data Object Description

JPG images taken every 30 minutes from the tower camera are available for download on the ARM Data Discovery website under the datastream name ‘nsatwrcam40mC1.’ This datastream has camera footage with time stamps in UTC/GMT that appear on the upper-left corner of the images.
6.2 Data Ordering

The tower camera snapshots can be downloaded by making a request through the ARM Data Discovery browser; the images are identified as ‘surface condition’ measurements, and are stored under the ‘surface properties’ category with the datastream name ‘twrcam40m.’

All the images from one day are zipped into a tar file with the following naming scheme: nsatwrccam40mC1.a1.YYYYMMDD.002701.jpg.tar. Tower camera images are available from 06/19/2001 to the present.

![Search Results](image)

Figure 4. A search for 40m tower camera imagery on the ARM Data Discovery website shows users the date range available for download.

The user selects the dates of interest using the two black drop-down calendar buttons (see Figure 3), adds the data to the data cart with the checkbox next to the ‘twrcam40m’ datastream name, and clicks the orange button with the shopping cart image on the right side of the page. Users must log in with an ARM user account to submit the order for data. An ARM user account must be created if the user does not already have one.

After submitting the data request, the user receives an email from the ARM Data Center listing various ways to download the data (FTP, THREDDS, GLOBUS, Dropbox).

6.3 Data Plots

Daily NSA-C1 tower camera videos are included within the ARM Plot Browser tool for quick checks of camera operations and images.

Users can also check on 40m tower camera availability using the ARM Data Quality Explorer by selecting ‘NSA’ for the site, and ‘twrcam40m’ as the datastream.
6.4 Data Quality

The ARM Climate Research Facility maintains a database of Data Quality Reports, or DQRs, that are used to document outages or bad image data. The ARM Problem and Data Quality Report Search Tool enables users to look for reports from a certain time range, by the facility of deployment, or by instrument.

![Data Quality Reports](image)

Figure 5. Data Quality Reports filed for the 40m tower camera.

For a quick look at data quality and coverage, end users can check the ARM Plot Browser tool for the datastream ‘nsawrcam40m’ located under the NSA list.

6.5 Calibration Database

There is no calibration database for the tower camera.
7.0 Technical Specification

AXIS Q6045-E Mk II PTZ Dome Network Camera

- **Models**
 - AXIS Q6045-E Mk II 60 Hz
 - AXIS Q6045-E Mk II 50 Hz

- **Camera**
 - **Image sensor**: 1/2.8" Progressive Scan CMOS
 - **Lens**: 4.44-144.4 mm, F1.5-4.41
 - Horizontal angle of view: 62.8°-2.23°
 - Vertical angle of view: 38.1°-1.2°
 - Autoiris, Auto-iris

- **Day and night**
 - Automatically removable infrared-cut filter

- **Minimum illumination**
 - Color: 0.3 lux at 30 IRE F1.6
 - B/W: 0.05 lux at 30 IRE F1.6

- **Shutter time**
 - 1/30000 to 1/2 of 50 Hz
 - 1/2500 to 1/4 of 60 Hz

- **Pan/Tilt/Zoom**
 - Pan: 360° endless, 0.05°-45°/s
 - Tilt: 220°, 0.05°-45°/s
 - 3x optical zoom and 12x digital zoom, total 38x zoom
 - E-flip, 256 preset positions, Tour recording, Guard tour, Control queue, On-screen directional indicator, Set new pan & tilt, Adjustable zoom speed

- **Video**
 - **Video compression**: H.264 (MPEG-4 Part 10/AVC) Baseline and Main Profiles Motion JPEG
 - **Resolutions**
 - HDTV 1080p: 1920x1080 to 1280x720
 - HDTV 720p: 1280x720 to 352x240
 - **Frame rate**
 - Up to 60/50 fps (60/50 Hz) in HDTV 720p
 - Up to 30/25 fps (60/50 Hz) in HDTV 720p

- **Video streaming**
 - Multiple, individually configurable streams in H.264 and Motion JPEG

- **Image settings**
 - Wide Dynamic Range (WDR): Up to 120 dB depending on scene, manual shutter time, compression, color brightness, sharpness, white balance, exposure control, exposure control, backlight compensation, fine tuning of behavior at light, rotation, rotation, 6°, 186°, text and image overlay, 31 individual privacy masks, image freeze on PTZ, highlight compensation, automatic defog

- **Network**
 - **Security**
 - Password protection, IP address filtering, HTTPS encryption, IEEE 802.1X network access control, Digital encryption, User access log, Certificate Management
 - **Supported protocols**
 - IPv4/IPv6, HTTP, HTTPS, HTTPS, SSL/TLS, DoS Layer 3 DiffServ, FTP, CIFS/GMB, SNMP, ICMP, UPnP, SMTP, SNMP v1/v2/v3 (VME-V), DNS, DNS/DS, LDAP, FTP, RTP, TPC, TCP, UDP, ESP, TCP, GTP, DHCP, ARP, Socks, SSH, NTP

- **System integration**
 - **Application Programming**
 - Open API for software integration, including VARs and AXIS Camera Application Platform; specifications at www.axis.com
 - **Analytics**
 - Video motion detection, Day detection, Auto-iris, Auto-iris
 - **Support**
 - Basic Analytics (not to be compared with third-party analytics): Object removal, Extract/erase detector, Fence detector
 - **Support**
 - Support for AXIS Camera Application Platform; enabling installation of AXIS Cross-line detection and third-party applications; see www.axis.com/cap

- **Event triggers**
 - Analytics, Fan, Temperature, Manual trigger, PTZ moving, PTZ preset, Edge storage events

- **Event actions**
 - Fire upload: FTP, SMTP, HTTP, HTTP network share and email

- **Technical Specification**

- **Input/Output**
 - External power supply: 12 VDC, 1 A

- **Data streaming**
 - Event data

- **Built-in installation aids**
 - Pixel counter

- **General**
 - **Casing**
 - ABS, NEMA 4X- and IK6-rated metal casing (aluminum), polycarbonate (PC) clear dome, sunshield (FC/FSA)
 - **Memory**
 - 512 MB RAM, 1 MB flash
 - Battery backed-up real-time clock
 - **Power**
 - High power over Ethernet (HiPoE): IEEE 802.3at, max. 60 W
 - Axis HiPoE Midspan 1-port: 100-240 V AC, max. 74 W
 - **Connectors**
 - RJ45 10BASE-T/100BASE-TX PoE, RJ45 Push-pull connector (IEPE) included

- **Edge storage**
 - Support for SD/SDHC/SDXC card
 - Support for recording to dedicated network-attached storage (NAS)

- **Operating conditions**
 - With 30 W, -20 °C to 50 °C (-4 °F to 122 °F)
 - With 60 W, -20 °C to 50 °C (-4 °F to 122 °F)

- **Storage conditions**
 - -50 °C to 60 °C (-58 °F to 140 °F)

- **Approvals**
 - EN 50122 Class A, EN 61000-2-2, EN 61000-3-2, EN 61000-3-1
 - C-tick AVS/ANZ CSIR 2001, C-tick AVS/ANZ CSIR 22 Class A
 - QCA22 Class A, QCA25, CE/UL, CE/CSA, CE/UL, CE/CSA
 - EN 50121-4
 - IC, EN 50124-4, IC, EN 50082-2-1, IC, EN 50082-3-2, IC, EN 50082-4, IC, EN 50082-7-7, IC, EN 50082-14, IC, EN 50082-20, IC, EN 50082-23
 - IC, EN 50082-7-8
 - IC, EN 50082-7-8
 - IC, EN 50082-2-3, IC, EN 50082-14, IC, EN 50082-20, IC, EN 50082-23
 - IC, EN 50082-7-8
 - IC, EN 50082-2-3
 - IC, EN 50082-14
 - IC, EN 50082-20
 - IC, EN 50082-23
 - IC, EN 50082-7-8
 - IC, EN 50082-2-3
 - IC, EN 50082-14
 - IC, EN 50082-20
 - IC, EN 50082-23
 - IC, EN 50082-7-8
 - IC, EN 50082-2-3
 - IC, EN 50082-14
 - IC, EN 50082-20
 - IC, EN 50082-23
 - IC, EN 50082-7-8
 - IC, EN 50082-2-3
 - IC, EN 50082-14
 - IC, EN 50082-20
 - IC, EN 50082-23
 - IC, EN 50082-7-8
 - IC, EN 50082-2-3
 - IC, EN 50082-14
 - IC, EN 50082-20
 - IC, EN 50082-23
 - IC, EN 50082-7-8
 - IC, EN 50082-2-3
 - IC, EN 50082-14
 - IC, EN 50082-20
 - IC, EN 50082-23
 - IC, EN 50082-7-8

- **Weight**
 - 3.7 kg (8.2 lbs)

- **Dimensions**
 - 832 x 280 mm (32.6 x 11.0 in)

- **Included accessories**
 - Axis HiPoE 60 W Midspan 1-port, RJ45 Push-pull Connector (IP68), Surchild

- **Optional accessories**
 - Smoked dome cover, AXIS T511A Mounting Accessories, AXIS T8192 D 30W Midspan

- **Video management software**
 - AXIS Camera Companion, AXIS Camera Station, video management software from Axis Development Partner available at www.axis.com/techpub/software

- **Languages**
 - German, French, Spanish, Italian, Russian, Simplified Chinese, Japanese, Korean, Portuguese

- **Warranty**
 - 3-year warranty and AXIS Extended Warranty option, see www.axis.com/warranty

- a. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (www.openssl.org), and cryptographic software written by Eric Young (eay@cryptsoft.com)
- b. Axis temperature control enables camera start-up at temperatures as low as -20°C (7°F)

More information is available at: www.axis.com

7.1 Units

- Frame rate: fps
- Horizontal angle of view: deg
• Lens measurement: mm
• Power: watts (DC), VA (AC)
• Shutter time: s
• Weight: lb/kg

7.2 Range

• 32x optical zoom, 12x digital zoom, total 384x zoom
• 360° pan
• F1.6 – 4.41
• Horizontal angle of view from 62.8° to 2.23°
• Vertical angle of view from 36.8° to 1.3°
• Shutter time range from 1/33,000 s to 1/3 s with 50 Hz, and 1/33,000 s to 1/4 s with 60 Hz
• Up to 60/50 fps (60/50 Hz) in HDTV 720p and up to 30/25 fps (60/50 Hz) in HDTV 1080p
• Operational in -58°F to 122°F

7.3 Accuracy
N/A

7.4 Repeatability
N/A

7.5 Sensitivity

The AXIS Q6045-E Mk II, equipped with a 1/2.8” Progressive Scan CMOS sensor, can capture color video day/night in light conditions down to 0.3 lux, and black/white video in conditions down to 0.004 lux.

7.6 Uncertainty
N/A

7.7 Input Voltage

The AXIS Q6045-E Mk II comes with a 1-port, high PoE midspan that operates between 100-240 V AC. AXIS recommends using the supplied midspan to power the camera.
7.8 Input Values

N/A

7.9 Output Values

See section 5.0, Measurements Taken.

8.0 Instrument System Functional Diagram

N/A

9.0 Instrument/Measurement Theory

The AXIS Q6045-E Mk II PTZ Dome Network Camera, an outdoor, HDTV 1080p camera with 32x optical zoom, provides a vast improvement in resolution and zoom capabilities from the former 40m tower camera model, the AXIS 232D+. The PTZ function allows operators to make preset positions that view various site locations.

The camera contains a built-in heater that is turned on or off automatically, as it is controlled by the ambient temperature. This feature ensures that detailed site monitoring is possible even during the harshest winter conditions of the polar night.

In order to more effectively see physical changes over time, the camera is typically stationary at a view of the Tip Tower. However, operators use the 40m-tower camera for a variety of monitoring tasks.

10.0 Setup and Operation of Instrument

There are two major components to the installation and setup of AXIS network cameras: the physical install, and connecting the camera to the network.

10.1 Hardware Requirements and Installation Instructions

If mounting the camera in a position or area difficult to access (like the 40m tower), ensure that the camera is running properly and has an assigned, working IP address that you can access via a web browser before completing the hardware installation.

The accessories for installation of the AXIS Q6045-E camera include the installation manual, the power supply (AXIS T8124 High PoE Midspan 1-port), and a RJ45, IP66-rated push-pull connector.

From the AXIS Q60 Series installation manual:
The installation sequence is as follows:

1. Connect the camera.
2. Set an IP address.
3. Set a password.

The exact series of installation steps vary depending upon the way the camera will be mounted, but the series of connections and powering process remains the same:

1. Secure the camera using the supplied safety wire.
2. Connect the RJ45 cable to the port on the back of the camera.
3. Secure the camera to the mounting bracket.
4. Connect the camera to the supplied midspan in the ‘data and power out’ port, and the midspan to the network switch (‘data in’ port). Check that the midspan LED indicators remain green, indicating that the camera is connected and operating normally.

The hardware installation is complete at this point (except for mounting). For instructions on connecting AXIS cameras to the network, see Section 11.0 on the AXIS IP Utility.

10.2 Operating an AXIS Dome Camera

The AXIS camera feed can be monitored and managed in real time by navigating to the camera IP or domain name (set up instructions in Section 11.0) via an internet browser. When accessing the AXIS camera for the first time, the ‘Configure Root Password’ query will display. Choose and confirm a password, then login in as the ‘root’ user. This login is important to remember for later fine-tuning of the camera display and operations within the Setup menu of the webpage.
Figure 7. The window that a user sees upon accessing an AXIS camera for the first time.

There are several important features to the AXIS GUI pictured below in Figure 8: the ‘Live View’ mode (the displayed page), the ‘Setup’ button (top right button beside ‘live view’), and the ‘PTZ preset’ drop-down menu (top, middle).

Figure 8. A screenshot of the live camera feed from the AXIS Q6045-E Mk II 40-meter tower camera at Barrow; the field of view normally stays on the 10m Tip Tower pictured here.

The live view allows for real-time monitoring and view modification using the pan, zoom, focus, tilt, iris, and brightness options. The ‘PTZ preset’ drop-down menu at the top-middle of the live view page in
Figure 8 allows viewers to navigate between preset options that force the camera to swivel to a certain focal point.

If presets are used to navigate away from the live feed of the Tip Tower, users must remember to navigate back to the view of the tower as to not interrupt the scheduled image grabbing that populates the 40m tower datastream. Additionally, to keep the cameras usable by site operations, it is important that visitors to the camera be considerate of their time spent on the web page, and do not leave their connection to the camera continuously running within their browser.

The ‘Setup’ menu (Figure 9) offers the following options: image and video settings, settings for the layout of the ‘Live View’ page, network settings, setting and managing camera presets, security options, and more. Only mentors/authorized users apply changes to this setup area.

![AXIS Q6045-E Mk II Network Camera](image)

Figure 9. AXIS camera can be configured underneath the ‘Setup’ menu on the AXIS GUI. The taskbar on the left side of the page shows the variety of features that can be configured.

11.0 Software

After powering on the camera, it is recommended to install and open the AXIS IP Utility tool to connect the camera to the network.

The AXIS IP Utility tool is used to set a fixed, or static, IP address for an AXIS network camera. The software automatically discovers AXIS devices on the network, allowing users to either manually assign network parameters such as the IP address, subnet mask, and default router, or to configure the device to obtain an IP address from the DHCP server. For the software to work properly, the AXIS device and client computer must be on the same subnet/network segment.
Figure 10. The main window of the AXIS IP Utility software. Any devices discovered on the network will be listed here with the camera model name, IP addresses, and serial numbers.

AXIS Network Cameras use a modified Linux operating system that allows for the embedding of shell or PHP scripts that can accomplish several functions, such as triggering the buffering of images, scheduling visits on various preset positions, and automating the upload of files via FTP or SMTP.

Figure 11 is a Python script developed by the University of Alaska, Fairbanks ARM Rapid Response team. This template script enables users to capture images using presets. The images are then stored in a defined output directory path. This script can be scheduled using a crontab file to consistently take images at a particular time.
Figure 11. A sample Python script for automating image capture using presets. Further documentation on this particular code can be found on the Nanuna wiki maintained by the ARM Rapid Response team at the University of Alaska, Fairbanks.

For more information on scripting capabilities with AXIS Network Cameras, consult the AXIS Scripting Guide.

12.0 Calibration

There are no calibration procedures for the AXIS camera.

13.0 Maintenance

AXIS cameras contain several maintenance functions that are available under ‘Setup’ → ‘System Options’ → ‘Maintenance.’ For example, the camera’s firmware may need to be upgraded by downloading the new files from the AXIS website, and then browsing for and running the download under ‘Setup’ → ‘System Options’ → ‘Maintenance’ → ‘Upgrade server.’

If the AXIS camera is not behaving as expected, the camera can be restarted under ‘Setup’ → ‘System Options’ → ‘Maintenance.’ A restart will not affect the camera’s current settings.
The dome case on the AXIS camera is made of transparent Plexiglass. To prevent scratching the dome cover, the dome should only be cleaned when dirty (and never polished) with a soft cloth, lukewarm water, and non-abrasive, solvent-free soap. Cleaning should not be done in direct sunlight, or at elevated temperatures. To prevent water spots, dry the dome with a soft cloth.

14.0 Safety

The AXIS camera should be grounded either through a shielded network cable or another appropriate method.

Always ensure that the power is disconnected before starting any work or opening the housing.

15.0 Citable References

