

DOE/SC-ARM-TR-110

# Rain Gauge **Instrument Handbook**

**MJ Bartholomew** 

January 2016



#### DISCLAIMER

This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

# **Rain Gauge Instrument Handbook**

MJ Bartholomew

January 2016

Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research

# Acronyms and Abbreviations

| ARM  | Atmospheric Radiation Measurement |
|------|-----------------------------------|
| DIST | disdrometer                       |
| DQ   | data quality                      |
| LED  | light-emitting diode              |
| PM   | planned maintenance               |
| QME  | quality measurement experiment    |
| RMSE | root-mean-square error            |
| VAP  | value-added products              |
| VDIS | video disdrometer                 |
|      |                                   |

## Contents

| 1.0  | Gen   | eral Overview                                                           | 1  |
|------|-------|-------------------------------------------------------------------------|----|
| 2.0  | Con   | tacts                                                                   | 1  |
| 3.0  | Data  | Description and Examples                                                | 2  |
|      | 3.1   | Data File Contents                                                      | 2  |
|      | 3.2   | Primary Variables                                                       | 2  |
|      | 3.3   | Expected Uncertainty                                                    | 3  |
|      | 3.4   | Definition of Uncertainty                                               | 4  |
|      | 3.5   | Diagnostic Variables                                                    | 4  |
|      | 3.6   | Dimensional Variables                                                   | 4  |
| 4.0  | Data  | ı-Quality Flags                                                         | 5  |
| 5.0  | Data  | n-Quality Health and Status                                             | 6  |
|      | 5.1   | Data Reviews by Instrument Mentor                                       | 6  |
|      | 5.2   | Data Assessments by Site Scientists/Data-Quality Office                 | 7  |
|      | 5.3   | Value-Added Products and Quality Measurement Experiments                | 7  |
| 6.0  | Inst  | rument Details                                                          | 7  |
|      | 6.1   | Detailed Description                                                    | 7  |
|      | 6.2   | List of Components                                                      | 7  |
| 7.0  | Data  | I-Acquisition Cycle                                                     | 9  |
| 8.0  | Proc  | essing Received Signals                                                 | 9  |
| 9.0  | Sitir | g Requirements                                                          | 9  |
| 10.0 | Cali  | bration                                                                 | 10 |
| 11.0 | User  | Manuals                                                                 | 10 |
| 12.0 | Rou   | tine Operation and Maintenance                                          | 10 |
|      | 12.1  | Frequency                                                               | 10 |
|      | 12.2  | Inspection of Site Ground Near the Instrument                           | 10 |
|      | 12.3  | Visual Inspection of Instrument Components                              | 10 |
|      |       | 12.3.1 Conduit, Cables, and Connectors                                  | 10 |
|      |       | 12.3.2 Check Status of Light-Emitting Diode (LED) on CR1000 Data Logger | 10 |
|      |       | 12.3.3 Check Status of Power LED on Disdrometer Processor               | 11 |
|      |       | 12.3.4 Check Clock Values Shown on LoggerNet Connect Screen             | 11 |
|      | 12.4  | Active Maintenance and Testing Procedures                               | 11 |
|      |       | 12.4.1 Rain Gauge                                                       |    |
|      |       | 12.4.2 Rain Gauge Tip Test                                              | 11 |
| 13.0 | Soft  | ware Documentation                                                      |    |
|      |       | plemental Information                                                   |    |
|      | 14.1  | Formulas Used in Data Processing                                        | 12 |

| 14.2 Drop-Size Classes |
|------------------------|
|------------------------|

# Figures

| 1 | Disdrometer wiring diagram                        | .8 |
|---|---------------------------------------------------|----|
| 2 | Disdrometer and tipping bucket system enclosure 1 | .8 |
| 3 | Disdrometer and tipping bucket system enclosure 2 | .9 |

## Tables

| 1 | Tipping bucket rain gauge variables, RAIN datastream         | 2 |
|---|--------------------------------------------------------------|---|
| 2 | New variables for RAIN datastream for weighing bucket gauges | 3 |
| 3 | Tipping bucket dimensional variables                         | 4 |
| 4 | Weighing bucket dimensional variables                        | 5 |
| 5 | Tipping bucket data-quality flags                            | 5 |
|   | New data-quality flags for RAIN datstream                    |   |

## 1.0 General Overview

To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS datastreams). This handbook deals specifically with the rain gauges that make the observations for the RAIN datastream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET datastream).

# 2.0 Contacts

#### Mentor

Mary Jane Bartholomew Brookhaven National Laboratory MS 490D Upton, NY 11973 Phone: 631-344-2444 Fax: 631-344-2060 E-mail: <u>bartholomew@bnl.gov</u>

#### **Instrument Developers**

*Tipping Buckets* NovaLynx Corp. Grass Valley, California <u>www.novalynx.com</u>

Weighing Bucket Rain Gauges Belfort Instrument Company 727 Wolfe St. Baltimore, MD 21213 ww.belfortinstrument.com

#### **Deployment Locations and History**

|                                                        |                                                                               | r 9, 2010 |
|--------------------------------------------------------|-------------------------------------------------------------------------------|-----------|
| Southern Great Plains ARMC1SepterManus, ARM TWPC1Decer | Endmber, 2010January 20mber, 2010Ongoingmber, 2010January 20mber, 2013Ongoing |           |

**Near-Real-Time Data Plots** 

http://plot.dmf.arm.gov/plotbrowser/

## 3.0 Data Description and Examples

### 3.1 Data File Contents

Datastreams

• Where xxx = three letter site designation, n = the site number

Rain Gauges

- XxxrainCn.00 tipping bucket and weighing bucket
- XxxrainCn.b1 tipping bucket and weighing bucket
- XxxrainauxCn.00 tipping bucket only
- XxxraiauxnCn.b1 tipping bucket only

### 3.2 Primary Variables

The primary variables for the tipping bucket and the weighing bucket rain gauges are listed in Table 1 and Table 2, respectively.

| Quantity                   | Variable         | Measurement<br>Interval | Unit                                      |
|----------------------------|------------------|-------------------------|-------------------------------------------|
| Base time in epoch         | base_time        | 1 min                   | seconds since YYYY-mm-dd<br>XX:XX:XX X:XX |
| Time offset from base_time | time_offset      | 1 min                   | seconds since YYYY-mm-dd<br>XX:XX:XX X:XX |
| Time offset from midnight  | time             | 1 min                   | seconds since YYYY-mm-dd<br>XX:XX:XX X:XX |
| North latitude             | lat <sup>a</sup> | Constant                | degrees                                   |
| East longitude             | lon <sup>a</sup> | Constant                | degrees                                   |
| Altitude                   | alt <sup>a</sup> | Constant                | meters above sea level                    |
| Instrument serial number   | serial_number    | Constant                |                                           |
| Calibration date           | calib_date       | Constant                |                                           |
| Precipitation              | precip_tbrg      | 1 min                   | millimeters                               |
| Rainfall rate              | rain_rate        | 1 min                   | millimeters/hr                            |

**Table 1.** Tipping bucket rain gauge variables, RAIN datastream.

<sup>a</sup> lat/lon/alt refer to the ground where the instrument is sited, NOT the height of the sensor.

| Measurement                |                      |          |                                           |  |  |
|----------------------------|----------------------|----------|-------------------------------------------|--|--|
| Quantity                   | Variable             | Interval | Unit                                      |  |  |
| Base time in epoch         | base_time            | 1 min    | seconds since YYYY-mm-dd                  |  |  |
| •                          | _                    |          | XX:XX:XX X:XX                             |  |  |
| Time offset from base_time | time_offset          | 1 min    | seconds since YYYY-mm-dd                  |  |  |
|                            |                      |          | XX:XX:XX X:XX<br>seconds since YYYY-mm-dd |  |  |
| Time offset form midnight  | time                 | 1 min    | XX:XX:XX X:XX                             |  |  |
| North latitude             | lat <sup>a</sup>     | Constant | Degrees                                   |  |  |
| East longitude             | lon <sup>a</sup>     | Constant | Degrees                                   |  |  |
| Altitude                   | alt <sup>a</sup>     | Constant | Meters above sea level                    |  |  |
|                            |                      | Constant | weters above sea lever                    |  |  |
| instrument serial number   | serial_number        |          | N dillion of a na                         |  |  |
| Precipitation amount       | precip               | 1 min    | Millimeters                               |  |  |
| Precipitation rate         | precip_rate          | 1 min    | Millimeters/hour                          |  |  |
| Sensor 1 temperature       | temp1                | 1 min    | Degrees C                                 |  |  |
| Sensor 2 temperature       | temp 2               | 1 min    | Degrees C                                 |  |  |
| Sensor 3 temperature       | temp3                | 1 min    | Degrees C                                 |  |  |
| Sensor weight 1            | weight1              | 1 min    | kg                                        |  |  |
| Sensor weight 2            | weight2              | 1 min    | kg                                        |  |  |
| Sensor weight 3            | weight3              | 1 min    | kg                                        |  |  |
| Sensor 1 frequency         | frequency1           | 1 min    | Hz                                        |  |  |
| Sensor 2 frequency         | frequency2           | 1min     | Hz                                        |  |  |
| Sensor 3 frequency         | frequency3           | 1 min    | Hz                                        |  |  |
| Logger panel temperature   | ptemp                | 1 min    | Degrees C                                 |  |  |
| Logger minimum voltage     | volt_min             | 1min     | volts                                     |  |  |
| Bucket total weight        | total_weight         | 1min     | kg                                        |  |  |
| Bucket total mm of         | total mm             | 1 min    | Millimeters                               |  |  |
| precipitation              | total_mm             | 1 min    | Millimeters                               |  |  |
| Logger scan total          | scans_per_minu<br>te | 1 min    | Unitless                                  |  |  |
| Sensor status              | stat_latch           | 1 min    | Unitless                                  |  |  |
| Sensor error               | error_latch          | 1 min    | Unitless                                  |  |  |

Table 2. New variables for RAIN datastream for weighing bucket gauges.

<sup>a</sup> lat/lon/alt refer to the ground where the instrument is sited, NOT the height of the sensor.

### 3.3 Expected Uncertainty

Impact disdrometers measure rain drop size over the range of 0.3 to 5.4 mm. The expected uncertainty is 3% of drop diameter for those drops landing on the very center of the sensor. Mainly because the sensitivity of the sensor is somewhat dependent on the location of a drop impact on the sensitive surface of the sensor cone, the pulse amplitudes of drops of equal diameter will form a distribution around the average amplitude. The standard deviation of this distribution, transformed into drop diameters, is approximately  $\pm 5\%$  if the drops are distributed evenly over the sensitive surface. The specified accuracy of a drop-size measurement of  $\pm 5\%$  of the measured drop diameter means that the average measured

diameter of a large number of drops of equal diameter, evenly distributed over the sensitive surface of the sensor will be within 5% of their actual diameter.

Precipitation amounts measured by the tipping bucket gauges and weighing bucket gauges are reported every minute with an uncertainty of 0.01 mm; rain rates have an uncertainty of 0.6 mm/hr.

### 3.4 Definition of Uncertainty

We define uncertainty as the range of probable maximum deviation of a measured value from the true value within a 95% confidence interval. Given a bias (mean) error *B* and uncorrelated random errors characterized by a variance  $\sigma^2$ , the root-mean-square error (RMSE) is defined as the vector sum of these.

$$R \quad M = S\left(IE^2 + \sigma^2\right)^{1/2}$$

(*B* may be generalized to be the sum of the various contributors to the bias and  $\sigma^2$  the sum of the variances of the contributors to the random errors). To determine the 95% confidence interval, we use the Student's *t* distribution,  $t_{n;0.025} \approx 2$ , assuming the RMSE was computed for a reasonably large ensemble. Then, the *uncertainty* is calculated as twice the RMSE.

### 3.5 Diagnostic Variables

When the rainfall rate is between 1 and 10 mm/hr for several hours, a comparison with the tipping bucket rain gauge is warranted. In such cases, the total rain amounts over the event should agree to within 15%. Otherwise, the best indicators of instrument health and performance are carried out by monitoring the quality control flags discussed in the next section.

### 3.6 Dimensional Variables

Dimensional variables for the tipping bucket and weighing bucket gauges are given in Table 3 and Table 4, respectively.

| Quantity                   | Variable         | Measurement<br>Interval | Unit                                       |
|----------------------------|------------------|-------------------------|--------------------------------------------|
| Base time in epoch         | base_time        | 1 min or 30 min         | Seconds since YYYY-mm-<br>dd XX:XX:XX X:XX |
| Time offset from base_time | time_offset      | 1 min or 30 min         | Seconds since YYYY-mm-<br>dd XX:XX:XX X:XX |
| Time offset form midnight  | time             | 1 min or 30 min         | Seconds since YYYY-mm-<br>dd XX:XX:XX X:XX |
| North latitude             | lat <sup>a</sup> | Once                    | Degrees                                    |
| East longitude             | lon <sup>a</sup> | Once                    | Degrees                                    |
| Altitude                   | alt <sup>a</sup> | Once                    | Meters above sea level                     |

 Table 3. Tipping bucket dimensional variables.

<sup>a</sup> lat/lon/alt refer to the ground where the instrument is sited, NOT the height of the sensor.

| Quantity                             | Variable         | Measurement Interval | Unit                   |
|--------------------------------------|------------------|----------------------|------------------------|
| Base time in epoch                   | base time        | 1 min or 30 min      | Seconds since YYYY-mm- |
|                                      | base_une         |                      | dd XX:XX:XX X:XX       |
| Time offset from base time           | time offset      | 1 min or 30 min      | seconds since YYYY-mm- |
| Time onset from base_time            | time_onset       |                      | dd XX:XX:XX X:XX       |
| Time offset form midnight time 1 min |                  | 1 min or 30 min      | seconds since YYYY-mm- |
| Time onset form midnight             | une              | 1 11111 01 30 11111  | dd XX:XX:XX X:XX       |
| North latitude                       | lat <sup>a</sup> | Once                 | Degrees                |
| East longitude                       | lon <sup>a</sup> | Once                 | Degrees                |
| Altitude                             | alt <sup>a</sup> | Once                 | Meters above sea level |

 Table 4. Weighing bucket dimensional variables.

<sup>a</sup> lat/lon/alt refer to the ground where the instrument is sited, NOT the height of the sensor.

## 4.0 Data-Quality Flags

If data are missing for a sample time, a "missing\_value" value of -999 is assigned to that field. Dataquality flags for the tipping bucket and weighing bucket rain gauges are provided in Table 5 and Table 6 respectively.

| Quantity                  | Variable           | Measurement<br>Interval | Minimum | Maximum | Delta |
|---------------------------|--------------------|-------------------------|---------|---------|-------|
| Sample time               | qc_time            | 1 min                   |         |         |       |
| Precipitation total       | qc_precip_tbr<br>g | 1 min                   | 0       | 10      | N/A   |
| Battery voltage           | qc_vbat            | 60 min                  | 9.6     | 16      | N/A   |
| Battery minimum           | qc_batt_min        | 60 min                  | 9.6     | 16      |       |
| Battery maximum           | qc_batt_max        | 60 min                  | 9.6     | None    |       |
| Panel temperature         | qc_panel_tem<br>p  | 60 min                  | -25.0   | 50.0    | N/A   |
| Panel temperature minimum | qc_panel_min       | 60 min                  | -25.0   | 50.0    | N/A   |
| Panel temperature maximum | qc_panel_max       | 60 min                  | -25.0   | 50.0    | N/A   |

**Table 5.** Tipping bucket data-quality flags.

|                                     |                         | Measurement |         |         |
|-------------------------------------|-------------------------|-------------|---------|---------|
| Quantity                            | Variable                | Interval    | Minimum | Maximum |
| Time offset from base_time          | qc_time_offset          | 1 min       |         |         |
| Time offset form midnight           | time                    | 1 min       | 0       | 86,400  |
| Precipitation amount                | qc_precip               | 1 min       | -10     | 200     |
| Precipitation rate                  | qc_precip_rate          | 1 min       | -600    | 1200    |
| Sensor 1 temperature                | qc_temp1                | 1 min       | -40     | 100     |
| Sensor 2 temperature                | qc_temp 2               | 1 min       | -40     | 100     |
| Sensor 3 temperature                | qc_temp3                | 1 min       | -40     | 100     |
| Sensor weight 1                     | qc_weight1              | 1 min       | 0.33    | 8       |
| Sensor weight 2                     | qc_weight2              | 1 min       | 0.33    | 8       |
| Sensor weight 3                     | qc_weight3              | 1 min       | 0.33    | 8       |
| Sensor 1 frequency                  | qc_frequency1           | 1 min       |         |         |
| Sensor 2 frequency                  | qc_frequency2           | 1 min       |         |         |
| Sensor 3 frequency                  | qc_frequency3           | 1 min       |         |         |
| Logger panel temperature            | qc_ptemp                | 1 min       | -40     | 100     |
| Logger minimum voltage              | qc_volt_min             | 1 min       | 8       | 20      |
| Bucket total weight                 | qc_total_weight         | 1 min       | 1       | 8       |
| Bucket total mm of<br>precipitation | qc_total_mm             | 1 min       | -20     | 200     |
| Logger scan total                   | qc_scans_per_min<br>ute | 1 min       | 16      | 21      |
| Sensor status                       | qc_stat_latch           | 1 min       | 000     | 111     |
| Sensor error                        | qc_error_latch          | 1 min       | 0       | 1       |

## 5.0 Data-Quality Health and Status

The following links go to current data-quality health and status results:

- <u>DQ HandS</u> (Data-Quality Health and Status)
- <u>NCVweb</u> for interactive data plotting using.

The tables and graphs shown at these sites contain the techniques used by ARM's data-quality analysts, instrument mentors, and site scientists to monitor and diagnose data-quality.

### 5.1 Data Reviews by Instrument Mentor

- *QC frequency:* Once or twice a week
- *QC delay:* Three days behind the current day
- QC type: DSview plots for instrument operation status, otherwise DQ HandS diagnostic plots
- Inputs: None
- Outputs: Data-Quality Problem Report and Data-Quality Report as needed
- Reference: None.

### 5.2 Data Assessments by Site Scientists/Data-Quality Office

All Data-Quality Office and most Site Scientist techniques for checking have been incorporated within <u>DQ HandS</u> and can be viewed there.

### 5.3 Value-Added Products and Quality Measurement Experiments

Many of the scientific needs of the ARM Program are met through the analysis and processing of existing data products into "value-added" products, or VAPs. Despite extensive instrumentation deployed at the ARM sites, there will always be quantities of interest that are either impractical or impossible to measure directly or routinely. Physical models using ARM instrument data as inputs are implemented as VAPs and can help fill some of the unmet measurement needs of the program. Conversely, ARM produces some VAPs, not in order to fill unmet measurement needs, but to improve the quality of existing measurements. In addition, when more than one measurement is available, ARM also produces "best estimate" VAPs. A special class of VAP, called a Quality Measurement Experiment (QME), does not output geophysical parameters of scientific interest. Rather, a QME adds value to the input datastreams by providing for continuous assessment of the quality of the input data based on internal consistency checks, comparisons between independent similar measurements, or comparisons between measurement with modeled results, and so forth. For more information, see <u>VAPs and QMEs</u> web page.

# 6.0 Instrument Details

### 6.1 Detailed Description

A detailed discussion of the disdrometer instrumentation and technique can be found in Section 9 of the users handbook. See <u>260-2500e-manual.pdf</u> for a discussion of the tipping bucket rain gauge. See <u>Belfort</u> <u>AEPG Manual Rev 11162012</u> for weighing bucket.

## 6.2 List of Components

The sensors are well described in the links mentioned above. The other components of the system comprise the data acquisition system. Two waterproof enclosure boxes house the electronics used to collect and send the data to the site data management facility. Figure 1 shows the wiring diagram, and Figure 2 and Figure 3 show close-up views of the data acquisition electronics.

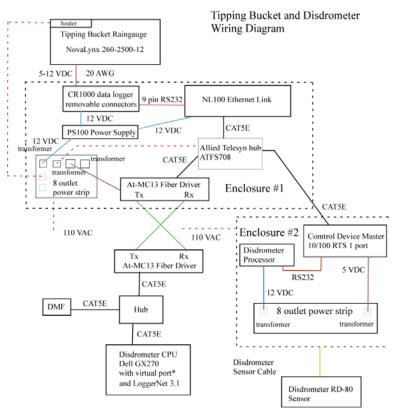



Figure 1. Disdrometer wiring diagram.

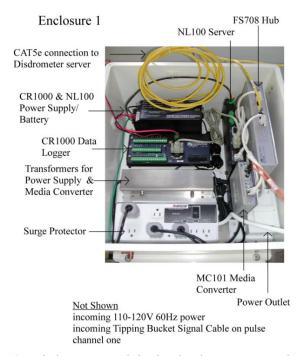



Figure 2. Disdrometer and tipping bucket system enclosure 1.

#### Enclosure 2

CAT5e Connection to Hub in Enclosure 1

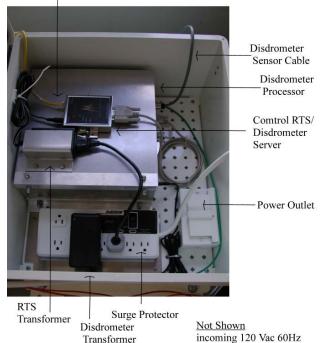



Figure 3. Disdrometer and tipping bucket system enclosure 2.

## 7.0 Data-Acquisition Cycle

During normal operation, both the disdrometer and the rain gauge make measurements once a minute.

## 8.0 Processing Received Signals

The manufacturer of the disdrometer provides software for data acquisition, analysis, and inspection. The program is called Disdrodata, and it runs on a personal computer, which in this case is an ARM Core PC, Dell GX620 running Windows XP.

Data acquisition for the tipping bucket rain gauge is carried out with a CR1000 Campbell Scientific data logger.

## 9.0 Siting Requirements

The site requirements for the rain gauges include a solid footing. A wind screen will be required for an open Southern Great Plains prairie installation and may be needed at the ARM Darwin site as well. Nearby objects should be placed away at a distance least twice their height. If snowfall could occur at the site, the opening of the gauge should be above average snow level.

## **10.0 Calibration**

Tipping bucket gauges should follow the calibration procedures used for the ARM MET system. Currently, a tip test is conducted once every 2 weeks. When ARM's dynamic calibration system is ready, a full calibration should be done once a year.

## 11.0 User Manuals

- Tipping Bucket Manual 260-2500e-manual.pdf
- Weighing Bucket Manual Belfort AEPG Manual Rev 11162012

## **12.0 Routine Operation and Maintenance**

### 12.1 Frequency

Weekly

### **12.2 Inspection of Site Ground Near the Instrument**

Visually check the grounds around the instrument for hazards such as rodent burrows, settling in buried conduit trenches, and insect nests.

#### **Checklist Response:**

- No Problems Noted
- Problem Enter any applicable comments for this planned maintenance (PM) Activity

### **12.3 Visual Inspection of Instrument Components**

#### 12.3.1 Conduit, Cables, and Connectors

Check that all the conduits on the bottom of the control boxes are secure. Check all conduits from the control boxes to the sensors for damage. Check all sensor wires inside the control box for tightness and damage. Check all the connections at the sensors for damage, water intrusion, and tightness.

#### **Checklist Response:**

- No Problems Noted
- Problem Enter any applicable comments for this PM Activity

### 12.3.2 Check Status of Light-Emitting Diode (LED) on CR1000 Data Logger

The LED should flash once every second during normal operation.

#### **Checklist Response:**

• No Problems Noted

• Problem - Enter any applicable comments for this PM Activity

#### 12.3.3 Check Status of Power LED on Disdrometer Processor

The green LED light on the power switch should be lit.

#### **Checklist Response:**

- No Problems Noted
- Problem Enter any applicable comments for this PM Activity

#### 12.3.4 Check Clock Values Shown on LoggerNet Connect Screen

The station clock should automatically be set to the server clock if times differ by 1 second or more. This automatic check is done once a day by the LoggerNet program. The times should never differ by more than 1 minute.

#### Checklist Response:

- No Problems Noted
- Problem Enter any applicable comments for this PM Activity

### **12.4 Active Maintenance and Testing Procedures**

#### 12.4.1 Rain Gauge

Remove the rain gauge funnel and ensure that both the large and small funnels are clear of debris. Check the wiring and connector for tightness and the housing for debris and damage. Inspect all conduits and cables. Re-install the rain gauge funnel.

#### **Checklist Response:**

- No Problems Noted
- Problem Enter any applicable comments for this PM Activity

#### 12.4.2 Rain Gauge Tip Test

- 1. Set flag 7 to high using the port and flags utility within the LoggerNet program running on the system's computer. and log the time when the flag was set.
- 2. A red led should now light up on Com port 5 of the CR1000 device in Enclosure 1.
- 3. Remove the funnel from the top of the rain gauge and manually tip the rain gauge bucket several times to make sure that it is free to move.
- 4. If desired, the flag\_tot variable can be checked. It should be equal the number of manual tips.
- 5. Check the output of variable rain\_mm. It should be equal to # tips  $\times$  0.254.
- 6. Reset flag 7 to low or 0, and log the time that the flag was reset.

#### **Checklist Response:**

- No problems noted
- Problem Enter any applicable comments for this PM Activity

## **13.0 Software Documentation**

Tipping Bucket Rain Gauge

- Data logger script
- File splitting script
- Ingest software

## **14.0 Supplemental Information**

### 14.1 Formulas Used in Data Processing

$$\begin{split} \mathsf{R} &= \frac{\pi}{6} \cdot \frac{3.6}{10^3} \cdot \frac{1}{\mathsf{F} \cdot \mathsf{t}} \cdot \sum_{i=1}^{20} \left( \mathsf{n}_i \cdot \mathsf{D}_i^3 \right) \\ \mathsf{RA} &= \mathsf{R} \cdot \mathsf{t}' 3600 \\ \mathsf{RT} &= \sum \mathsf{RA} \\ \mathsf{W} &= \frac{\pi}{6} \cdot \frac{1}{\mathsf{F} \cdot \mathsf{t}} \cdot \sum_{i=1}^{20} \left( \frac{\mathsf{n}_i}{\mathsf{V}(\mathsf{D}_1)} \cdot \mathsf{D}_i^3 \right) \\ \mathsf{Wg} &= \mathsf{W}/1000 \\ \mathsf{Z} &= \frac{1}{\mathsf{F} \cdot \mathsf{t}} \cdot \sum_{i=1}^{20} \left( \frac{\mathsf{n}_i}{\mathsf{V}(\mathsf{D}_1)} \cdot \mathsf{D}_i^6 \right) \\ \mathsf{ZdB} &= 10 \cdot \mathsf{logZ} \\ \mathsf{EK} &= \frac{\pi}{12} \cdot \frac{1}{\mathsf{F}} \cdot \frac{1}{10^6} \cdot \sum_{i=1}^{20} \left( \mathsf{n}_i \cdot \mathsf{D}_i^3 \cdot \mathsf{v}(\mathsf{D}_1)^2 \right) \\ \mathsf{EF} &= \mathsf{EK} \cdot 3600/\mathsf{t} \\ \mathsf{Dmax} \\ \mathsf{N}_0 &= \frac{1}{\pi} \cdot \left( \frac{6!}{\pi} \right)^{\frac{4}{3}} \cdot \left( \frac{\mathsf{W}}{\mathsf{Z}} \right)^{\frac{4}{3}} \cdot \mathsf{W} \\ \mathsf{A} &= \left( \frac{6!}{\pi} \cdot \frac{\mathsf{W}}{\mathsf{Z}} \right)^{\frac{1}{3}} \\ \mathsf{N}(\mathsf{D}_i) &= \frac{\mathsf{n}_i}{\mathsf{F} \cdot \mathsf{t} \cdot \mathsf{v}(\mathsf{D}_i) \cdot \Delta\mathsf{D}_i} \end{split}$$

# 14.2 Drop-Size Classes

| Drop-Size<br>Class in<br>DISDROD<br>ATA<br>Program | Output<br>Code<br>of<br>Processor<br>RD-80 | Lower<br>Threshold of<br>Drop<br>Diameter;<br>mm | Average<br>Diameter of<br>Drops in Class<br>1 (Di), mm | Fall Velocity of<br>a Drop with<br>Diameter Di<br>(vDi), m/s | Diameter<br>Interval of<br>Drop-Size<br>Class 1 (∆Di);<br>mm |
|----------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 1                                                  | 1-13                                       | 0.313                                            | 0.359                                                  | 1.435                                                        | 0.092                                                        |
| 2                                                  | 14-23                                      | 0.405                                            | 0.455                                                  | 1.862                                                        | 0.100                                                        |
| 3                                                  | 24-31                                      | 0.505                                            | 0.551                                                  | 2.267                                                        | 0.091                                                        |
| 4                                                  | 32-38                                      | 0.596                                            | 0.656                                                  | 2.692                                                        | 0.119                                                        |
| 5                                                  | 30-44                                      | 0.715                                            | 0.771                                                  | 3.154                                                        | 0.112                                                        |
| 6                                                  | 45-54                                      | 0.827                                            | 0.913                                                  | 3.717                                                        | 0.172                                                        |
| 7                                                  | 55-62                                      | 0.999                                            | 1.116                                                  | 4.382                                                        | 0.233                                                        |
| 8                                                  | 63-69                                      | 1.232                                            | 1.331                                                  | 4.986                                                        | 0.197                                                        |
| 9                                                  | 70-75                                      | 1.429                                            | 1.506                                                  | 5.423                                                        | 0.153                                                        |
| 10                                                 | 76-81                                      | 1.582                                            | 1.665                                                  | 5.793                                                        | 0.166                                                        |
| 11                                                 | 82-87                                      | 1.748                                            | 1.912                                                  | 6.315                                                        | 0.329                                                        |
| 12                                                 | 88-93                                      | 2.077                                            | 2.259                                                  | 7.009                                                        | 0.364                                                        |
| 13                                                 | 94-98                                      | 2.441                                            | 2.584                                                  | 7.546                                                        | 0.286                                                        |
| 14                                                 | 99-103                                     | 2.727                                            | 2.869                                                  | 7.903                                                        | 0.284                                                        |
| 15                                                 | 104-108                                    | 3.011                                            | 3.198                                                  | 8.258                                                        | 0.374                                                        |
| 16                                                 | 109-112                                    | 3.385                                            | 3.544                                                  | 8.556                                                        | 0.319                                                        |
| 17                                                 | 113-117                                    | 3.704                                            | 3.916                                                  | 8.784                                                        | 0.423                                                        |
| 18                                                 | 118-121                                    | 4.127                                            | 4.350                                                  | 8.965                                                        | 0.446                                                        |
| 19                                                 | 122-126                                    | 4.573                                            | 4.859                                                  | 9.076                                                        | 0.572                                                        |
| 20                                                 | 127                                        | 5.145                                            | 5.373                                                  | 9.137                                                        | 0.455                                                        |



www.arm.gov



## Office of Science