Laser Disdrometer Instrument Handbook

MJ Bartholomew

June 2020
DISCLAIMER

This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Laser Disdrometer Instrument Handbook

MJ Bartholomew, Brookhaven National Laboratory

June 2020

Work supported by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMF</td>
<td>ARM Mobile Facility</td>
</tr>
<tr>
<td>ARM</td>
<td>Atmospheric Radiation Measurement</td>
</tr>
<tr>
<td>COMBLE</td>
<td>Cold-Air Outbreaks in the Marine Boundary Layer Experiment</td>
</tr>
<tr>
<td>DQPR</td>
<td>Data Quality Problem Report</td>
</tr>
<tr>
<td>DQR</td>
<td>Data Quality Report</td>
</tr>
<tr>
<td>ENA</td>
<td>Eastern North Atlantic</td>
</tr>
<tr>
<td>GCSS</td>
<td>Global Energy and Water Cycle Experiment Cloud System Study</td>
</tr>
<tr>
<td>GPCI</td>
<td>GCSS/WGNE Pacific Cross-Section Intercomparison</td>
</tr>
<tr>
<td>MAGIC</td>
<td>Marine ARM GPCI Investigations of Clouds</td>
</tr>
<tr>
<td>MOSAiC</td>
<td>Multidisciplinary Drifting Observatory for the Study of Arctic Climate</td>
</tr>
<tr>
<td>PC</td>
<td>personal computer</td>
</tr>
<tr>
<td>PM</td>
<td>preventive maintenance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>QME</td>
<td>Quality Measurement Experiment</td>
</tr>
<tr>
<td>SGP</td>
<td>Southern Great Plains</td>
</tr>
<tr>
<td>TWP</td>
<td>Tropical Western Pacific</td>
</tr>
<tr>
<td>VAP</td>
<td>value-added product</td>
</tr>
<tr>
<td>WGNE</td>
<td>Working Group on Numerical Experimentation</td>
</tr>
</tbody>
</table>
Contents

Acronyms and Abbreviations .. iii
1.0 General Overview ... 1
2.0 Contacts .. 1
 2.1 Mentor .. 1
 2.2 Instrument Developers .. 1
3.0 Deployment Locations and History .. 2
4.0 Near-Real-Time Data Plots .. 2
5.0 Data Description and Examples ... 2
 5.1 Primary Variables and Expected Uncertainty ... 2
 5.1.1 Primary Variables .. 3
 5.1.2 Expected Uncertainty .. 5
 5.2 Definition of Uncertainty .. 6
 5.3 Secondary/Underlying Variables ... 6
 5.4 Diagnostic Variables ... 6
 5.5 Data Quality Flags ... 6
 5.6 Dimension Variables .. 6
6.0 Annotated Examples .. 7
7.0 User Notes and Known Problems ... 7
 7.1 Outliers in the Data ... 7
 7.2 Difficulties Interpreting Parsivel2 (ld datastream) Observations During Periods of Frozen Precipitation ... 8
8.0 Frequently Asked Questions ... 9
9.0 Data Quality .. 9
 9.1 Data Quality Health and Status ... 9
 9.2 Data Reviews by Instrument Mentors ... 10
 9.3 Data Assessments by Site Scientist/Data Quality Office .. 10
 9.4 Value-Added Procedures and Quality Measurement Experiments .. 10
10.0 Instrument Details... 10
 10.1 Detailed Description .. 10
 10.2 List of Components ... 11
11.0 System Configuration and Measurement Methods .. 11
 11.1 The Data Acquisition Cycle .. 11
 11.2 Firmware Overview .. 11
 11.3 Processing Received Signals .. 11
 11.4 Siting Requirements ... 12
 11.5 Specifications ... 12
11.6 Theory of Operation ... 12
11.7 Calibration .. 12
 11.7.1 Theory ... 12
 11.7.2 Procedures .. 12
12.0 History ... 12
13.0 User Manual .. 12
14.0 Routine Operation and Maintenance .. 12
 14.1 Inspection of Site Grounds Near the Instrument .. 12
 14.2 Visual Inspection of Instrument Components ... 13
 14.3 Check Screen for Error Messages and Current Weather Conditions 13
 14.4 Active Maintenance and Testing Procedures ... 13
 14.4.1 Disdrometer Maintenance ... 13
 14.4.2 Disdrometer Testing .. 13
15.0 Software Documentation .. 13
16.0 Citable References .. 14
17.0 Formulas Used in Data Processing ... 14

Figures

1. Two-dimensional histogram of the drop size distribution observed during the MAGIC field campaign. ... 7
2. Parsivel2 device .. 11

Tables

1. Parsivel2 datastream .. 3
2. Particle class specific for Parsivel2 disdrometer observations ... 5
3. Parsivel2 disdrometer data quality variables ... 6
4. Disdrometer dimension variables ... 6
1.0 General Overview

To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility has been collecting observations of the drop size spectra of rain events since early in 2006. ARM purchased Parsivel2 laser disdrometers with America Recovery Act funds and they have proven robust in the field. They make observations of the particle size distribution over the range of 0.06 mm to 24 mm and classify precipitation type. To date they have been deployed on board the Horizon Spirit during the Marine ARM GPCI Investigations of Clouds (MAGIC) field campaign and one will be permanently deployed at ARM’s Eastern North Atlantic (ENA) observatory. ARM initially deployed impact disdrometers at its Tropical Western Pacific (TWP) and Southern Great Plains (SGP) observatories (TWPC1, TWPC3, and SGPC1). Each of these three units was accompanied by a nearby tipping bucket rain gauge. In 2010, the tipping buckets were upgraded to weighing buckets. Subsequently, five video disdrometers were purchased. The purchase of a sixth video disdrometer is pending. The video disdrometers are permanently deployed at SGPC1, TWPC1, TWPC3, and in the near future at ENA. One video disdrometer is assigned to the second ARM Mobile Facility (ARM2). This handbook provides a detailed description of the Parsivel2 laser disdrometers and their datastreams.

2.0 Contacts

2.1 Mentor

Mary Jane Bartholomew
Brookhaven National Laboratory
MS 490D
Upton, New York 11973
Phone: 631-344-2444
Fax: 631-344-2060
bartholomew@bnl.gov

2.2 Instrument Developers

Parsivel2 Disdrometers
Ott Hydromet GmbH
Ludwigstrasse 16
87437 Kempten
Germany
www.ott.com

In USA sold by:
Hach Hydromet
P.O. Box 389
Loveland, Colorado 80539
www.hachhydromet.com
3.0 Deployment Locations and History

<table>
<thead>
<tr>
<th></th>
<th>Begin</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGIC</td>
<td>9/24/2012</td>
<td>9/26/2013</td>
</tr>
<tr>
<td>ENA</td>
<td>2/2014</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>

4.0 Near-Real-Time Data Plots

http://plot.dmf.arm.gov/plotbrowser/

5.0 Data Description and Examples

Datastreams
Xxxxpars2Cn.00
Xxxxpars2Cn.b1

5.1 Primary Variables and Expected Uncertainty

The variables for the disdrometer are listed in Tables 1 thru 4. The performance of the Parsivel2 disdrometer has not been studied. The performance of an earlier model of Parsivel disdrometer, however, was evaluated in a field study. In this study three different types of disdrometers observed the same rain events for six months (Tokai et al. 2013). If the second model’s performance is like the first one, then in terms of median volume diameter the Parsivel showed an absolute % bias of 9.7 and 11.8 in comparison to the 2-dimensional video disdrometer and Joss-Waldvogel impact disdrometer, respectively. In terms of liquid water content, the absolute % bias values were 17.5 and 21.3 respectively.

The Parsivel2 assigns a precipitation classification whenever precipitation is observed. The precipitation categories are:

Drizzle
Drizzle with rain
Rain
Rain, drizzle with snow
Snow
Snow grains
Freezing rain
Hail.
5.1.1 Primary Variables

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Variable</th>
<th>Measurement interval</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>base time in epoch</td>
<td>base_time</td>
<td>1 min</td>
<td>seconds since YYYY-mm-dd XX:XX:XX X:XX</td>
<td>permanent deployments have constant latitude; latitude from shipboard deployments is in separate navigation datastreams.</td>
</tr>
<tr>
<td>time offset from base_time</td>
<td>time_offset</td>
<td>1 min</td>
<td>seconds since YYYY-mm-dd XX:XX:XX X:XX</td>
<td>permanent deployments have constant latitude; latitude from shipboard deployments is in separate navigation datastreams.</td>
</tr>
<tr>
<td>time offset from midnight</td>
<td>time</td>
<td>1 min</td>
<td>seconds since YYYY-mm-dd XX:XX:XX X:XX</td>
<td>permanent deployments have constant latitude; latitude from shipboard deployments is in separate navigation datastreams.</td>
</tr>
<tr>
<td>north latitude</td>
<td>lat</td>
<td>constant</td>
<td>degrees</td>
<td>Permanent deployments have constant longitude; longitude from shipboard deployments is in separate navigation datastreams.</td>
</tr>
<tr>
<td>east longitude</td>
<td>lon</td>
<td>constant/variable</td>
<td>degrees</td>
<td>Permanent deployments have constant longitude; longitude from shipboard deployments is in separate navigation datastreams.</td>
</tr>
<tr>
<td>altitude</td>
<td>alt</td>
<td>constant/variable</td>
<td>meters above sea level</td>
<td>Permanent deployments have constant longitude; longitude from shipboard deployments is in separate navigation datastreams.</td>
</tr>
<tr>
<td>number of drops/particles</td>
<td>number_detected_particles</td>
<td>1 min</td>
<td>counts</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>weather code</td>
<td>weather_code</td>
<td>1 min</td>
<td>integer</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>average diameter of particle class</td>
<td>particle_size</td>
<td>1 min</td>
<td>millimeters</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>precipitation rate</td>
<td>precip_rate</td>
<td>1 min</td>
<td>millimeters/hour</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>smallest particle</td>
<td>diameter_min</td>
<td>1 min</td>
<td>millimeters</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>largest particle</td>
<td>diameter_max</td>
<td>1 min</td>
<td>millimeters</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>moments of particle size distribution</td>
<td>moment1…moment6</td>
<td>1 min</td>
<td>mm/m^3, mm^2/m^3, mm^3/m^3, mm^4/m^43 mm^5/m^3, mm^6/m^3</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>number density</td>
<td>Number_density</td>
<td>1 min</td>
<td>1/(m^3 · m)</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>raw fall velocity</td>
<td>raw_fall_velocity</td>
<td>set of 32 constants</td>
<td>m/s</td>
<td>SYNOP WaWa Table 4680</td>
</tr>
<tr>
<td>Quantity</td>
<td>Variable</td>
<td>Measurement interval</td>
<td>Units</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>fall velocity after Lhermite</td>
<td>fall_velocity_calculated</td>
<td>set of 32 constants</td>
<td>m/s</td>
<td>Lhermite, 2002</td>
</tr>
<tr>
<td>raw particle size distribution</td>
<td>raw_spectrum</td>
<td></td>
<td>counts</td>
<td>matrix (32 x 32) of counts for particles observed in 32 possible particle classes at 32 possible fall velocities.</td>
</tr>
<tr>
<td>class size width</td>
<td>class_size_width</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>median volume diameter</td>
<td>median_volume_diameter</td>
<td>1 min</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>liquid water distribution mean</td>
<td>liquid_water_distribution_mean</td>
<td>1 min</td>
<td>millimeters</td>
<td></td>
</tr>
<tr>
<td>liquid water content</td>
<td>liquid_water_content</td>
<td>1 min</td>
<td>mm^3/m^3</td>
<td></td>
</tr>
<tr>
<td>radar reflectivity</td>
<td>equivalent_radar_reflectivity</td>
<td>1 min</td>
<td>dBZ</td>
<td>S band</td>
</tr>
<tr>
<td>radar reflectivity</td>
<td>equivalent_radar_reflectivity_ott</td>
<td>1 min</td>
<td>dBZ</td>
<td>S band reflectivity determined by Ott software.</td>
</tr>
<tr>
<td>distribution slope</td>
<td>lambda</td>
<td>1 min</td>
<td>1/mm</td>
<td>assumes Marshall-Palmer distribution</td>
</tr>
<tr>
<td>distribution intercept</td>
<td>intercept_parameter</td>
<td>1 min</td>
<td>1/(meters^3 · millimeters)</td>
<td>assumes Marshall-Palmer distribution</td>
</tr>
<tr>
<td>Mor visibility</td>
<td>mor_visibility</td>
<td>1 min</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>laser band amplitude</td>
<td>laser_band_amplitude</td>
<td>1 min</td>
<td>counts</td>
<td></td>
</tr>
<tr>
<td>sensor temperature</td>
<td>sensor_temperature</td>
<td>1 min</td>
<td>degrees C</td>
<td></td>
</tr>
<tr>
<td>heating current</td>
<td>heating_current</td>
<td>1 min</td>
<td>amps</td>
<td></td>
</tr>
<tr>
<td>sensor voltage</td>
<td>sensor_voltage</td>
<td>1 min</td>
<td>volts DC</td>
<td></td>
</tr>
<tr>
<td>snow depth intensity</td>
<td>snow_depth-intensity</td>
<td>1min</td>
<td>Mm/hr</td>
<td></td>
</tr>
</tbody>
</table>

Note: lat/lon/alt refers to the ground where the instrument is sited, NOT the height of the sensor.
5.1.2 Expected Uncertainty

Table 2. Particle class specific for Parsivel2 disdrometer observations.

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Width (mm)</th>
<th>Ott fall velocity (m/s)</th>
<th>Lhermite velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0629</td>
<td>0.1250</td>
<td>0.0500</td>
<td>0.2770</td>
</tr>
<tr>
<td>0.1870</td>
<td>0.1250</td>
<td>0.1500</td>
<td>0.8220</td>
</tr>
<tr>
<td>0.3120</td>
<td>0.1250</td>
<td>0.2500</td>
<td>1.3510</td>
</tr>
<tr>
<td>0.4370</td>
<td>0.1250</td>
<td>0.3500</td>
<td>1.8630</td>
</tr>
<tr>
<td>0.5620</td>
<td>0.1250</td>
<td>0.4500</td>
<td>2.3550</td>
</tr>
<tr>
<td>0.6870</td>
<td>0.1250</td>
<td>0.5500</td>
<td>2.8280</td>
</tr>
<tr>
<td>0.8120</td>
<td>0.1250</td>
<td>0.6500</td>
<td>3.2810</td>
</tr>
<tr>
<td>0.9370</td>
<td>0.1250</td>
<td>0.7500</td>
<td>3.7140</td>
</tr>
<tr>
<td>1.0620</td>
<td>0.1250</td>
<td>0.8500</td>
<td>4.1250</td>
</tr>
<tr>
<td>1.1870</td>
<td>0.1250</td>
<td>0.9500</td>
<td>4.5160</td>
</tr>
<tr>
<td>1.3750</td>
<td>0.2500</td>
<td>1.1000</td>
<td>5.064</td>
</tr>
<tr>
<td>1.6250</td>
<td>0.2500</td>
<td>1.3000</td>
<td>5.7210</td>
</tr>
<tr>
<td>1.8750</td>
<td>0.2500</td>
<td>1.5000</td>
<td>6.2990</td>
</tr>
<tr>
<td>2.1250</td>
<td>0.2500</td>
<td>1.7000</td>
<td>6.88010</td>
</tr>
<tr>
<td>2.3750</td>
<td>0.2500</td>
<td>1.9000</td>
<td>7.2330</td>
</tr>
<tr>
<td>2.7500</td>
<td>0.5000</td>
<td>2.2000</td>
<td>7.7620</td>
</tr>
<tr>
<td>3.2500</td>
<td>0.5000</td>
<td>2.6000</td>
<td>8.2820</td>
</tr>
<tr>
<td>3.7500</td>
<td>0.5000</td>
<td>3.0000</td>
<td>8.6330</td>
</tr>
<tr>
<td>4.2500</td>
<td>0.5000</td>
<td>3.4000</td>
<td>8.8610</td>
</tr>
<tr>
<td>4.7500</td>
<td>0.5000</td>
<td>3.8000</td>
<td>9.0050</td>
</tr>
<tr>
<td>5.5000</td>
<td>1.0000</td>
<td>4.4000</td>
<td>9.1200</td>
</tr>
<tr>
<td>6.5000</td>
<td>1.0000</td>
<td>5.2000</td>
<td>9.1780</td>
</tr>
<tr>
<td>7.5000</td>
<td>1.0000</td>
<td>6.0000</td>
<td>9.1950</td>
</tr>
<tr>
<td>8.5000</td>
<td>1.0000</td>
<td>6.8000</td>
<td>9.1990</td>
</tr>
<tr>
<td>11.000</td>
<td>2.0000</td>
<td>8.8000</td>
<td>9.2000</td>
</tr>
<tr>
<td>13.000</td>
<td>2.0000</td>
<td>10.400</td>
<td>9.2000</td>
</tr>
<tr>
<td>15.000</td>
<td>2.0000</td>
<td>12.000</td>
<td>9.2000</td>
</tr>
<tr>
<td>17.000</td>
<td>2.0000</td>
<td>13.600</td>
<td>9.2000</td>
</tr>
<tr>
<td>19.000</td>
<td>2.0000</td>
<td>15.200</td>
<td>9.2000</td>
</tr>
</tbody>
</table>
5.2 Definition of Uncertainty

N/A

5.3 Secondary/Underlying Variables

N/A

5.4 Diagnostic Variables

N/A

5.5 Data Quality Flags

If the data is missing for a sample time, a “missing_value” value of -999 is assigned to that field.

Table 3. Parsivel2 disdrometer data quality variables.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Variable</th>
<th>Measurement interval</th>
<th>Min</th>
<th>Max</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample time</td>
<td>qc_time</td>
<td>1 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of particles</td>
<td></td>
<td>1 min</td>
<td>0</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>precip rate</td>
<td></td>
<td>1 min</td>
<td>0</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>diameter max</td>
<td></td>
<td>1 min</td>
<td>0</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>diameter min</td>
<td></td>
<td>1 min</td>
<td>0</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

5.6 Dimension Variables

Table 4. Disdrometer dimension variables.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Variable</th>
<th>Measurement interval</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base time in Epoch</td>
<td>base_time</td>
<td>1 min</td>
<td>seconds since YYYY-mm-dd XX:XX:XX X:XX</td>
</tr>
<tr>
<td>Time offset from base_time</td>
<td>time_offset</td>
<td>1 min</td>
<td>seconds since YYYY-mm-dd XX:XX:XX X:XX</td>
</tr>
<tr>
<td>Time offset form midnight</td>
<td>time</td>
<td>1 min</td>
<td>seconds since YYYY-mm-dd XX:XX:XX X:XX</td>
</tr>
<tr>
<td>north latitude</td>
<td>lat</td>
<td>once</td>
<td>degrees</td>
</tr>
<tr>
<td>east longitude</td>
<td>lon</td>
<td>once</td>
<td>degrees</td>
</tr>
<tr>
<td>altitude</td>
<td>alt</td>
<td>once</td>
<td>meters above sea level</td>
</tr>
</tbody>
</table>

Note: lat/lon/alt refers to the ground where the instrument is sited, NOT the height of the sensor.
6.0 Annotated Examples

Figure 1. Two-dimensional histogram of the drop size distribution observed during the MAGIC field campaign. This figure shows the sum of all observations over a three-hour rain event with rain rates varying from 0 to 10 mm/hr. Note that neither the x nor the y axis is linear in this plot.

7.0 User Notes and Known Problems

7.1 Outliers in the Data

It is common to find outliers in disdrometer data and they should be filtered out to obtain the best-quality data. Some hydrometeors will fall on the edge of the instrument’s field of view. These will show up in the data as small drops moving too fast for their expected terminal fall speed. Other hydrometeors may enter the instrument’s field of view after splashing on the device. These will show up as large drops with fall speeds less than expected for their terminal fall speed. Furthermore, insects, leaves, spider webs, etc. can lead to anomalous results. Most common outliers are screened by removing those with fall speeds greater than or less than 50% of Gunn and Kinzer (1949) empirically derived terminal fall speeds for rain drops. The raw data are provided in the b1 level files and researchers can choose what level of filtering they desire. Some may choose to use a maximum diameter threshold as well.
7.2 Difficulties Interpreting Parsivel2 (ld datastream) Observations During Periods of Frozen Precipitation

ARM purchased several Parsivel2s and a few Pluvio2 rain gauges with American Recovery Act funds to supplement ARM’s observations of liquid precipitation. Both are permanently deployed at ENA and SGP; both are easy to deploy, reliable, and easy to maintain. They have also become baseline instruments for both AMF1 and AMF2 even if those facilities may be deployed in arctic locales.

Parsivel2s are optical disdrometers with a laser light source and a photodiode detector. The laser light is distributed across a sheet between the light source and detector. If no particles are present, the voltage signal from the photodiode is large. If particles fall through the instrument’s field of view, the photodiode output is reduced; the larger the particle the smaller the output signal. The assumption is that only one particle is in the field of view at a time. The fall velocity of an observed particle is determined by the time the photodiode signal is reduced.

Rain drops typically have height-to-width ratios ranging from 1 (for small drops) to 0.7 (drops with diameters of 5 mm or larger). The observed diameters of rain drops are often assumed to represent their equivalent spherical diameters.

The axial ratios of particles of frozen precipitation can vary significantly. Depending upon the tilting angle and axial ratio of a particle as it falls through the Parsivel2 field of view, its reported width can be considerably different from its true width (Battaglia et al. 2010). For frozen particles with a 2 mm diameter, the ratio of reported to true width can vary from 0.6 to 1.6 depending upon tilting angle and axial ratio. For particles with 5 mm diameters, this ratio is reduced and varies from 0.8 to 1.15, again depending upon tilting angle and axial ratio. The ratio of observed fall velocity to actual fall velocity varies from 0.6 to 1.3 for 2 mm particles and from 0.4 to 2.0 for 5 mm particles.

Both particle size and fall speed are used to determine values reported in the ld datastream. The raw observations for both are provided in the raw_spectrum variable. These raw values are used to compute others in the final b1 version of the ld datastream. For example, precipitation intensity (R, mm/hr) is calculated from the equation below

\[R = \frac{np}{6} \times \frac{3.6}{10^3} \times \frac{1}{F \times t} \times \sum n_i D_i^3 \]

Where \(n_i \) = number of particles of particle size class i (20 size classes in total; 0.06 mm to 24.5 mm)

\(D_i \) = the diameter of particle class i

\(F \) = area of field of view

and \(t \) = accumulation time

Large values for D like those from observations of snowflakes result in large errors in R especially because D is raised to the third power in calculating R. This can be true for dendrites, needles, hail, etc. Hence, the results for R should not be trusted during snowfall. There are other variables in the ld datastream that are a function of diameter as well:
• Liquid water content
• Equivalent radar reflectivity factor
• Moments (1 thru 6) of the drop size spectrum
• Number density
• Liquid water distribution mean
• Median diameter
• Maximum diameter
• Minimum diameter
• Slope parameter
• Intercept parameter.

Snow_depth_intensity and weather_code are two scientific variables in the ld datastream that are least likely to have significant error due to large axial ratios of frozen particles. Snow_depth_intensity observations are a measure of the rate of snow accumulation and are determined by the manufacturer’s proprietary method. No detailed description of this method is available. In 2019 the ARM Parsivel2s were upgraded to include the observation of this variable. This was done in anticipation of the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) and Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) campaigns with hopes of providing more meaningful data to arctic researchers. The weather code values follow the SYNOP WaWa standard and are also determined by the manufacturer’s hardware. The impact of errors in precipitation rate, particle size, and sensor temperature on the observed weather_code values is unclear.

8.0 Frequently Asked Questions

N/A

9.0 Data Quality

9.1 Data Quality Health and Status

The following links go to current data quality health and status results:
• DQ_HandS (Data Quality Health and Status)
• NCVweb for interactive data plotting using.

The tables and graphs shown contain the techniques used by ARM’s data quality analysts, instrument mentors, and site scientists to monitor and diagnose data quality.
9.2 Data Reviews by Instrument Mentors

- **QC frequency:** Once or twice a week.
- **QC delay:** Three days behind the current day.
- **QC type:** DSview plots for instrument operation status, otherwise DQ HandS diagnostic plots.
- **Inputs:** None.
- **Outputs:** DQPR and DQR as needed.
- **Reference:** None.

9.3 Data Assessments by Site Scientist/Data Quality Office

All Data Quality Office and most site scientist techniques for checking have been incorporated within **DQ HandS** and can be viewed there.

9.4 Value-Added Procedures and Quality Measurement Experiments

Many of the scientific needs of the ARM facility are met through the analysis and processing of existing data products into “value-added” products or VAPs. Despite extensive instrumentation deployed at the ARM sites, there will always be quantities of interest that are either impractical or impossible to measure directly or routinely. Physical models using ARM instrument data as inputs are implemented as VAPs and can help fill some of the unmet measurement needs of the facility. Conversely, ARM produces some VAPs, not in order to fill unmet measurement needs, but to improve the quality of existing measurements. In addition, when more than one measurement is available, ARM also produces “best estimate” VAPs. A special class of VAP, called a Quality Measurement Experiment (QME), does not output geophysical parameters of scientific interest. Rather, a QME adds value to the input datastreams by providing for continuous assessment of the quality of the input data based on internal consistency checks, comparisons between independent similar measurements, or comparisons between measurement with modeled results, and so forth. For more information, see **VAPs and QMEs** web page.

10.0 Instrument Details

10.1 Detailed Description

The Ott Parsivel2 is a laser optical system housed in a metal “Y” shaped structure (Figure 2). A structure at the end of one branch of the “Y” houses the laser. The structure atop the other branch of the “Y” holds the detector. The field of view is midway between the transmitter and detector. The base of the “Y” is recessed to accommodate a vertical mounting pole for instrument deployment. Typically the device is set up at a height of ~6 feet (2 meters). Because the device weighs ~14 lbs (6.4 kg), a stable base like a concrete pad must be used to support the instrument. The instrument’s physical dimensions are 670 mm x 600 mm x 114 mm.
The laser operates at a wavelength of 780 nm with output power of 0.5 mW spread out over a beam 30 mm wide. Class 1 (21 CFR 1040.10 and 1040.11) also 1 (IEC/EN 60825-1 A2:2001).

10.2 List of Components

1. Parsivel2 device with 10-m cable.
2. RS485 to CAT5 converter (Nport MOXA 5520).
3. Power supply.
4. Enclosure for power supply and converter (power supply and converter located indoors).
5. Computer for instrument control and data acquisition.
6. Software for instrument control and monitoring, manufacturer’s ADSO software.

Figure 2. Parsivel2 device. The transmitter is located in one housing and the detector in the other.

11.0 System Configuration and Measurement Methods

11.1 The Data Acquisition Cycle

During normal operation the disdrometer samples for one minute.

11.2 Firmware Overview

N/A

11.3 Processing Received Signals

The disdrometer’s manufacturer provided software for data acquisition, analysis, and inspection. For the Parsivel2, the program is called ADSO and runs on a personal computer using Microsoft Windows7. ARM has always a virtual version of ARM’s core PC for this instrument.
11.4 Siting Requirements

The disdrometer needs a level, firm base and an environment free from local wind distortions. Ideally it should be orientated perpendicular to prevailing winds.

11.5 Specifications

N/A

11.6 Theory of Operation

The Ott Parsivel2 is a laser optical system that produces a horizontal strip of light. Particles that pass through the light block a portion of the beam corresponding to their diameter. To determine particle speed, the duration of the diminished signal is measured.

11.7 Calibration

None required.

11.7.1 Theory

N/A

11.7.2 Procedures

N/A

12.0 History

N/A

13.0 User Manual

N/A

14.0 Routine Operation and Maintenance

Frequency: weekly

14.1 Inspection of Site Grounds Near the Instrument

Visually check the site grounds around the instrument for hazards such as rodent burrows, buried conduit trench settling, and insect nests.
Checklist response:
No problems noted.
Problem – Enter any applicable comments for this preventive maintenance (PM) activity.

14.2 Visual Inspection of Instrument Components

Conduit, cables, and connectors:

Check that all the conduits on the bottom of the control boxes are secure. Check all conduits from the control boxes to the sensors for damage. Check all sensor wires inside the control box for tightness and damage. Check all the connections at the sensors for damage, water intrusion, and tightness.

Checklist response:
No problems noted.
Problem – Enter any applicable comments for this PM activity.

14.3 Check Screen for Error Messages and Current Weather Conditions

Checklist response:
No problems noted.
Problem – Enter any applicable comments for this PM activity.

14.4 Active Maintenance and Testing Procedures

14.4.1 Disdrometer Maintenance

Keep sensor free of leaves and/or other debris.

14.4.2 Disdrometer Testing

Precipitation events should show particles accumulating in particle-versus-velocity plot.

Checklist response:
No problems noted.
Problem – Enter any applicable comments for this PM activity.

15.0 Software Documentation

Disdrometer: ingest software.
16.0 Citable References

17.0 Formulas Used in Data Processing

The following quantities are calculated for a distribution with a time interval t:

- **R** Rainfall rate, [mm/h]
- **RA** Rain amount, [mm]
- **W** Liquid water content, [mm3 /m3]
- **Z** Radar reflectivity factor, [mm6 /m3]
- **ZdB** Radar reflectivity factor, [dB]
- **Dmax** Largest drop registered, [mm]
- **N0** [1/(m3.mm)]
- **Λ** Slope, [1/mm]
- **N(Di)** the number density of drops of the diameter corresponding to size class i per unit volume, [1/(m3.mm)]

Input Data:

- **ni** number of drops measured in drop size class i during time interval t
- **Di** average diameter of the drops in class i mm
- **F** size of the sensitive surface of the disdrometer m^2
 - **F = 0.0054 m^2**
- **t** time interval for measurement s
 - **t = 60 s (standard value)**
- **v(Di)** fall velocity of a drop with diameter Di m/s
- **ΔDi** diameter interval of drop size class i mm, see drop size classes below
\[R = \frac{\pi}{6} \cdot \frac{3.6}{10^3} \cdot \frac{1}{F \cdot t} \cdot \sum_{i=1}^{20} (n_i \cdot D_i^2) \]

\[RA = R \cdot t / 3600 \]

\[RT = \sum RA \]

\[W = \frac{\pi}{6} \cdot \frac{1}{F \cdot t} \cdot \sum_{i=1}^{20} \left(\frac{n_i}{v(D_i)} \cdot D_i^3 \right) \]

\[Wg = \frac{W}{1000} \]

\[Z = \frac{1}{F \cdot t} \cdot \sum_{i=1}^{20} \left(\frac{n_i}{v(D_i)} \cdot D_i^5 \right) \]

\[ZdB = 10 \cdot \log Z \]

\[EK = \frac{\pi}{12} \cdot \frac{1}{F} \cdot \frac{1}{10^6} \cdot \sum_{i=1}^{20} \left(n_i \cdot D_i^3 \cdot v(D_i)^2 \right) \]

\[EF = EK \cdot 3600/t \]

Dmax

\[N_s = \frac{1}{\pi} \cdot \left(\frac{6!}{\pi^3} \right)^{\frac{4}{3}} \cdot \left(\frac{W}{Z} \right)^{\frac{4}{3}} \cdot W \]

\[\Lambda = \left(\frac{6! \cdot W}{\pi \cdot Z} \right)^{\frac{1}{3}} \]

\[N(D_i) = \frac{n_i}{F \cdot t \cdot v(D_i) \cdot \Delta D_i} \]