

# **Aerosol Optical Depth Value-Added Product Report**

A Koontz C Flynn
G Hodges J Michalsky
J Barnard E Cromwell

E Kassianov

December 2023



#### **DISCLAIMER**

This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

# Aerosol Optical Depth Value-Added Product Report

A Koontz, Pacific Northwest National Laboratory (PNNL)

C Flynn, University of Oklahoma

G Hodges, National Oceanic and Atmospheric Administration (NOAA)

J Michalsky, NOAA

J Barnard, University of Nevada, Reno

E Cromwell, PNNL

E Kassianov, PNNL

December 2023

How to cite this document:

Koontz, A, C Flynn, G Hodges, J Michalsky, J Barnard, E Cromwell, and E Kassianov. 2023. Aerosol Optical Depth Value-Added Product Report. U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington. DOE/SC-ARM-TR-129.

Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research

## **Acronyms and Abbreviations**

AERONET Aerosol Robotic Network

AMF ARM Mobile Facility

AOD aerosol optical depth

ARM Atmospheric Radiation Measurement

CSPHOT Cimel sunphotometer

DU Dobson Unit

LBLRTM line-by-line radiative transfer model

LST Local Standard Time

LUT look-up table

MFRSR multifilter rotating shadowband radiometer

netCDF Network Common Data Form

NIMFR normal incidence multifilter radiometer

NSA North Slope of Alaska

OMI ozone monitoring instrument

QC quality control

SGP Southern Great Plains
TOA top of atmosphere
TOD total optical depth

TOMS total ozone mapping spectrometer

TRACER Tracking Aerosol Convection Interactions Experiment

VAP value-added product

## **Contents**

| Acı | onym   | s and Abbreviations                                                                                                                                                                                                               | iii   |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.0 | Intro  | oduction                                                                                                                                                                                                                          | 1     |
| 2.0 | Des    | cription of Algorithm                                                                                                                                                                                                             | 1     |
|     | 2.1    | Overview                                                                                                                                                                                                                          | 1     |
|     | 2.2    | Langley Retrievals                                                                                                                                                                                                                | 2     |
|     | 2.3    | Obtaining Robust Daily Calibrations                                                                                                                                                                                               | 4     |
|     | 2.4    | Computing Total and Aerosol Optical Depths                                                                                                                                                                                        | 5     |
|     | 2.5    | Application of a Cloud Screen                                                                                                                                                                                                     | 7     |
|     | 2.6    | Calibration of Irradiances to Top-of-Atmosphere Values                                                                                                                                                                            | 8     |
| 3.0 | Alg    | orithm Technical Considerations                                                                                                                                                                                                   | 10    |
|     | 3.1    | Change of Hardware                                                                                                                                                                                                                | 10    |
|     | 3.2    | VAP Output                                                                                                                                                                                                                        | 11    |
|     | 3.3    | Running the VAP (Command Line Arguments)                                                                                                                                                                                          | 11    |
|     | 3.4    | Data Quality Assessment Included                                                                                                                                                                                                  | 11    |
| 4.0 | Gas    | Absorption Corrections                                                                                                                                                                                                            | 12    |
| 5.0 | Sun    | nmary                                                                                                                                                                                                                             | 14    |
| 6.0 | Refe   | erences                                                                                                                                                                                                                           | 15    |
| Ap  | pendix | x A – Table of Wavelength versus Ozone Absorption Coefficients                                                                                                                                                                    | . A.1 |
| App | pendix | B – Contents of netCDF Output for the AOD VAP                                                                                                                                                                                     | B.1   |
|     |        |                                                                                                                                                                                                                                   |       |
|     |        | Figures                                                                                                                                                                                                                           |       |
| 1   | Illust | ration of a Langley regression.                                                                                                                                                                                                   | 3     |
| 2   | Time   | series of $V_o$ s (blue dots) from the SGP E13 MFRSR                                                                                                                                                                              | 5     |
| 3   | The t  | op panel shows a time series of AOD for five MFRSR wavelengths                                                                                                                                                                    | 7     |
| 4   | Illust | ration of the cloud screening technique, applied to the 500-nm wavelength channel shown                                                                                                                                           |       |
|     | in Fig | gure 3                                                                                                                                                                                                                            | 8     |
| 5   | _      | of-atmosphere solar spectrum, which may be used to calibrate MFRSR or NIMFR ances.                                                                                                                                                |       |
| 6   |        | rree components (direct, diffuse, and total) of the solar irradiance, calibrated to TOA values the Langley method.                                                                                                                | 10    |
| 7   | envel  | cal depth spectra of carbon dioxide (blue), methane (green), water vapor (red), and filter lopes for the MFRSR seventh channel (magenta, dashed) and AERONET Cimel notometer (CSPHOT; light blue, dashed) near 1600-nm wavelength | 12    |
| 8   | •      | parison of the MFRSR AOD (1625 nm) with AERONET AOD (1640 nm) during                                                                                                                                                              | 12    |
| J   | -      | CER.                                                                                                                                                                                                                              | 14    |

## **Tables**

| 1 | Wavelengths and ozone absorption coefficients. | . A.1 |
|---|------------------------------------------------|-------|
| 2 | netCDF output for the AOD VAP.                 | B.1   |

#### 1.0 Introduction

This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR and MFRSR7nch) and normal incidence multifilter radiometers (NIMFR and NIMFR7nch) operated at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility's ground-based observatories. This value-added product (VAP) process includes:

- Routine "autonomous" (i.e., capable of being run with minimal human intervention) computation of Langley retrievals that yield first-order " $V_o$ " calibration data
- Generation of a robust calibration time series from these first-order  $V_o$  values
- Subsequent application of this robust calibration time series to the MFRSR and NIMFR measurements
- Retrieval of optical depth at several wavelengths
- Calibration of irradiances
- Final application of an autonomous cloud screen to the aerosol AOD.

The autonomous Langley retrievals have been described in Harrison and Michalsky (1994). The generation of the robust calibration time series combines some of the techniques described in Michalsky (2001), as well as operational elements unique to the ARM deployments, to be detailed below. The cloud-screen algorithm is described in Alexandrov (2004).

The current AOD VAP and Langley VAP include modifications introduced to support the 1.6-um filter channel in the MFRSR7nch and NIMFR7nch. Specifically, the Langley calibration and calculation of AOD for this channel require filter-specific corrections for gas absorption from carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and water vapor (H<sub>2</sub>O) These modifications are described in Section 4.

## 2.0 Description of Algorithm

#### 2.1 Overview

The core purpose of ARM is to reduce uncertainties in climate model predictions. A dominant source of uncertainty in these models is the radiative impact of aerosols, which has spawned a major effort in ARM to measure aerosol properties. This VAP is concerned with several important aerosol radiative properties. The most important of these is the AOD, which is a measure of the total aerosol burden in the atmosphere. The spectral dependence of AOD, typically described by the Ångström exponent, is also an indicator of particle size, with large particles having Ångström exponent values near zero and smaller particles exhibiting larger Ångström exponent values. Improved knowledge of these basic aerosol properties will help reduce the uncertainties associated with aerosol effects in climate models.

The determination of AODs and the radiometric calibration of the MFRSR and NIMFR are obtained through Langley regressions, based on linear regressions of the log of the measured irradiance versus

airmass, computed twice-daily. However, the daily Langley regressions exhibit significant noise, mostly due to atmospheric variability. To establish a stable calibration, the AOD VAP requires a period of continuous measurements long enough to reduce statistical variability below 1% per day. In practice, a two-month processing window is required at most ARM sites before it is possible to generate sufficiently stable day-to-day calibrations. After applying a stable daily calibration to the radiometric measurements, time series of total optical depths for each of five spectral channels at 415 nm, 500 nm, 615 nm, 673 nm, and 870 nm are calculated. The aerosol optical depth is then computed as the residual of the total optical depth minus the pressure-corrected Rayleigh optical depth and a satellite-derived (Total Ozone Mapping Spectrometer [TOMS] or Ozone Monitoring Instrument [OMI], depending on year) ozone optical depth. Lastly, the resulting aerosol optical depths are flagged to indicate cloud contamination on failure of a variability screen.

#### 2.2 Langley Retrievals

Here we review the basics of the Langley regression. At a given wavelength,  $\lambda$ , with no clouds between the sun and the Earth's surface, the uncalibrated direct normal irradiance at the surface,  $V(\lambda)$ , may be described as:

$$V(\lambda) = V_0(\lambda) exp \left[ -\left(\tau_{Rayleigh} + \tau_{aerosol}\right) am - \tau_{gas}(am) \right]$$
 (1)

where:

- $V_o(\lambda)$  is the top-of-atmosphere irradiance (known colloquially as "V-naught") with units of "counts" (actually the output voltage of the instrument after an analog-to-digital conversion)
- am is the airmass
- $\tau_{gas}(am)$  is the gas absorption as a function of airmass
- $\tau_{Rayleigh}$  is the Rayleigh optical depth due to molecular scattering
- $\tau_{aerosol}$  is the AOD.

Note that the airmass is the amount of atmosphere between the sun and the surface, normalized such that the airmass is equal to one when the sun is directly overhead. Given the time of day and the site's latitude and longitude, the airmass is easily calculated using the formula of Kasten and Young (1989):

$$am = 1.0 / [\cos(Z) + 0.50572 \times (96.07995 - Z)^{-1.6364}]$$
 (2)

where Z is the solar zenith angle.

For many, but not all, parts of the solar spectrum, gas absorption is negligible, or the absorption is linearly proportional to the airmass. For these spectral regions, the above equation becomes:

$$V(\lambda) = V_0(\lambda) exp \left[ -\left(\tau_{Rayleigh} + \tau_{aerosol} + \tau_{ags}\right) am \right]$$
 (3)

In the above equation,  $\tau_{gas}$  may be zero, or so close to zero as to be negligible.

Taking the natural logarithm of each side gives:

$$log[V(\lambda)] = log[V_0(\lambda)] - (\tau_{Rayleigh} + \tau_{aerosol} + \tau_{gas})am$$
(4)

This equation represents the essence of the Langley regression. The slope of this line is the total optical depth (TOD), defined as  $\tau_{Rayleigh} + \tau_{aerosol} + \tau_{gas}$ , and the y-intercept is the  $log[V_o(\lambda)]$ . Figure 1 illustrates this concept, using MFRSR measurements of direct normal irradiance.

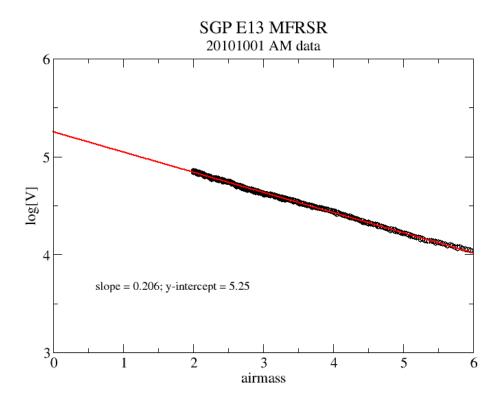
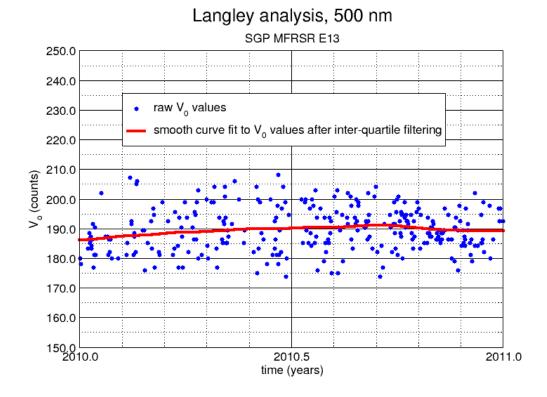



Figure 1. Illustration of a Langley regression. The data for this regression, represented by the black dots, are taken from the Southern Great Plains (SGP) E13 facility's MFRSR on October 1, 2010, in the morning. The wavelength is 500 nm. The red line indicates a linear fit to these data. The slope of the line, 0.206, is the total optical depth. The y-intercept is  $\log[V_o]$ .

The Langley VAP uses MFRSR or NIMFR data and produces a  $V_o$  value for two distinct periods during daylight hours. The first period is for morning hours, for airmass values between 6 and 2; the second period is for afternoon hours, for airmass values between 2 and 6. In addition, each Langley regression is deemed "good" or "bad". The primary cause of a poor Langley regression is cloud contamination. Although the algorithm attempts to remove cloud contamination, some residual contamination may be present that would unacceptably increase the uncertainty of the linear fit. If the uncertainty is too large, for whatever the cause, these "bad" Langley events are discarded. Additionally, for days with completely overcast conditions, a Langley regression is not possible.


Even when the noisiest Langley events are thrown out, the good  $V_o$  are still subject to random noise. Perhaps the leading cause of this random noise is the variation of the AOD during the time that the Langley regression takes place. Marenco (2007) demonstrates that a Langley regression can appear quite linear, and therefore "good", even when significant aerosol variation occurs. This variation may introduce significant noise in derived  $V_o$  values. The basic premise of the AOD VAP is to obtain as much Langley  $V_o$  data as possible, both before and after the date of interest, and then filter these data to reduce the effect of noise sources discussed above.

We note here that all the  $V_o$  values illustrated in Figure 2 have been corrected for the eccentricity of the Earth's orbit that occurs during a year. During the winter months, the sun is closer to the Earth, and vice versa during the summer months. This orbital variation results in measured irradiance variations of about  $\pm$  3%, and this variation would show up as a "sine wave" in these data with a period of exactly one year, peaking in the winter, when the Earth is closest to the sun, and vice versa for the summer.

#### 2.3 Obtaining Robust Daily Calibrations

Referring to Figure 2, let's now look at a time series of good  $V_o$ s. This time series is taken over a year using data from the SGP E13 MFRSR. The  $V_o$ s are indicated by the blue circles. Over the year 2010, 293 Langley events occurred that were deemed good. Figure 2 shows that there is considerable noise of about  $\pm 10\%$ , even when only considering the good Langley events. This noise must be filtered out. Filtered, "correct"  $V_o$ s for each day of the year are indicated by the red curve in Figure 2. Henceforth, we shall refer to the filtered  $V_o$ s as  $V_{o,f}$ . To calculate  $V_{o,f}$  values we follow a method described by Forgan (1988, 1994).

This technique consists of a three-step process. The first of these is to form a ratio of  $V_o$ s from two wavelength channels, 415 and 870 nm; this ratio is thought to exhibit less variability than the raw  $V_o$ s (see Forgan 1988). Second, we apply a sliding window (analogous to the well-known "boxcar" filter) of two-month length to the ratio time series. As the window slides along in time, we remove all ratios in the lower and upper 25% quartiles, leaving half of the original points. The underlying assumption here is that this pruning of points acts as a filter, eliminating outliers; we are then left with a time series of  $V_o$ s with considerably less noise. The third step takes our pruned time series and smooths it using a Gaussian filter of 30-day width; from this we get a  $V_{o,f}$  value for a time corresponding to the center of the sliding window as illustrated by the red curve in Figure 2. This curve provides daily  $V_{o,f}$  values for any time of interest, except close to the times when the instrument hardware is changed—a special situation that will be discussed below.



**Figure 2**. Time series of  $V_o$ s (blue dots) from the SGP E13 MFRSR. The red line is a smooth curve fit to these data, from which daily corrected  $V_{o,f}$  values may be obtained. In this figure, all values have been corrected for the eccentricity of the Earth's orbit.

## 2.4 Computing Total and Aerosol Optical Depths

With daily  $V_{o,j}$ s in hand, it is a trivial matter to calculate TODs by rearranging Equation 4 to become

$$TOD(t) = \left(\tau_{Rayleigh} + \tau_{aerosol} + \tau_{gas}\right) = -\frac{1}{am} \log \left[\frac{V(\lambda, t)}{V_{0,f}(\lambda)}\right]$$
 (5)

We note two things about this seemingly simple equation. First, we can calculate TOD during any time of the day, given a daily  $V_{o,f}$  value for that day; the output of the MFRSR,  $V(\lambda,t)$  at time, t; and an absence of clouds between the MFRSR and the sun. Second, we must know the gas absorption,  $\tau_{gas}$ . For many regions of the solar spectrum,  $\tau_{gas}$  is effectively zero. However, ozone absorption is important for the MFRSR and NIMFR 500-, 615-, and 673-nm wavelength channels and must be accounted for. These wavelengths, particularly 615 nm, are significantly influenced by ozone absorption in the Chappuis band (Goody and Yung 1989). We denote the gas absorption from ozone as  $\tau_{ozone}$ . Third, the Rayleigh (molecular) optical thickness,  $\tau_{Rayleigh}$ , must be calculated.

Finding the ozone optical depth for the appropriate channels is also straightforward if we have an estimate of the columnar amount of ozone. For this value, we use data from the TOMS (<a href="http://science.nasa.gov/missions/toms/">http://science.nasa.gov/missions/toms/</a>) or the OMI (<a href="http://aura.gsfc.nasa.gov/instruments/omi.html">http://aura.gsfc.nasa.gov/instruments/omi.html</a>);

these data have been stored in the ARM Data Center from July 25, 1996 to the present. (In the Data Center, the datastream is named gecomiX1.a1). Using the latitude and longitude at which the MFRSR or NIMFR instrument is physically located, we determine a suitable ozone value by an interpolation technique. If no ozone data is available for a particular day, a site-specific default value is used. Once we have a columnar value of ozone (with the rather arcane units of "atmosphere-centimeter" [atm-cm], which are equal to one Dobson Unit divided by 1000, <a href="http://ozonewatch.gsfc.nasa.gov/">http://ozonewatch.gsfc.nasa.gov/</a>), we find  $\tau_{ozone}$  as

$$\tau_{ozone}(\lambda) = (Columnar\ ozone, atm.\ cm) * A_{ozone}(\lambda)$$
 (6)

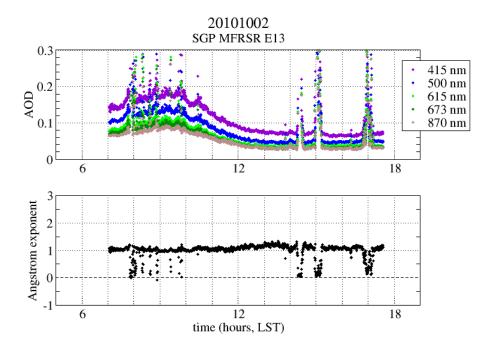
where "Columnar ozone, atm-cm" is the amount of ozone in the atmospheric column and Aozone( $\lambda$ ) is the ozone gas absorption coefficient – a function of wavelength. For the Chappuis band, the absorption coefficients are listed in Appendix A.

Given the surface pressure, determining  $\tau_{Rayleigh}$  is found using the formula (Hansen and Travis 1974):

$$\tau_{Rayleigh} = \frac{p}{1013.25} 0.008569 \lambda^{-4} (1 + 0.0133 \lambda^{-2} + 0.00013 \lambda^{-4})$$
 (7)

where p is the surface pressure in millibars.

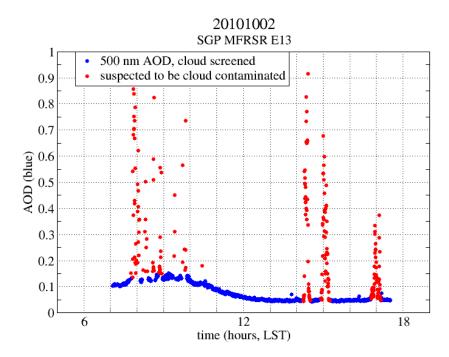
The top panel in Figure 3 shows a typical AOD time series obtained from the SGP E13 MFRSR for the date October 2, 2010. The AODs are shown for the five wavelengths at which AODs may be calculated: 415, 500, 615, 673, and 870 nm. It is not possible to find AODs using the Langley method at 940 nm because this channel is contaminated by water vapor (the 940-nm channel is used to retrieve columnar abundances of water vapor). The AODs for this particular day are quite low; for 500 nm the average AOD is about 0.04. The estimated error of AODs obtained from the technique described above is  $\pm$  0.01. However, some of the plotted AODs are contaminated by cloud and need to be removed; see, for example, the data just after 1400 hours, local standard time (LST). This removal will be discussed below.


Calculation of the aerosol Ångström exponent is done using the 415- and 870-nm wavelengths, and follows the well-known Ångström relation

$$\tau_{aerosol}(\lambda) = A\lambda^{-n} \tag{8}$$

where A is a constant and n is the Ångström exponent. Applying this relationship to find n using the two wavelengths specified above gives this formula

$$n = -log \left[ \frac{\tau_{aerosol}(\lambda = 415 nm)}{\tau_{aerosol}(\lambda = 870 nm)} \right] / log \left[ \frac{415}{870} \right]$$
 (9)

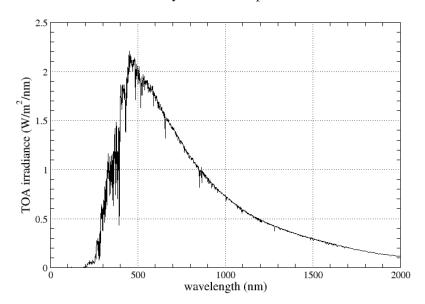

The bottom panel of Figure 3 shows the Ångström exponent calculated from the optical depths shown in the top panel.



**Figure 3**. The top panel shows a time series of AOD for five MFRSR wavelengths. The cloud screen has not been applied. The bottom panel displays the Ångström exponent.

## 2.5 Application of a Cloud Screen

During this day, cloud contamination of AOD is evident at times when the AOD turns up sharply and is seen multiple times in Figure 3. We remove these erroneous AODs from the time series through a procedure we call "cloud screening". This screening is based on the algorithm of Alexandrov et al. (2004). Briefly, this algorithm examines the variability of an AOD time series. If the variability is small over a specified time interval, the AODs are assumed to be good. Otherwise, they are rejected. The demarcation between accepted and rejected AODs is a specified parameter—the so-called "threshold value"—is determined by both quantitative and visual analysis. The parameter is adjusted to be conservative; that is, it tends to identify some AODs as being contaminated, when in fact they are not, thereby embracing the idea that it is better to err on the side of removing a few good AODs rather than letting a significant number of cloud-contaminated AODs slip through. Figure 4 shows the cloud screen applied to the 500-nm channel shown in Figure 3. The blue dots in Figure 4 are the AODs that have been screened, whereas the red dots show AODs that are likely to be cloud-contaminated.




**Figure 4**. Illustration of the cloud screening technique, applied to the 500-nm wavelength channel shown in Figure 3. The blue circles represent AODs that have been screened and are unlikely to be contaminated by cloud.

## 2.6 Calibration of Irradiances to Top-of-Atmosphere Values

The initial, nominal calibration of MFRSR irradiances is done using a standard lamp (Keidron et al. 1999; see also <a href="http://www.arm.gov/publications/tech\_reports/handbooks/mfr\_handbook.pdf">http://www.arm.gov/publications/tech\_reports/handbooks/mfr\_handbook.pdf</a>). These calibrations can be improved upon by using the results of the Langley technique and a measured composite "top-of-atmosphere" (TOA) extraterrestrial spectrum. Such a spectrum, known as the Gueymard spectrum (2004), is shown in Figure 5. For 500 nm, over a typical filter passband of about 10 nm, the value of the TOA irradiance is 1.963 W/m²/nm. (A "passband" is the actual spectral width of an interference filter used in MFRSRs and NIMFRs. For a nominal wavelength of 500 nm, an MFRSR actually measures irradiances from about 495 nm to 505 nm.)

#### Gueymard Solar Spectrum



**Figure 5**. Top-of-atmosphere solar spectrum, which may be used to calibrate MFRSR or NIMFR irradiances.

We calibrate the MFRSR irradiances so that  $Vo_f$  is equal to the corresponding TOA value, thereby producing a time-dependent scale factor,  $C(\lambda,t)$ :

$$C(\lambda, t) = TOA(\lambda)/V_{0,f}(\lambda, t)$$
(10)

where  $TOA(\lambda)$  is the TOA spectrum at the wavelength  $\lambda$ , integrated over the MFRSR/NIMFR passband. Note that this "pegging" of irradiances to a TOA spectrum can only occur for the wavelengths at which Langley regressions are possible: 415, 500, 615, 673, and 870 nm. For the 940-nm channel, we must rely on the standard lamp calibration. Figure 6 shows MFRSR irradiances corrected using TOA values.

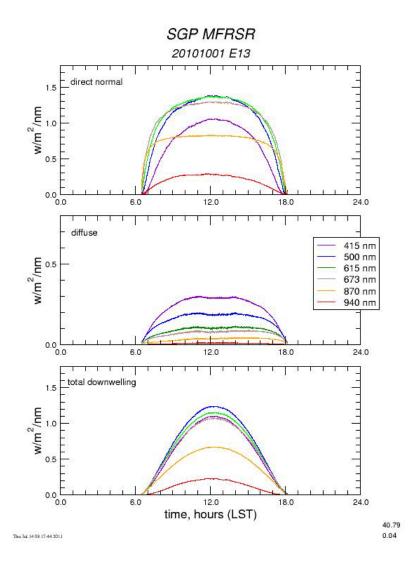



Figure 6. All three components (direct, diffuse, and total) of the solar irradiance, calibrated to TOA values using the Langley method. For the 940-nm channel, we must rely on a standard lamp calibration.

## 3.0 Algorithm Technical Considerations

## 3.1 Change of Hardware

At the time of an MFRSR hardware change, a discontinuity may be introduced into the calibration process. This discontinuity stems from the fact that the nominal calibration of MFRSR sensors differs between sensors, therefore causing an abrupt step up or step down in  $V_o$  values precisely at the time that the hardware change takes place. The sliding window method, described above, cannot be applied over the boundaries where this step change occurs. In these situations, one edge of the sliding window, of an approximately 60-day width, is allowed to butt up against the step change, and the smoothed value at the middle of window is used as the  $V_o$  value from this point to the time of the calibration change.

#### 3.2 VAP Output

The output from the AOD VAP is a netCDF file. These files are named, for example, sgpmfrsraod1michC1.c1 and sgpnimfraod1michC1.c1 for the MFRSR and NIMFR, respectively, at the SGP C1 site. Refer to Appendix B for the structure of these netCDF files. In this Appendix, filter1 through filter5 refer to the 415-, 500-, 615-, 673-, and 870-nm wavelength channels.

#### 3.3 Running the VAP (Command Line Arguments)

The typical command line, with options, is:

mfrod1barnmich -f sgp.C1.b1 -p mfrsr -d 20010502

where -f is defined as follows:

sss.Fn.b1

sss is the site identifier, such as:

"sgp" for Southern Great Plains

"nsa" for North Slope of Alaska

Fn is the facility identifier, such as "C1" or "M1"

Thus, a typical –f option would be: –f sgp.C1.b1, nsa.C1.b1, twp.C3.b1, or pvc.M1.b1

"-d 20010502" specifies for which date to generate optical depth data (and the date for which to look for input data). The format of the date entry is YYYYMMDD, where "YYYY" is a four-digit representation of the year, "MM" is a two-digit representation of the month, and "DD" is a two-digit representation of the day of the month.

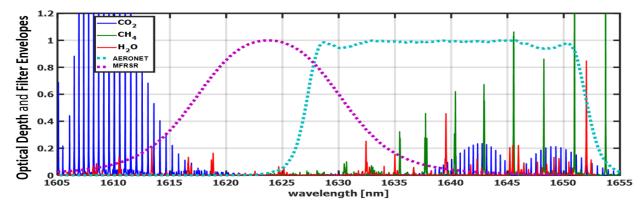
We currently run the AOD VAP on all sites for which we have an MFRSR or NIMFR instrument. Most ARM Mobile Facility (AMF) sites pose a challenge because obtaining sufficient good  $V_o$ s is difficult. In those cases, we manually obtain  $V_o$  values for each day of the AMF deployment and place those  $V_o$  values in a site-specific text file. The AOD VAP is then executed with a special command line option, which uses the  $V_o$  values in the text file instead of using the Forgan technique described above. See the -Z command line option above.

### 3.4 Data Quality Assessment Included

A "variability\_flag" field contains a value close to zero (0) during times of relatively stable optical depth. That is, the sliding window algorithm included in this VAP has checked the temporal stability of the

<sup>&</sup>quot;-p mfrsr" specifies using the MFRSR data as input

<sup>&</sup>quot;-p nimfr" specifies use of the NIMFR data as input


<sup>&</sup>quot;-Z", if present, specifies skipping the Forgan technique and requires use of a text file containing daily Vo values, as described below.

computed optical depths. When the optical depths vary widely from one sample to the next, this stability flag will be set to one (1). This may indicate that clouds were present, for example.

Most measured variables are accompanied with data quality flags, based on various criteria. For example, we attempt to flag variables that are far outside physically plausible limits. We set quality control (QC) bits based on these checks. In most cases, if a QC bit is non-zero, this indicates a possible problem with the data for a particular field. The data user is advised to carefully examine the various QC values and the underlying reasons for a particular QC bit being set.

## 4.0 Gas Absorption Corrections

The new MFRSR seventh channel has a nominal wavelength ( $\lambda_0$ ) of 1625-nm and passband of about 20 nm with non-uniform filter envelope  $T_{filter}(\lambda)$  (Figure 7). In other words, the MFRSR measures irradiances unevenly from about 1605-nm to 1645-nm wavelength. Absorption spectra of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and water vapor (H<sub>2</sub>O) depend strongly on wavelength within the spectral range (1605-1645 nm) (Figure 7). Therefore, accurate calculations of average gas absorptions ( $\overline{\tau_{CO_2}}$ ,  $\overline{\tau_{CH_4}}$ , and  $\overline{\tau_{H_2O}}$ ) over a given filter envelope  $T_{filter}(\lambda)$  are paramount when it comes to use slightly modified versions of Equation (3) and Equation (5) for the new channel. It should be mentioned that both the molecular (or Rayleigh) scattering coefficient and the aerosol extinction coefficient have weak spectral dependence within this spectral range (1605-1645 nm). Thus, the corresponding values of these coefficients at the nominal wavelength are used for calculations of the corresponding values of optical depth ( $\tau_{Rayleigh}$ ,  $\tau_{aerosol}$ ) (see Equation (3) and Equation (5)).



**Figure 7**. Optical depth spectra of carbon dioxide (blue), methane (green), water vapor (red), and filter envelopes for the MFRSR seventh channel (magenta, dashed) and AERONET Cimel sunphotometer (CSPHOT; light blue, dashed) near 1600-nm wavelength.

To calculate  $\overline{\tau_{CO_2}}$  and  $\overline{\tau_{CH_4}}$  for a given airmass am, a three-step approach is applied. First, spectral gas transmittance  $T_{gas}(\lambda) = exp(-\tau_{gas}(\lambda)am)$  is computed using line-by-line radiative transfer model (LBLRTM; Clough et al., 2005). Here, the subscript "gas" defines either CO<sub>2</sub> or CH<sub>4</sub>. Second, the computed transmittance convolving with the filter envelope gives the average transmittance

$$\overline{T_{gas}} = \int T_{gas}(\lambda) T_{filter}(\lambda) d\lambda$$
 (11)

Finally, the corresponding average gas absorption is calculated by taking the natural logarithm of  $\overline{T_{gas}}$  and dividing it by am

$$\overline{\tau_{gas}} = -ln(\overline{T_{gas}})/am \tag{12}$$

The LBLRTM-based calculations of  $\overline{\tau_{gas}}$  are computationally time consuming. Thus, these calculations have been performed once over the expected range of am (from 1 to 6) to generate the corresponding look-up tables (LUT). Then, the generated LUTs are used to parameterize the average gas absorption as a second-order polynomial function

$$\overline{\tau_{gas}} = A_{gas} + B_{gas}am + C_{gas}am^2 \tag{13}$$

The polynomial coefficients (Equation 13) are saved in netCDF attributes (for both CO<sub>2</sub> and CH<sub>4</sub>).

To calculate  $\overline{\tau_{H_2O}}$  for a given precipitable water vapor (pwv), the three-step approach outlined above is applied as well with a minor modification: pwv is used instead of am. Recall, pwv defines the vertically integrated amount of water vapor in the atmosphere and pwv is available at the ARM sites from complementary measurements. The calculations of  $\overline{\tau_{H_2O}}$  have been performed over the expected range of pwv (from 1 to 10 cm) to generate the corresponding LUTs. Then, the generated LUTs are used to parameterize the average absorption as a second-order polynomial function

$$\overline{\tau_{H_2O}} = exp(A_{H_2O} + B_{H_2O}pwv + C_{H_2O}pwv^2)$$
 (14)

The polynomial coefficients (Equation 14) are saved in netCDF attribute (HO<sub>2</sub>).

Recall, Equation (3) represents monochromatic measurements for a given wavelength where gas absorption is negligible. Narrowband counterpart of Equation (1) accounts for gas absorption

$$\overline{V_n}(\lambda_0) = \overline{V_0}(\lambda_0) \exp\left[-\left(\tau_{Rayleigh}(\lambda_0) + \tau_{aerosol}(\lambda_0)\right) am\right],\tag{15}$$

where  $\overline{V}_n(\lambda_0) = \overline{V}(\lambda_0)/\overline{T}_{CO_2}$   $\overline{T}_{CH_4}$   $\overline{T}_{H_2O}$  is the uncalibrated direct normal irradiance at the surface normalized (subscript "n") by the product of the average gas transmittances calculated for a given am and pwv. Such normalization allows one to remove potential impacts of three gases considered here (carbon dioxide, methane, water vapor) on the estimation of the top-of-atmosphere narrowband irradiance  $\overline{V}_0(\lambda_0)$  as the intercept of the Langley regression (Section 2.2).

Similarly, Equation (5) represents monochromatic measurements at a given time (t) and for a given wavelength where gas absorption is negligible. The narrowband counterpart of Equation (5) accounts for gas absorption and provides aerosol optical depth corrected for gas absorption

$$\tau_{aerosol}(t) = TOD(t) - \tau_{Rayleigh}(t) - \left(\overline{\tau_{CO_2}}(t) + \overline{\tau_{CH_4}}(t) + \overline{\tau_{H_{2O}}}(t)\right), \tag{16}$$

where

$$TOD(t) = -\ln[\bar{V}(\lambda_0, t)/V_{o,f}(\lambda_0)]/am, \tag{17}$$

The daily value  $V_{0,f}(\lambda_0)$  is obtained for a day of interest from the robust daily calibrations (Section 2.3).

The MFRSR AOD calculated for the new channel using Equation (16) is compared with Aerosol Robotic Network (AERONET) AOD obtained from collocated and coincident measurements at 1640-nm wavelength (Giles et al. 2019) during the recent ARM-supported Tracking Aerosol Convection Interactions Experiment (TRACER; Houston, Texas). The comparison results in Figure 8 demonstrate that the MFRSR AOD (1625 nm) is in a good agreement with the AERONET AOD (1640 nm) despite the strong both diurnal and day-to-day changes of aerosol loading occurred during the TRACER campaign.

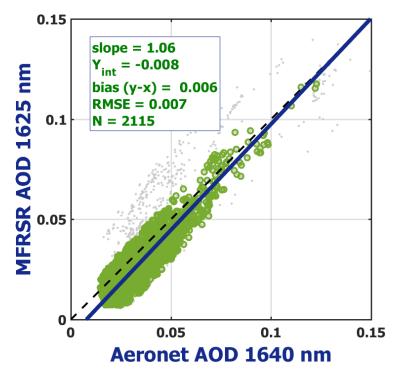



Figure 8. Comparison of the MFRSR AOD (1625 nm) with AERONET AOD (1640 nm) during TRACER. The short-dashed line is the 1:1 correspondence line and the solid line is the linear regression. Points with light gray color represent statistical outliers excluded from the fitting process. The basic statistics of the comparison are included as well.

## 5.0 Summary

The AOD VAP computes optical depth and related values, using output of the Langley VAP, as well as either MFRSR or NIMFR data as input. This document has described the details about both the Langley VAP and the AOD VAP and their modifications introduced recently to support the 1.6-um filter channel in the MFRSR7nch and NIMFR7nch data. For a relatively up-to-date description of MFRSR performance over a long period, the reader is urged to consult Michalsky and LeBaron (2013). This paper discusses data obtained from an MFRSR that has run more or less continuously in the Salt Lake City area for 15 years, and in particular, it describes degradation of cosine response with time and how this might be corrected.

#### 6.0 References

Alexandrov, M, A Marshak, B Cairns, A Lacis, and B Carlson. 2004. "Automated cloud screening algorithm for MFRSR data." *Geophysical Research Letters* 31(4): L04118, <a href="https://doi.org/10.1029/2003GL019105">https://doi.org/10.1029/2003GL019105</a>

Clough, SA, MW Shephard, EJ Mlawer, JS Delamere, MJ Iacono, K Cady-Pereira, S Boukabara, and PD Brown. 2005. "Atmospheric radiative transfer modeling: A summary of the AER codes." *Journal of Quantitative Spectroscopy & Radiative Transfer* 91(2): 233–244, <a href="https://doi.org/10.1016/j.jqsrt.2004.05.058">https://doi.org/10.1016/j.jqsrt.2004.05.058</a>

Forgan, BW. 1986. "Sun photometer calibration by the ratio-Langley method." In *Baseline Atmospheric Program*. Edited by BW Forgan and PJ Fraser, pp. 22-26. Bureau of Meteorology, Melbourne, Australia.

Forgan, BW. 1994. "General method for calibrating Sun photometers." *Applied Optics* 33(21): 4841–4850, https://doi.org/10.1364/AO.33.004841

Giles, DM, A Sinyuk, MG Sorokin, JS Schafer, A Smirnov, I Slutsker, TF Eck, BN Holben, JR Lewis, JR Campbell, EJ Welton, SV Korkin, and AI Lyapustin. 2019. "Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements." *Atmospheric Measurement Techniques* 12(1): 169–209, https://doi.org/10.5194/amt-12-169-2019

Goody, RM and YL Yung. 1989. *Atmospheric Radiation: Theoretical Basis*. Oxford University Press, New York.

Gueymard, C. 2004. "The Sun's total and spectral irradiance for solar energy applications and solar radiation models." *Solar Energy* 76(4): 423–453, <a href="https://doi.org/10.1016/j.solener.2003.08.039">https://doi.org/10.1016/j.solener.2003.08.039</a>

Hansen, J, and L Travis. 1974. "Light scattering in planetary atmospheres." *Space Science Reviews* 16: 527–610, <a href="https://doi.org/10.1007/BF00168069">https://doi.org/10.1007/BF00168069</a>

Harrison, L, and J Michalsky. 1994. "Objective algorithms for the retrieval of optical depths from ground-based measurements." *Applied Optics* 33(22): 5126–5132, <a href="https://doi.org/10.1364/AO.33.005126">https://doi.org/10.1364/AO.33.005126</a>

Kasten, F, and A Young. 1989. "Revised optical air mass tables and approximation formula." *Applied Optics* 28(22): 4735–4738, https://doi.org/10.1364/AO.28.004735

Kiedron, P, J Michalsky, J Berndt, and L Harrison. 1999. "Comparison of spectral irradiance standards used to calibrate shortwave radiometers and spectroradiometers." *Applied Optics* 38(12): 2432–2439, <a href="https://doi.org/10.1364/AO.38.002432">https://doi.org/10.1364/AO.38.002432</a>

Marenco, F. 2007. "On Langley plots in the presence of a systematic diurnal aerosol cycle centered at noon: A comment on recently proposed methodologies." *Journal of Geophysical Research – Atmospheres* 112(D6): D06205, <a href="https://doi.org/10.1029/2006JD007248">https://doi.org/10.1029/2006JD007248</a>

#### A Koontz et al., December 2023, DOE/SC-ARM-TR-129

Michalsky, JJ, J Schlemmer, W Berkheiser, J Berndt, L Harrison, N Laulainen, N Larson, and J Barnard. 2001. "Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links programs." *Journal of Geophysical Research – Atmospheres* 106(D11): 12,099–12,107, <a href="https://doi.org/10.1029/2001JD900096">https://doi.org/10.1029/2001JD900096</a>

Michalsky, JJ, and B LeBaron. 2013. "Fifteen-year aerosol optical depth climatology for Salt Lake City." *Journal of Geophysical Research – Atmospheres* 118(8): 3271–3277, https://doi.org/10.1002jgrd.50329

# Appendix A

## **Table of Wavelength versus Ozone Absorption Coefficients**

Multiply the appropriate coefficient by the columnar amount of ozone in atm-cm to find the ozone optical depth,  $\tau_{ozone}$ . Note that one atm-cm is equal to DU/1000; recall that DU stands for Dobson Unit. For example, for a columnar amount of ozone of 300 DU, at 615 nm,  $\tau_{ozone} = 300/1000*0.1162 = 0.03486$ .

 Table 1.
 Wavelengths and ozone absorption coefficients.

| λ   | Ozone<br>Absorption |
|-----|---------------------|-----|---------------------|-----|---------------------|-----|---------------------|-----|---------------------|
| ^   | Coefficient         | ~   | Coefficient         | "   | Coefficient         | ~   | Coefficient         | ~   | Coefficient         |
| 380 | 0.0000              | 381 | 0.0000              | 382 | 0.0000              | 383 | 0.0000              | 384 | 0.0000              |
| 385 | 0.0000              | 386 | 0.0000              | 387 | 0.0000              | 388 | 0.0000              | 389 | 0.0000              |
| 390 | 0.0000              | 391 | 0.0000              | 392 | 0.0000              | 393 | 0.0000              | 394 | 0.0000              |
| 395 | 0.0000              | 396 | 0.0000              | 397 | 0.0000              | 398 | 0.0000              | 399 | 0.0000              |
| 400 | 0.0000              | 401 | 0.0000              | 402 | 0.0000              | 403 | 0.0000              | 404 | 0.0000              |
| 405 | 0.0000              | 406 | 0.0000              | 407 | 0.0001              | 408 | 0.0002              | 409 | 0.0002              |
| 410 | 0.0003              | 411 | 0.0003              | 412 | 0.0003              | 413 | 0.0003              | 414 | 0.0003              |
| 415 | 0.0003              | 416 | 0.0004              | 417 | 0.0005              | 418 | 0.0005              | 419 | 0.0005              |
| 420 | 0.0005              | 421 | 0.0006              | 422 | 0.0007              | 423 | 0.0008              | 424 | 0.0010              |
| 425 | 0.0012              | 426 | 0.0013              | 427 | 0.0013              | 428 | 0.0013              | 429 | 0.0012              |
| 430 | 0.0012              | 431 | 0.0013              | 432 | 0.0015              | 433 | 0.0017              | 434 | 0.0017              |
| 435 | 0.0017              | 436 | 0.0017              | 437 | 0.0018              | 438 | 0.0021              | 439 | 0.0024              |
| 440 | 0.0029              | 441 | 0.0033              | 442 | 0.0037              | 443 | 0.0039              | 444 | 0.0040              |
| 445 | 0.0038              | 446 | 0.0036              | 447 | 0.0035              | 448 | 0.0035              | 449 | 0.0038              |
| 450 | 0.0042              | 451 | 0.0045              | 452 | 0.0046              | 453 | 0.0046              | 454 | 0.0046              |
| 455 | 0.0047              | 456 | 0.0052              | 457 | 0.0059              | 458 | 0.0069              | 459 | 0.0078              |
| 460 | 0.0087              | 461 | 0.0095              | 462 | 0.0098              | 463 | 0.0097              | 464 | 0.0092              |
| 465 | 0.0087              | 466 | 0.0084              | 467 | 0.0086              | 468 | 0.0092              | 469 | 0.0096              |
| 470 | 0.0101              | 471 | 0.0104              | 472 | 0.0105              | 473 | 0.0105              | 474 | 0.0108              |
| 475 | 0.0115              | 476 | 0.0127              | 477 | 0.0141              | 478 | 0.0158              | 479 | 0.0174              |
| 480 | 0.0193              | 481 | 0.0206              | 482 | 0.0215              | 483 | 0.0218              | 484 | 0.0213              |
| 485 | 0.0205              | 486 | 0.0200              | 487 | 0.0196              | 488 | 0.0197              | 489 | 0.0203              |
| 490 | 0.0213              | 491 | 0.0219              | 492 | 0.0223              | 493 | 0.0225              | 494 | 0.0230              |
| 495 | 0.0234              | 496 | 0.0244              | 497 | 0.0257              | 498 | 0.0274              | 499 | 0.0295              |
| 500 | 0.0320              | 501 | 0.0346              | 502 | 0.0372              | 503 | 0.0396              | 504 | 0.0414              |
| 505 | 0.0427              | 506 | 0.0431              | 507 | 0.0429              | 508 | 0.0423              | 509 | 0.0415              |
| 510 | 0.0409              | 511 | 0.0405              | 512 | 0.0410              | 513 | 0.0418              | 514 | 0.0428              |
| 515 | 0.0437              | 516 | 0.0446              | 517 | 0.0455              | 518 | 0.0463              | 519 | 0.0471              |
| 520 | 0.0481              | 521 | 0.0496              | 522 | 0.0511              | 523 | 0.0531              | 524 | 0.0554              |
| 525 | 0.0580              | 526 | 0.0605              | 527 | 0.0633              | 528 | 0.0659              | 529 | 0.0684              |

| λ   | Ozone<br>Absorption<br>Coefficient |
|-----|------------------------------------|-----|------------------------------------|-----|------------------------------------|-----|------------------------------------|-----|------------------------------------|
| 530 | 0.0706                             | 531 | 0.0725                             | 532 | 0.0740                             | 533 | 0.0749                             | 534 | 0.0754                             |
| 535 | 0.0755                             | 536 | 0.0753                             | 537 | 0.0753                             | 538 | 0.0757                             | 539 | 0.0764                             |
| 540 | 0.0774                             | 541 | 0.0787                             | 542 | 0.0803                             | 543 | 0.0819                             | 544 | 0.0833                             |
| 545 | 0.0846                             | 546 | 0.0856                             | 547 | 0.0866                             | 548 | 0.0875                             | 549 | 0.0882                             |
| 550 | 0.0890                             | 551 | 0.0899                             | 552 | 0.0908                             | 553 | 0.0918                             | 554 | 0.0931                             |
| 555 | 0.0944                             | 556 | 0.0962                             | 557 | 0.0981                             | 558 | 0.1002                             | 559 | 0.1027                             |
| 560 | 0.1052                             | 561 | 0.1078                             | 562 | 0.1104                             | 563 | 0.1128                             | 564 | 0.1148                             |
| 565 | 0.1166                             | 566 | 0.1184                             | 567 | 0.1199                             | 568 | 0.1213                             | 569 | 0.1229                             |
| 570 | 0.1244                             | 571 | 0.1257                             | 572 | 0.1268                             | 573 | 0.1275                             | 574 | 0.1279                             |
| 575 | 0.1278                             | 576 | 0.1273                             | 577 | 0.1264                             | 578 | 0.1254                             | 579 | 0.1243                             |
| 580 | 0.1231                             | 581 | 0.1219                             | 582 | 0.1208                             | 583 | 0.1197                             | 584 | 0.1190                             |
| 585 | 0.1184                             | 586 | 0.1180                             | 587 | 0.1179                             | 588 | 0.1178                             | 589 | 0.1180                             |
| 590 | 0.1185                             | 591 | 0.1196                             | 592 | 0.1208                             | 593 | 0.1226                             | 594 | 0.1248                             |
| 595 | 0.1270                             | 596 | 0.1295                             | 597 | 0.1318                             | 598 | 0.1341                             | 599 | 0.1360                             |
| 600 | 0.1375                             | 601 | 0.1384                             | 602 | 0.1390                             | 603 | 0.1388                             | 604 | 0.1382                             |
| 605 | 0.1371                             | 606 | 0.1356                             | 607 | 0.1337                             | 608 | 0.1317                             | 609 | 0.1294                             |
| 610 | 0.1271                             | 611 | 0.1248                             | 612 | 0.1224                             | 613 | 0.1203                             | 614 | 0.1181                             |
| 615 | 0.1162                             | 616 | 0.1142                             | 617 | 0.1124                             | 618 | 0.1108                             | 619 | 0.1092                             |
| 620 | 0.1078                             | 621 | 0.1065                             | 622 | 0.1052                             | 623 | 0.1039                             | 624 | 0.1027                             |
| 625 | 0.1014                             | 626 | 0.1000                             | 627 | 0.0987                             | 628 | 0.0973                             | 629 | 0.0957                             |
| 630 | 0.0943                             | 631 | 0.0929                             | 632 | 0.0916                             | 633 | 0.0901                             | 634 | 0.0886                             |
| 635 | 0.0870                             | 636 | 0.0855                             | 637 | 0.0839                             | 638 | 0.0823                             | 639 | 0.0807                             |
| 640 | 0.0790                             | 641 | 0.0775                             | 642 | 0.0761                             | 643 | 0.0747                             | 644 | 0.0734                             |
| 645 | 0.0720                             | 646 | 0.0708                             | 647 | 0.0696                             | 648 | 0.0683                             | 649 | 0.0673                             |
| 650 | 0.0662                             | 651 | 0.0652                             | 652 | 0.0641                             | 653 | 0.0630                             | 654 | 0.0619                             |
| 655 | 0.0608                             | 656 | 0.0597                             | 657 | 0.0586                             | 658 | 0.0575                             | 659 | 0.0565                             |
| 660 | 0.0555                             | 661 | 0.0546                             | 662 | 0.0536                             | 663 | 0.0526                             | 664 | 0.0516                             |
| 665 | 0.0505                             | 666 | 0.0494                             | 667 | 0.0482                             | 668 | 0.0471                             | 669 | 0.0460                             |
| 670 | 0.0450                             | 671 | 0.0440                             | 672 | 0.0429                             | 673 | 0.0419                             | 674 | 0.0409                             |
| 675 | 0.0401                             | 676 | 0.0392                             | 677 | 0.0383                             | 678 | 0.0375                             | 679 | 0.0368                             |
| 680 | 0.0361                             | 681 | 0.0355                             | 682 | 0.0350                             | 683 | 0.0345                             | 684 | 0.0339                             |
| 685 | 0.0333                             | 686 | 0.0327                             | 687 | 0.0320                             | 688 | 0.0311                             | 689 | 0.0303                             |
| 690 | 0.0295                             | 691 | 0.0287                             | 692 | 0.0279                             | 693 | 0.0273                             | 694 | 0.0265                             |
| 695 | 0.0258                             | 696 | 0.0251                             | 697 | 0.0244                             | 698 | 0.0237                             | 699 | 0.0232                             |
| 700 | 0.0226                             | 701 | 0.0221                             | 702 | 0.0217                             | 703 | 0.0212                             | 704 | 0.0208                             |
| 705 | 0.0205                             | 706 | 0.0202                             | 707 | 0.0199                             | 708 | 0.0196                             | 709 | 0.0193                             |
| 710 | 0.0191                             | 711 | 0.0189                             | 712 | 0.0187                             | 713 | 0.0185                             | 714 | 0.0185                             |
| 715 | 0.0183                             | 716 | 0.0181                             | 717 | 0.0177                             | 718 | 0.0173                             | 719 | 0.0168                             |
| 720 | 0.0162                             | 721 | 0.0156                             | 722 | 0.0151                             | 723 | 0.0147                             | 724 | 0.0143                             |
| 725 | 0.0140                             | 726 | 0.0136                             | 727 | 0.0134                             | 728 | 0.0130                             | 729 | 0.0126                             |
| 730 | 0.0123                             | 731 | 0.0120                             | 732 | 0.0118                             | 733 | 0.0116                             | 734 | 0.0115                             |
| 735 | 0.0114                             | 736 | 0.0114                             | 737 | 0.0113                             | 738 | 0.0112                             | 739 | 0.0112                             |
| 740 | 0.0112                             | 741 | 0.0113                             | 742 | 0.0115                             | 743 | 0.0116                             | 744 | 0.0117                             |
| 745 | 0.0118                             | 746 | 0.0120                             | 747 | 0.0119                             | 748 | 0.0118                             | 749 | 0.0116                             |
| 750 | 0.0111                             | 751 | 0.0106                             | 752 | 0.0101                             | 753 | 0.0096                             | 754 | 0.0090                             |

| λ   | Ozone<br>Absorption<br>Coefficient |
|-----|------------------------------------|-----|------------------------------------|-----|------------------------------------|-----|------------------------------------|-----|------------------------------------|
| 755 | 0.0086                             | 756 | 0.0082                             | 757 | 0.0079                             | 758 | 0.0077                             | 759 | 0.0075                             |
| 760 | 0.0073                             | 761 | 0.0072                             | 762 | 0.0070                             | 763 | 0.0070                             | 764 | 0.0070                             |
| 765 | 0.0069                             | 766 | 0.0068                             | 767 | 0.0067                             | 768 | 0.0067                             | 769 | 0.0068                             |
| 770 | 0.0068                             | 771 | 0.0069                             | 772 | 0.0071                             | 773 | 0.0072                             | 774 | 0.0075                             |
| 775 | 0.0079                             | 776 | 0.0081                             | 777 | 0.0083                             | 778 | 0.0084                             | 779 | 0.0085                             |
| 780 | 0.0084                             | 781 | 0.0082                             | 782 | 0.0079                             | 783 | 0.0075                             | 784 | 0.0071                             |
| 785 | 0.0067                             | 786 | 0.0063                             | 787 | 0.0061                             | 788 | 0.0058                             | 789 | 0.0056                             |
| 790 | 0.0054                             | 791 | 0.0052                             | 792 | 0.0049                             | 793 | 0.0047                             | 794 | 0.0046                             |
| 795 | 0.0044                             | 796 | 0.0043                             | 797 | 0.0042                             | 798 | 0.0042                             | 799 | 0.0041                             |
| 800 | 0.0040                             | 801 | 0.0040                             | 802 | 0.0040                             | 803 | 0.0039                             | 804 | 0.0040                             |
| 805 | 0.0040                             | 806 | 0.0041                             | 807 | 0.0042                             | 808 | 0.0044                             | 809 | 0.0046                             |
| 810 | 0.0048                             | 811 | 0.0050                             | 812 | 0.0052                             | 813 | 0.0054                             | 814 | 0.0056                             |
| 815 | 0.0057                             | 816 | 0.0057                             | 817 | 0.0057                             | 818 | 0.0056                             | 819 | 0.0055                             |
| 820 | 0.0052                             | 821 | 0.0049                             | 822 | 0.0046                             | 823 | 0.0043                             | 824 | 0.0040                             |
| 825 | 0.0037                             | 826 | 0.0034                             | 827 | 0.0031                             | 828 | 0.0029                             | 829 | 0.0027                             |
| 830 | 0.0025                             | 831 | 0.0024                             | 832 | 0.0023                             | 833 | 0.0022                             | 834 | 0.0021                             |
| 835 | 0.0021                             | 836 | 0.0020                             | 837 | 0.0020                             | 838 | 0.0020                             | 839 | 0.0020                             |
| 840 | 0.0020                             | 841 | 0.0020                             | 842 | 0.0021                             | 843 | 0.0021                             | 844 | 0.0022                             |
| 845 | 0.0023                             | 846 | 0.0024                             | 847 | 0.0026                             | 848 | 0.0028                             | 849 | 0.0030                             |
| 850 | 0.0032                             | 851 | 0.0035                             | 852 | 0.0037                             | 853 | 0.0038                             | 854 | 0.0038                             |
| 855 | 0.0037                             | 856 | 0.0036                             | 857 | 0.0035                             | 858 | 0.0033                             | 859 | 0.0032                             |
| 860 | 0.0029                             | 861 | 0.0027                             | 862 | 0.0025                             | 863 | 0.0023                             | 864 | 0.0021                             |
| 865 | 0.0019                             | 866 | 0.0017                             | 867 | 0.0016                             | 868 | 0.0015                             | 869 | 0.0014                             |
| 870 | 0.0013                             | 871 | 0.0013                             | 872 | 0.0012                             | 873 | 0.0011                             | 874 | 0.0011                             |
| 875 | 0.0011                             | 876 | 0.0010                             | 877 | 0.0010                             | 878 | 0.0010                             | 879 | 0.0010                             |
| 880 | 0.0011                             | 881 | 0.0011                             | 882 | 0.0011                             | 883 | 0.0011                             | 884 | 0.0012                             |
| 885 | 0.0012                             | 886 | 0.0013                             | 887 | 0.0013                             | 888 | 0.0013                             | 889 | 0.0014                             |
| 890 | 0.0014                             | 891 | 0.0013                             | 892 | 0.0013                             | 893 | 0.0014                             | 894 | 0.0014                             |
| 895 | 0.0015                             | 896 | 0.0016                             | 897 | 0.0016                             | 898 | 0.0017                             | 899 | 0.0017                             |
| 900 | 0.0016                             | 901 | 0.0015                             | 902 | 0.0014                             | 903 | 0.0014                             | 904 | 0.0013                             |
| 905 | 0.0012                             | 906 | 0.0011                             | 907 | 0.0010                             | 908 | 0.0009                             | 909 | 0.0009                             |
| 910 | 0.0008                             | 911 | 0.0007                             | 912 | 0.0007                             | 913 | 0.0006                             | 914 | 0.0006                             |
| 915 | 0.0005                             | 916 | 0.0005                             | 917 | 0.0005                             | 918 | 0.0005                             | 919 | 0.0005                             |
| 920 | 0.0005                             | 921 | 0.0004                             | 922 | 0.0004                             | 923 | 0.0004                             | 924 | 0.0004                             |
| 925 | 0.0004                             | 926 | 0.0004                             | 927 | 0.0004                             | 928 | 0.0004                             | 929 | 0.0004                             |
| 930 | 0.0004                             | 931 | 0.0004                             | 932 | 0.0004                             | 933 | 0.0004                             | 934 | 0.0004                             |
| 935 | 0.0005                             | 936 | 0.0005                             | 937 | 0.0005                             | 938 | 0.0006                             | 939 | 0.0007                             |
| 940 | 0.0008                             | 941 | 0.0009                             | 942 | 0.0010                             | 943 | 0.0011                             | 944 | 0.0011                             |
| 945 | 0.0011                             | 946 | 0.0010                             | 947 | 0.0009                             | 948 | 0.0008                             | 949 | 0.0007                             |
| 950 | 0.0007                             | 951 | 0.0006                             | 952 | 0.0005                             | 953 | 0.0005                             | 954 | 0.0004                             |
| 955 | 0.0004                             | 956 | 0.0004                             | 957 | 0.0004                             | 958 | 0.0003                             | 959 | 0.0003                             |
| 960 | 0.0003                             | 961 | 0.0000                             | 962 | 0.0000                             | 963 | 0.0000                             | 964 | 0.0000                             |
| 965 | 0.0000                             | 966 | 0.0000                             | 967 | 0.0000                             | 968 | 0.0000                             | 969 | 0.0000                             |
| 970 | 0.0000                             | 971 | 0.0000                             | 972 | 0.0000                             | 973 | 0.0000                             | 974 | 0.0000                             |
| 975 | 0.0000                             |     |                                    |     |                                    |     |                                    |     |                                    |

# Appendix B

# Contents of netCDF Output for the AOD VAP

In the ARM Data Center, these files are given names such as "sgpmfrsraod1michE13.c1.20101001.000000.cdf".

**Table 2**. netCDF output for the AOD VAP.

| Variable                                 | Units                           |
|------------------------------------------|---------------------------------|
| base_time                                | seconds since 1/1/1970 0:00:00  |
| time_offset                              | seconds since 4/29/1997 0:00:00 |
| time                                     | seconds since 4/29/1997 0:00:00 |
| qc_time                                  | unitless                        |
| hemisp_broadband_raw                     | counts                          |
| qc_hemisp_broadband_raw                  | unitless                        |
| hemisp_narrowband_filter1_raw            | counts                          |
| qc_hemisp_narrowband_filter1_raw         | unitless                        |
| hemisp_narrowband_filter2_raw            | counts                          |
| qc_hemisp_narrowband_filter2_raw         | unitless                        |
| hemisp_narrowband_filter3_raw            | counts                          |
| qc_hemisp_narrowband_filter3_raw         | unitless                        |
| hemisp_narrowband_filter4_raw            | counts                          |
| qc_hemisp_narrowband_filter4_raw         | unitless                        |
| hemisp_narrowband_filter5_raw            | counts                          |
| qc_hemisp_narrowband_filter5_raw         | unitless                        |
| hemisp_narrowband_filter6_raw            | counts                          |
| qc_hemisp_narrowband_filter6_raw         | unitless                        |
| diffuse_hemisp_broadband_raw             | counts                          |
| qc_diffuse_hemisp_broadband_raw          | unitless                        |
| diffuse_hemisp_narrowband_filter1_raw    | counts                          |
| qc_diffuse_hemisp_narrowband_filter1_raw | unitless                        |
| diffuse_hemisp_narrowband_filter2_raw    | counts                          |
| qc_diffuse_hemisp_narrowband_filter2_raw | unitless                        |
| diffuse_hemisp_narrowband_filter3_raw    | counts                          |
| qc_diffuse_hemisp_narrowband_filter3_raw | unitless                        |
| diffuse_hemisp_narrowband_filter4_raw    | counts                          |
| qc_diffuse_hemisp_narrowband_filter4_raw | unitless                        |
| diffuse_hemisp_narrowband_filter5_raw    | counts                          |
| qc_diffuse_hemisp_narrowband_filter5_raw | unitless                        |
| diffuse_hemisp_narrowband_filter6_raw    | counts                          |
| qc_diffuse_hemisp_narrowband_filter6_raw | unitless                        |
| hemisp_broadband                         | W/m^2                           |

| Variable                             | Units    |
|--------------------------------------|----------|
| qc_hemisp_broadband                  | unitless |
| hemisp_narrowband_filter1            | W/m^2/nm |
| qc_hemisp_narrowband_filter1         | unitless |
| hemisp_narrowband_filter2            | W/m^2/nm |
| qc_hemisp_narrowband_filter2         | unitless |
| hemisp_narrowband_filter3            | W/m^2/nm |
| qc_hemisp_narrowband_filter3         | unitless |
| hemisp_narrowband_filter4            | W/m^2/nm |
| qc_hemisp_narrowband_filter4         | unitless |
| hemisp narrowband filter5            | W/m^2/nm |
| qc hemisp narrowband filter5         | unitless |
| hemisp narrowband filter6            | W/m^2/nm |
| qc hemisp narrowband filter6         | unitless |
| diffuse hemisp broadband             | W/m^2    |
| qc diffuse hemisp broadband          | unitless |
| diffuse hemisp narrowband filter1    | W/m^2/nm |
| qc_diffuse_hemisp_narrowband_filter1 | unitless |
| diffuse hemisp narrowband filter2    | W/m^2/nm |
| qc diffuse hemisp narrowband filter2 | unitless |
| diffuse hemisp narrowband filter3    | W/m^2/nm |
| qc diffuse hemisp narrowband filter3 | unitless |
| diffuse hemisp narrowband filter4    | W/m^2/nm |
| qc_diffuse_hemisp_narrowband_filter4 | unitless |
| diffuse hemisp narrowband filter5    | W/m^2/nm |
| qc diffuse hemisp narrowband filter5 | unitless |
| diffuse hemisp narrowband filter6    | W/m^2/nm |
| qc diffuse hemisp narrowband filter6 | unitless |
| direct normal broadband              | W/m^2    |
| qc direct normal broadband           | unitless |
| direct normal narrowband filter1     | W/m^2/nm |
| qc_direct_normal_narrowband_filter1  | unitless |
| direct normal narrowband filter2     | W/m^2/nm |
| qc_direct_normal_narrowband_filter2  | unitless |
| direct normal narrowband filter3     | W/m^2/nm |
| qc direct normal narrowband filter3  | unitless |
| direct normal narrowband filter4     | W/m^2/nm |
| qc_direct_normal_narrowband_filter4  | unitless |
| direct normal narrowband filter5     | W/m^2/nm |
| qc direct normal narrowband filter5  | unitless |
| direct normal narrowband filter6     | W/m^2/nm |
| qc direct normal narrowband filter6  | unitless |
| alltime hemisp broadband             | counts   |
| qc alltime hemisp broadband          | unitless |
| alltime hemisp narrowband filter1    | counts   |
| qc_alltime_hemisp_narrowband_filter1 | unitless |
| T                                    |          |

| Variable                                | Units     |
|-----------------------------------------|-----------|
| alltime_hemisp_narrowband_filter2       | counts    |
| qc_alltime_hemisp_narrowband_filter2    | unitless  |
| alltime_hemisp_narrowband_filter3       | counts    |
| qc_alltime_hemisp_narrowband_filter3    | unitless  |
| alltime_hemisp_narrowband_filter4       | counts    |
| qc_alltime_hemisp_narrowband_filter4    | unitless  |
| alltime_hemisp_narrowband_filter5       | counts    |
| qc_alltime_hemisp_narrowband_filter5    | unitless  |
| alltime_hemisp_narrowband_filter6       | counts    |
| qc_alltime_hemisp_narrowband_filter6    | unitless  |
| direct_horizontal_broadband             | W/m^2     |
| qc_direct_horizontal_broadband          | unitless  |
| direct horizontal narrowband filter1    | W/m^2/nm  |
| qc direct horizontal narrowband filter1 | unitless  |
| direct_horizontal_narrowband_filter2    | W/m^2/nm  |
| qc direct horizontal narrowband filter2 | unitless  |
| direct horizontal narrowband filter3    | W/m^2/nm  |
| qc_direct_horizontal_narrowband_filter3 | unitless  |
| direct horizontal narrowband filter4    | W/m^2/nm  |
| qc_direct_horizontal_narrowband_filter4 | unitless  |
| direct horizontal narrowband filter5    | W/m^2/nm  |
| qc direct horizontal narrowband filter5 | unitless  |
| direct_horizontal_narrowband_filter6    | W/m^2/nm  |
| qc_direct_horizontal_narrowband_filter6 | unitless  |
| direct diffuse ratio broadband          | unitless  |
| qc direct diffuse ratio broadband       | unitless  |
| direct_diffuse_ratio_filter1            | unitless  |
| qc_direct_diffuse_ratio_filter1         | unitless  |
| direct_diffuse_ratio_filter2            | unitless  |
| qc_direct_diffuse_ratio_filter2         | unitless  |
| direct_diffuse_ratio_filter3            | unitless  |
| qc_direct_diffuse_ratio_filter3         | unitless  |
| direct_diffuse_ratio_filter4            | unitless  |
| qc_direct_diffuse_ratio_filter4         | unitless  |
| direct_diffuse_ratio_filter5            | unitless  |
| qc_direct_diffuse_ratio_filter5         | unitless  |
| direct_diffuse_ratio_filter6            | unitless  |
| qc_direct_diffuse_ratio_filter6         | unitless  |
| head_temp                               | degrees C |
| qc_head_temp                            | unitless  |
| head_temp2                              | degrees C |
| qc_head_temp2                           | unitless  |
| logger_temp                             | degrees C |
| qc_logger_temp                          | unitless  |
| logger_volt                             | volts     |

| Variable                                | Units                  |
|-----------------------------------------|------------------------|
| qc_logger_volt                          | unitless               |
| solar_zenith_angle                      | degrees                |
| cosine_solar_zenith_angle               | unitless               |
| elevation_angle                         | degrees                |
| airmass                                 | unitless               |
| qc_airmass                              | unitless               |
| azimuth_angle                           | degrees                |
| computed_cosine_correction_broadband    | unitless               |
| qc_computed_cosine_correction_broadband | unitless               |
| computed_cosine_correction_filter1      | unitless               |
| qc_computed_cosine_correction_filter1   | unitless               |
| computed_cosine_correction_filter2      | unitless               |
| qc computed cosine correction filter2   | unitless               |
| computed cosine correction filter3      | unitless               |
| qc_computed_cosine_correction_filter3   | unitless               |
| computed cosine correction filter4      | unitless               |
| qc computed cosine correction filter4   | unitless               |
| computed cosine correction filter5      | unitless               |
| qc computed cosine correction filter5   | unitless               |
| computed cosine correction filter6      | unitless               |
| qc computed cosine correction filter6   | unitless               |
| bench_angle                             | (bench_angle) degress  |
| cosine_correction_sn_broadband          | (bench angle) unitless |
| cosine correction sn filter1            | (bench angle) unitless |
| cosine correction sn filter2            | (bench angle) unitless |
| cosine correction sn filter3            | (bench angle) unitless |
| cosine_correction_sn_filter4            | (bench angle) unitless |
| cosine_correction_sn_filter5            | (bench angle) unitless |
| cosine_correction_sn_filter6            | (bench angle) unitless |
| cosine_correction_we_broadband          | (bench angle) unitless |
| cosine_correction_we_filter1            | (bench angle) unitless |
| cosine_correction_we_filter2            | (bench angle) unitless |
| cosine_correction_we_filter3            | (bench angle) unitless |
| cosine_correction_we_filter4            | (bench angle) unitless |
| cosine_correction_we_filter5            | (bench angle) unitless |
| cosine_correction_we_filter6            | (bench angle) unitless |
| wavelength_filter1                      | (wavelength) nm        |
| qc_wavelength_filter1                   | (wavelength) unitless  |
| normalized_transmittance_filter1        | (wavelength) unitless  |
| qc_normalized_transmittance_filter1     | (wavelength) unitless  |
| wavelength_filter2                      | (wavelength) nm        |
| qc_wavelength_filter2                   | (wavelength) unitless  |
| normalized_transmittance_filter2        | (wavelength) unitless  |
| qc_normalized_transmittance_filter2     | (wavelength) unitless  |
| wavelength_filter3                      | (wavelength) nm        |
| qc_normalized_transmittance_filter2     | (wavelength) unitless  |

| Variable                             | Units                 |
|--------------------------------------|-----------------------|
| qc_wavelength_filter3                | (wavelength) unitless |
| normalized transmittance filter3     | (wavelength) unitless |
| qc normalized transmittance filter3  | (wavelength) unitless |
| wavelength_filter4                   | (wavelength) nm       |
| qc wavelength filter4                | (wavelength) unitless |
| normalized transmittance filter4     | (wavelength) unitless |
| qc_normalized_transmittance_filter4  | (wavelength) unitless |
| wavelength_filter5                   | (wavelength) nm       |
| qc_wavelength_filter5                | (wavelength) unitless |
| normalized_transmittance_filter5     | (wavelength) unitless |
| qc_normalized_transmittance_filter5  | (wavelength) unitless |
| wavelength_filter6                   | (wavelength) nm       |
| qc_wavelength_filter6                | (wavelength) unitless |
| normalized_transmittance_filter6     | (wavelength) unitless |
| qc_normalized_transmittance_filter6  | (wavelength) unitless |
| wavelength                           | (wavelength) nm       |
| TOA_irradiance                       | (wavelength) W/m^2/nm |
| offset_broadband                     | counts                |
| offset_filter1                       | counts                |
| offset_filter2                       | counts                |
| offset_filter3                       | counts                |
| offset_filter4                       | counts                |
| offset_filter5                       | counts                |
| offset_filter6                       | counts                |
| diffuse_correction_broadband         | unitless              |
| diffuse_correction_filter1           | unitless              |
| diffuse_correction_filter2           | unitless              |
| diffuse_correction_filter3           | unitless              |
| diffuse_correction_filter4           | unitless              |
| diffuse_correction_filter5           | unitless              |
| diffuse_correction_filter6           | unitless              |
| nominal_calibration_factor_broadband | count/(W/m^2)         |
| nominal_calibration_factor_filter1   | count/(W/m^2/nm)      |
| nominal_calibration_factor_filter2   | count/(W/m^2/nm)      |
| nominal_calibration_factor_filter3   | count/(W/m^2/nm)      |
| nominal_calibration_factor_filter4   | count/(W/m^2/nm)      |
| nominal_calibration_factor_filter5   | count/(W/m^2/nm)      |
| nominal_calibration_factor_filter6   | count/(W/m^2/nm)      |
| total_optical_depth_filter1          | unitless              |
| qc_total_optical_depth_filter1       | unitless              |
| total_optical_depth_filter2          | unitless              |
| qc_total_optical_depth_filter2       | unitless              |
| total_optical_depth_filter3          | unitless              |
| qc_total_optical_depth_filter3       | unitless              |
| total_optical_depth_filter4          | unitless              |

| Variable                         | Units        |
|----------------------------------|--------------|
| qc_total_optical_depth_filter4   | unitless     |
| total_optical_depth_filter5      | unitless     |
| qc_total_optical_depth_filter5   | unitless     |
| angstrom_exponent                | unitless     |
| qc_angstrom_exponent             | unitless     |
| aerosol_optical_depth_filter1    | unitless     |
| qc_aerosol_optical_depth_filter1 | unitless     |
| aerosol_optical_depth_filter2    | unitless     |
| qc_aerosol_optical_depth_filter2 | unitless     |
| aerosol_optical_depth_filter3    | unitless     |
| qc_aerosol_optical_depth_filter3 | unitless     |
| aerosol_optical_depth_filter4    | unitless     |
| qc_aerosol_optical_depth_filter4 | unitless     |
| aerosol_optical_depth_filter5    | unitless     |
| qc_aerosol_optical_depth_filter5 | unitless     |
| variability_flag                 | unitless     |
| surface_pressure                 | kPa          |
| Io_filter1                       | W/m^2/nm     |
| qc_Io_filter1                    | unitless     |
| Io_filter2                       | W/m^2/nm     |
| qc_Io_filter2                    | unitless     |
| Io_filter3                       | W/m^2/nm     |
| qc_Io_filter3                    | unitless     |
| Io_filter4                       | W/m^2/nm     |
| qc_Io_filter4                    | unitless     |
| Io_filter5                       | W/m^2/nm     |
| qc_Io_filter5                    | unitless     |
| Ozone_column_amount              | Dobson Units |
| qc_Ozone_column_amount           | unitless     |
| Rayleigh_optical_depth_filter1   | unitless     |
| Rayleigh_optical_depth_filter2   | unitless     |
| Rayleigh_optical_depth_filter3   | unitless     |
| Rayleigh_optical_depth_filter4   | unitless     |
| Rayleigh_optical_depth_filter5   | unitless     |
| Ozone_optical_depth_filter1      | unitless     |
| Ozone_optical_depth_filter2      | unitless     |
| Ozone_optical_depth_filter3      | unitless     |
| Ozone_optical_depth_filter4      | unitless     |
| Ozone_optical_depth_filter5      | unitless     |
| sun_to_earth_distance            | AU           |
| lat                              | degree_N     |
| lon                              | degree_E     |
| alt                              | m            |



www.arm.gov

