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Abstract 

The 2019–2020 Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) 
expedition (references: ARM July 2023a, ARM August 2023) recorded measurements in the Arctic, 
crucial to understanding the extent of climate change and modeling the current global atmosphere 
dynamics, by deploying the research ship RV Polarstern to the Arctic Ocean. As part of the expedition, 
ARM deployed one of its Aerosol Observing Systems (AOS; Uin et al. 2019) on the ship for in situ 
measurements of properties of atmospheric aerosols and trace gases. Due to the closeness of ship’s 
infrastructure, some of the AOS measurements were affected by the local emissions from the ship, 
necessitating an investigation into possible data-filtering techniques to improve the quality of the 
measured data. Six filtering schemes are evaluated of which four are statistical, one is meteorological, and 
one is based on the microphysical properties of aerosol particles. 

The key conclusions are that one of the statistical filters (removing data beyond three standard deviations 
of the mean) proved to be the most effective at providing the largest change (35.1%) in reported mean for 
the least (3.2%) amount of data removed. A filter based on microphysical properties was also capable of 
achieving a similar (34.7%) change in mean as the best statistical filter method, but it achieved this result 
with a slightly larger amount of data removed (4.0%). While the meteorological-based filtering scheme, 
which included both the wind speed and (relative) direction, did provide a trend-wise accurate cleaning of 
the data set, using only the wind direction was much less effective and may have been producing false 
positives. 
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1.1 Introduction and Background 

The atmospheric composition and chemical properties in the Arctic are changing, making Earth system 
modeling increasingly difficult (ARM July 2023a). In an effort to quantify these changes, a year-long 
international expedition to the Arctic was undertaken. 

 
Figure 1. RV Polarstern, with the location of the AOS circled. Photo Credit: Manuel Ernst. 

The Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition 
deployed a number of instruments and measurement systems aboard the German research vessel RV 
Polarstern. (Figure 1.) Among these was a mobile observatory provided by the U.S. Department of 
Energy’s Atmospheric Radiation Measurement (ARM) user facility (ARM July 2023a). The observatory 
was equipped with several instruments measuring the properties of aerosols and trace gases (ARM July 
2023b). The data collected from this expedition has been used to support research since the conclusion of 
the expedition in October 2020; however, there are concerns regarding measurement contamination from 
the local emissions from the ship. Even though the ship was moored to the ice floe, its engines and other 
systems were kept running to provide power and heat. As a result, the ship’s stack and many air vents 
were sources of aerosol particles that mixed with the ambient regional air, contaminating the 
measurements. Additionally, use of snow mobiles and helicopters close to the ship produced unwanted 
particle emissions. Several research groups have developed procedures to remove data from periods when 
local contamination was suspected, but their efforts have been focused on specific research interests and 
the filtering schemes used were tailored to those specific needs. This work aims to generalize the 
contamination filtering approach and offer tools to the ARM user community to simplify data QA/QC and 
facilitate the use of ARM MOSAiC data. 

1.2 Prior Related Work 

The most prominent technique uses statistical analysis of the recorded data to identify outliers by looking 
at the mean, median, and standard deviations of the data. When the proximity of an airport to the Eastern 
North Atlantic (ENA) facility of ARM became a concern, a statistical mask was researched and 
developed using the standard deviation of the data (Gallo et al. 2020). Gallo et al. confirmed through wind 
direction analysis that total particle concentration was affected by the local sources; high-concentration 
events were strongly associated with wind directions aligned with major roads and the nearby airport. To 



A Sirna et al., May 2025, DOE/SC-ARM-TR-316 

9 

remove these contaminated data points, an ENA-aerosol mask (ENA-AM) was developed using the 
standard deviation of the condensation particle counter (CPC) data. The application of the ENA-AM 
removed about 26% of summer main site data, which resulted in an improved value for the coefficient of 
determination, R2. When comparing the percentage of data flagged for the ENA-AM and a pure wind 

direction mask, the ENA-AM was able to flag a smaller percentage of data than the wind direction mask 
and obtain a higher R2 value. The study concluded that the ENA-AM can be used for filtering long-time-
series recorded data at remote locations (Gallo et al. 2020). Bukowiecki et al. also explored statistical-
based filtering of aerosols measurements in Switzerland; they looked specifically at locations where 
tourism was high and introduced a supplementary measuring location to compare spatial influence on the 
data (Bukowiecki et al. 2021). By looking at the parallel measurements taken at both sites, 
Bukowiecki et al. were able to associate abnormal measurement behavior with specific wind conditions 
(Bukowiecki et al. 2021). This filtering scheme is able to capture statistically based outliers by looking at 
the range of data and removing contaminated points in the upper percentile; however, these filters are not 
guided by other measurements taken and therefore can generate false negative flags – periods that are 
flagged as contaminated, yet are known good data. 

The other main technique explored to remove contamination periods from aerosols measurement time 
series involves applying a time derivative filter. A flagging algorithm using this technique was developed 
by Beck et al. and applied to a particle number concentration data set recorded onboard the MOSAiC 
expedition. The pollution detection algorithm (PDA) developed by Beck et al. is a multi-stage automated 
filtering program meant to clean aerosol measurements (Beck et al. 2022). The multi-stage filter includes 
a few optional filters (neighboring-points-based and median-based) that can be applied; however, the 
main function of the PDA is the time-derivative-based filter. This filter involves taking the magnitude of 
the time derivative of the aerosol measurement to determine when large and quick changes in the data 
occur. These sudden changes in the data magnitude are considered as contaminated and therefore flagged 
by the algorithm. When the performance of the PDA was tested against visual filtering, it flagged a 
similar number of points, the two techniques flagging 43% and 41%, respectively. The algorithm can 
capture the high concentration events coming from the ship stack wind direction. These two techniques 
have been the main focus for removing high-particle-concentration events from aerosol measurements 
that have been contaminated by local emission sources. The work presented here explores other data 
analysis techniques and quantify their performance on the ARM MOSAiC data set. 

2.0 Investigation of Contamination Periods 
This section will outline how the datastreams central to the development of a filtering scheme were 
chosen, as well as how these datastreams aided in the confirmation of contamination. Based on the 
datastreams selected, the automation of the filtering scheme is also outlined. 

2.1 Datastream Selection 

ARM deployed an extensive list of instruments to be used in the expedition, all supporting one of the 
following major themes: surface energy budget, aerosol properties, cloud properties and atmospheric 
boundary layer (ARM July 2023a). As this study looks at how the association with the ship has 
influenced the data set, the aerosol-based measurements are the primary focus – the main data used being 
particle concentration (Singh and Kuang 2024), size distribution of particles (Singh and Kuang 2024b), 
and trace gas concentrations (Springston 2015, Sedlacek 2017), as well as wind direction and speed 
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(Kyrouac 2019). These data sets have all been corrected for false zeros caused by intermittent air-intake 
stack purging (Uin 2024). Table 1 outlines the details for each specific datastream and the relevant 
instrument used to acquire these measurements. The actual measurement system used onboard during the 
campaign is listed in the MOSAiC Science Plan (Shupe et al. 2018). All data used in this work are 
available through the ARM Data Discovery portal that is used to publish all ARM recorded data for 
public availability (ARM September 2023). 

Table 1. Instrumentation names and associated instrumentation (ARM July 2023b). 

Data Type Instrument 
Particle concentration  
(Singh and Kuang 2024) Condensation particle counter (CPC) 

Particle size distribution 
(Singh and Kuang 2024b) Scanning mobility particle spectrometer (SMPS) 

Wind speed & direction 
(Kyrouac 2019) AOS surface meteorology (AOSMET) 

Carbon monoxide 
(Springston 2015) Carbon monoxide analyzer (CO-analyzer) 

Black carbon 
(Sedlacek 2017) Single-particle soot photometer (SP2) 

2.2 Validation of Suspected Measurement Contamination 

Definition of contamination from anthropogenic sources is necessary before proceeding to development 
of a flagging scheme. Identifying the factors that indicate contamination will help in developing the 
flagging scheme. Figure 2 (a) shows a top-down view of the ship with the relative positioning of the 
AOS, the ship’s superstructure, and the engine exhaust. The ship is encircled with relative wind direction 
coordinates (0◦ or “North” direction is aligned to ship’s bow). Directions of relatively little contamination 
concern are highlighted in green and directions of greater potential contamination concern are highlighted 
in orange. The basis of the schematic relies on the hypothesis that relative wind direction plays a 
significant role in the contamination taking place; winds coming from behind the ship can carry 
contamination from various sources on the ship into the AOS sample stack. The wind speed will also play 
a part, with the possibility that specific speeds can either enhance or diminish this wind direction affect, 
and that faster winds speeds can dilute any local ship contamination with arctic air. Based on the literature 
reviewed, particle concentration versus relative wind direction was identified as the data set on which to 
initially evaluate this hypothesis. 
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Figure 2. Comparison of ship wind direction orientation and particle concentration. 

The scatter plot in Figure 3 shows all the particle concentration data points recorded throughout the 
campaign with respect to relative recorded wind direction; the points are colored based on the wind speed. 
As seen in Figure 2, there is a clear and distinct spike in the particle concentration coming from the wind 
direction of concern. The majority of data points recorded from this direction show high-concentration 
events at low wind speeds. A polar projection of the average across the year for each degree of wind 
direction is also determined and presented in Figure 2 (b). These two plots of particle concentration 
demonstrate that a significant portion of data collected coming from wind directions of 110◦-225◦ was 
contaminated by local ship pollution, including but not limited to ship engine exhaust and general 
anthropogenic local activities, confirming the initial hypothesis (Beck et al. 2022). 
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Figure 3. Scatter plot of particle concentration versus relative wind direction colored by wind speed. 

Particle concentration averaged over one minute. Vertical dashed lines indicate the relative 
position of the ship’s superstructure. 

Other measurements, besides particle number concentration, considered as good indicators for ship 
influence were black carbon and carbon monoxide concentrations, as both are byproducts of combustion. 
All three of these parameters were evaluated on a monthly polar projection presented in Figures 4, 5, and 
6, respectively, to demonstrate how both time and wind direction can serve a role in identifying points of 
contamination. Weekly scatter plots in polar projection were evaluated, but overall, monthly plots proved 
to be a better balance between appropriate sample size and refined time scale for identifying localized 
peak emissions. Examples of these local peaks can be seen in months such as October of 2019 and 
September of 2020 in Figures 4 and 5, where particle concentration and black carbon both peaked in the 
direction of concern, giving strong indication of the presence of local contamination. The carbon 
monoxide data set encountered a much higher level of quality control than other data sets, which is why 
there is no data for the month of March 2020. From the data remaining in Figure 6, concentric circles can 
be observed, implying little to no wind direction variation in CO concentrations. 
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Figure 4. Monthly polar plots of particle concentration in units of #/cm3. 
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Figure 5. Monthly polar plots of black carbon concentration in units of ng/m3. 
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Figure 6. Monthly polar plots of carbon monoxide concentration in units of ppmv. 
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Figure 7. Monthly polar lots of geometric and number mean diameters of particles in nanometers. 

The spatial variation and elevated concentrations of black carbon are strong indicators that certain 
measurements were indeed contaminated by combustion byproducts that could include but are not limited 
to the ship stack and other possible combustion appliances or vehicles operating on or around the nearby 
ice, hereinafter referred to as non-ship combustion emissions. These non-ship-related, but combustion-
related, points of contamination can be seen in Figure 5 in the months of April and July 2020, where there 
are very high black carbon (BC) concentrations around 300◦. This relative wind direction is not 
associated with the ship exhaust stack or bridge; however, the order of magnitude of these values 
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indicates it cannot be arctic air. These values are likely therefore coming from other campaign-related 
activities such as ice-breakers, helicopters, and generators. 

A final variable analyzed for temporal dynamics was the geometric mean diameter of particles detected. 
The geometric mean diameter is a value outputted by the SMPS based on the size distribution of particles 
sampled. It is used as a way to better characterize the size distribution of a lognormal sample as opposed 
to an arithmetic/ numerical mean (Hinds et al. 2022). The equation used to calculate the geometric mean 
diameter is as follows (TSI 2010): 

 (1) 

where dg is the geometric mean diameter; di is midpoint diameter for size channel i; N is total 
concentration; Ni concentration within channel i; m is the first channel; and n is the final channel. The 
monthly polar projections for the geometric mean and numerical mean are shown in Figure 7. Looking at 
these polar plots, it can be seen that overall across the year, the geometric and numerical mean diameter 
of particles being measured from the wind direction of concern (110-225) are an order of magnitude 
smaller than the rest of the polar projection. Aerosol particles are grouped based on their size into three 
different modes (nuclei, accumulation, and coarse modes) that are defined by their method of production. 
For the geometric mean values found in the wind direction of concern, the diameter ranges from around 
20 nm to 50 nm, which would be categorized as the nuclei or nucleation mode (Hinds et al, 2022). This 
mode consists mainly of primary particles produced by combustion processes; they are formed through 
the gas-to-particle nucleation process. These smaller-diameter events coinciding with higher-particle-
concentration events seen in Figure 4 allow for the inference that these particles could have been 
generated from combustion and therefore come from the ship’s exhaust stack. 

Overall, Figures 2-7 indicate that contamination of the arctic air measurements through human activities 
has occurred. The figures demonstrate that overall measurements taken from the wind direction of 
concern coincide with higher particle concentration values, smaller particle sizes, and elevated levels of 
black carbon concentration. 

2.2.1 Comparison of MOSAiC AOS Measurements to Previous Results from 
Literature 

To better discern measurement results indicating local contamination, measurements from previous 
campaigns must be evaluated to understand expected results typical of the arctic region. 

First, measured black carbon mass concentrations are compared to expected arctic values. Jurányi et al. 
sought to determine mean and median atmospheric black carbon mass concentration values for spring and 
summer (Jurányi et al. 2023). The study aimed to determine if there was a seasonal dependence to the 
black carbon mass concentrations and therefore took measurements across many years. They did find a 
seasonal dependence to the black carbon mass concentration, with spring resulting in the highest black 
carbon concentration and summer producing concentrations up to four times lower. The study presented 
the statistical spread of the data recorded and found that in spring, the concentrations reached a maximum 
of around 50 ng/m3. Comparing this value to the degree-averaged black carbon mass concentrations 
plotted in Figure 5, it can be observed that much higher values of black carbon were recorded for a 
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significant portion of the campaign. Black carbon is a known byproduct of incomplete combustion, with 
measurement techniques for marine applications being an active area of research. A study done by 
Momenimovahed et al. compared a variety of black carbon measuring techniques to determine black 
carbon mass concentration in the exhaust runner of a 4-stroke marine diesel engine 
(Momenimovahed et al. 2021). They used different marine-applicable fuels as well as different load 
conditions to generate their black carbon data set and found in the exhaust runner that black carbon mass 
concentrations ranged from 10 mg/m3 to 60 mg/m3 (Momenimovahed et al. 2021). Since the campaign is 
not measuring directly from the ship exhaust runner, the values in Figure 5 never reach that high 
magnitude. However, since the values in Figure 5 are between those measured by Jurányi et al. and 
Momenimovahed et al., it could be implied that a mixture of exhaust and arctic air was being measured. 

Additionally, expected particle number concentrations in the Arctic were looked at and compared to 
Figure 4. Through multiple years of data collection, Pernov et al. looked for seasonal trends in particle 
number concentration and plotted an annual cycle of daily median values (Pernov et al. 2022). They did 
find seasonal variation in particle number concentrations with peaks in total number concentration 
occurring during the summer. This was speculated to be due to the dominance of new particle formation 
caused by the ocean’s emission of organics into the atmosphere (Pernov et al. 2022). Even with the 
seasonal variation, particle number concentration peaked at around 700 #/cm3, which is significantly 
lower than the values plotted in Figures 3 and 4, where values reach up to the thousands, an order of 
magnitude higher. Particles can come from several different sources, both natural and anthropogenic, with 
the size of these particles being indicative of their source of origin and their age. Freshly generated 
particles are often small in size and large in number and can come from either gas-to-particle nucleation 
or from incomplete combustion (Seinfeld and Pandis 2006). The new particle formation rate does change 
in the arctic with season, which is what the paper presents (Pernov et al. 2022), but the large difference in 
number concentration between values presented by Pernov et al. and those recorded in this campaign do 
indicate that the sample at times is contaminated with exhaust emissions. This is especially true when 
looking at Figures 4 and 7 where the high number concentration and small median size are seen to 
correlate. These comparisons drawn are to provide a possible source of the contamination observed based 
on other ambient values studied in the Arctic. 

2.3 Exploring Filtering Techniques 

A variety of flagging algorithm techniques exist from prior literature (Gallo et al. 2020), 
(Beck et al. 2022), for adaptation and use. Specifically, the following techniques are explored in this 
work: a) frequency-based filtering, b) statistical-based filtering, c) wind direction and speed filtering and 
d) aerosol microphysics-based filtering. All techniques were explored at the cursory level and 
specifically, all of the stated techniques, except for frequency-based filtering, were explored in detail by 
application to relevant AOS data collected during the MOSAiC campaign. This time-series data originates 
from the datastreams documented in Table 1. Additional filtering techniques could be explored using rate 
of change of certain variables and particle chemical composition data, but were excluded from the current 
analysis to constrain its scope. 

2.3.1 Frequency Filtering 

All time series data can be processed using signal processing and time series analysis techniques. These 
techniques are based on Fourier transformations that convert the examined data set from the temporal 
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domain to the frequency domain where features of the frequency spectrum will highlight any periodicity 
in the data. Identifying these frequencies of interest (expected and unexpected) can provide a greater 
understanding of the periodicity of data. Contamination with a specific periodicity could then easily be 
identified and a filtering scheme could be easily developed to focus on identifying and cleaning specific 
frequency ranges of interest. The first step in exploring frequency-based filtering is to determine a 
periodogram, which is an analytical method used to discover the frequencies present in a time series data 
set (Shumway and Stoffer 2011). Figure 8 shows the periodogram of the particle concentration time series 
for the whole MOSAiC expedition. 

A clear peak in power spectral density can be seen in Figure 8 at a frequency of around zero. Besides this 
initial peak, which represents the average of the data, no other significant resonance frequencies could be 
identified. For this reason, no further work to develop a frequency-based filtering scheme was performed. 

 
Figure 8. A flat-top periodogram of particle concentration. 

2.3.2 Statistical Filtering 

With the collection of any large data set, there is naturally a variability in measured values due to inherent 
randomness and range of responses any system or measurement quantities can exhibit. When the range of 
recorded values becomes large enough with respect to the expected variation in the data, statistical 
filtering can be used to remove the anomalous data points. In terms of specific measurement quantities of 
the MOSAiC campaign, the measured values could deviate due to atmospheric composition and dynamics 
such as weather patterns or localized events. Statistical-based filtering was explored specifically for 
particle concentration, which is known to have been heavily affected by local ship-related activities, as 
shown in Figures 3 and 4. The benefit of statistical filtering is that it can be employed on a wide range of 
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the variables recorded during the expedition, and different statistical criteria can be used. In this type of 
filtering, the focus is to exploit unexpected deviations from mean and median values to identify affected 
data points (such as too high concentration) and remove these values to ensure a clean data set is 
preserved. The Empirical Rule indicates that for a data set that expresses a normal distribution, 97% of 
the data can be found within three (3) standard deviations from the mean (Peck 2008). Thus, this rule is 
often used to identify and remove statistical outliers, data points that fall beyond three standard deviations 
from the mean. This statistical outlier detection technique was used as a starting point for creating a 
generic statistical filter. Since not all of the data under filtering consideration could be expressed as a 
normal distribution, flexibility in determining the critical threshold number of standard deviations away 
from the mean was introduced through the use of a variable parameter. Additionally, while the Empirical 
Rule would determine all values beyond three standard deviations from the mean to be considered as 
outliers (in both the positive and negative direction), this rule loses meaning when the rule introduces 
negative values for physical measurements. Therefore, the empirical rule method is used more as a 
guiding tool to aid in the design of a statistical-based approach with additional user-defined parameters 
implemented, in order to decipher the correct number of standard deviations to use in non-normal 
distributed data sets. 

The Empirical Rule and statistical filtering were implemented and relevant quality control and purge flags 
published by ARM (Singh and Kuang 2024, Uin 2024) were included in the developed software before 
applying any statistical filtering schemes. Most commonly, data that existed three or more standard 
deviations beyond (positive direction) the mean were removed as the data were classified as statistical 
outliers. All data that fell below the mean were intentionally not filtered, regardless if they existed at or 
beyond three standard deviations less than the mean, as small particle concentrations were expected to be 
seen in this campaign due to the arctic climate and geographically remote nature of the study. 

Classifying such small concentration values as statistical outliers would inherently bias the final data set 
by removing real and potentially expected values. In addition, the lower value filtration is less of a 
concern to be contaminated as the working definition of contamination in this work is expected to be from 
anthropogenic sources, such as the ship stack, which are expected to produce high particle concentration 
values. The resulting time series and polar projection for the year can be seen in Figures 9 and 10. In 
Figure 9, the clear cut-off line for three standard deviations above the mean is around 5000 cm−3. When 
looking at this filtered data on a polar projection, as seen in Figure 10, there is minimal change to data 
outside of the wind direction of concern and large decrease in concentration magnitude in the direction of 
the ship stack. This demonstrates that statistically filtering high-concentration events impact the degrees 
of concern the most. Overall, this filter removed about 3% of the data for a decrease in average particle 
concentration from 609.37 cm−3 to 394.7 cm−3. This exploration into one variation of statistical filtering 
proved that statistics can be an effective means of removing small amounts of data for big impacts on 
polar projection plots and average concentrations. 
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Figure 9. Time series of particle concentration with the three-standard-deviation statistical filter 

applied. 

 

 
Figure 10. Polar projection of filtered and unfiltered particle concentration where data three standard 

deviations or higher beyond the mean has been removed. 
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2.3.3 Meteorological Filtering 

Meteorological data, specifically wind direction and speed, varied greatly throughout the expedition as 
seen in Figure 4. Due to this variation, an exploration into filtering was undertaken to see if using purely 
meteorological data could be sufficient to make a reliable filter for contamination. In order to understand 
the effect of variation in meteorological data on aerosol particle number concentration, the concentration 
data was grouped based on wind data. The two conditions used to group the data are as follows: (1) data 
associated with wind from the direction of ship’s superstructure (110-225◦, Figure 2) versus out of that 
range and (2) data that was recorded at low wind speeds (< 5 m/s) versus high speeds (≥ 5 m/s). The 
ranges for these two conditions were selected based on Figures 2 and 3. 

With these two conditions, the data was grouped and statistics for each grouping are presented in Table 2. 
It is important to note that the merging of any two datastreams recorded at different time intervals can 
affect the statistics of the data due to interpolation. For transparency, statistics both before and after 
filtering are presented. When looking at the data split by wind direction, an overwhelming majority of the 
data is recorded outside the range of concern (˜90%). When taking an average of particle concentration 
outside the direction of concern, there is an almost 150 #/ cc drop in mean particle concentration; 
indicating that a significant portion of high-concentration events were removed. The correlation between 
high-concentration events and the wind direction of concern can also be observed by looking at the 
average particle concentration, which is over 1000 #/ cc higher than the overall average. When splitting 
the data across wind speed, trends are a little less obvious. There is an almost even split in the data 
between measurements taken at less than and greater than 5 m/s. When looking at the respective average 
concentrations, slow wind speeds show a slightly higher average concentration and faster wind speeds 
show a slightly lower. This confirms a hypothesis presented in the previous section that faster wind 
speeds help with the diluting of contamination with more fresh arctic air, while at low wind speeds the 
local contamination can persist even when the wind is from the direction of the ship’s superstructure. 
Based on the percentage splits presented in Table 2, a purely meteorological filter would remove a 
substantial amount of data. For example, if a pure wind direction filter were deployed, 10% of the data 
collected would be removed and as can be seen in Figure 3; not all of the data collected from this 
direction is contamination. Therefore, pure wind direction or wind speed filters were not explored further; 
a filter that combines wind direction and low wind speeds will be presented in later section for 
comparison. 

Table 1. Meteorological data splits for particle concentration. 
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2.3.4 Microphysical Filtering 

A final type of filtering explored in this study was microphysical filtering, which is filtering based on the 
size of the sampled aerosol particles. Figure 7 demonstrates a large variation in the geometric mean 
diameter of the particles being sampled by the AOS sample inlet stack. This variation tended to coincide 
with events of high concentration when looking at the polar projections of particle concentration in Figure 
4. The nucleation mode, composed of primary particles, tends to be defined as particles with a diameter 
up to 0.1 μm or 100 nm, and this became the cut-off value for an initial filtering scheme 
(Hinds et al. 2022). A correlation study was done between geometric mean diameter and particle 
concentration to further confirm that high-concentration events are associated with these smaller particle 
sizes. The geometric mean diameter was plotted against total particle concentration as shown in Figure 
11. Through this figure it is clearly shown that all high-particle-concentration events are associated with 
smaller particle sizes. Although the nuclei mode does span up to 100 nm, from observation of this graph, 
most statistical outliers of particle concentration are associated with much smaller sizes, of around 40 nm. 
Therefore, though guidance of Figures 7 and 11, a filter was designed to remove data recorded at high 
particle concentrations (defined as values 3-std or more away from the mean) and when the geometric 
mean diameter was at or below 40 nm. The resulting filter is presented and compared to the other filtering 
techniques in the results section. 

 
Figure 11. Correlation scatter plot for geometric mean diameter and particle concentration. 

To summarize, exploration was done into frequency-, meteorological-, statistical-, and microphysical-
based filtering with the result that meteorological, statistical, and microphysical filtering would be 
pursued further and compared for their respective effects on time series and polar-projected plots. 
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2.4 Statistical Comparison of Filters 

2.4.1 Automation of Filtering Routines and Application to ARM AOS Data 

Application of these filtering techniques to the year-long time series required some automation in the 
code used to process the data. The two general approaches used to automate as much of the code as 
possible were as follows: (1) building functions within the code to automate common steps and (2) 
minimizing hard-coded variables by user input. 

One crucial step was repeated when testing individual filtering techniques and due to its repetition was 
converted into a function that can be called within a script when needed. The step repeated is the 
averaging of data on a wind-direction-degree basis to create the polar project plots that are crucial for 
comparing filters performance. For example, Figure 4 (b) was generated by taking an average of the 
particle concentration for each degree of wind direction and then plotting it on a polar projection. The 
function inputs are the data frame containing the variable to be analyzed and the wind direction as well as 
a choice of a mean or median trace. The function then manipulates this data frame through the steps 
outlined and returns a data frame that has an averaged or median value for each wind direction degree. 

The other automation effort was to develop some user input to minimize hard-coded decisions. One filter, 
the statistical filter, was based on this mindset. This user input information includes file path, filename, 
variables downloaded, and number of standard deviations from mean to be filtered out. The filter uses 
these inputs to automatically download data, apply filtering based on users specifications, and output a 
filtered time series and polar projection. These automated functions helped develop the code to run 
smoother and become more repeatable when applied to the AOS data. 

The filtering schemes explored in the previous section were applied to all of the particle concentration 
data taken over the year-long expedition with results presented below. Prior to applying the explored 
filtering schemes to recorded data, the data had to go through a two-stage quality control process. First, all 
data taken during the periods when the AOS clean air purge system was on (see above) were removed. 
The second stage was to apply each datastream’s respective quality control, which is also published by 
ARM. Once all data had passed through quality control, the filtering scheme was applied and the resulting 
data analyzed. This section presents results from two statistical filters, a meteorological filter and a 
microphysical filter. 

2.4.2 Filtering Performance 

In addition to the three-standard-deviation filter described earlier, two more statistical filters were 
developed: these are presented in Figures 13 through 16. The first of these two filters is the same structure 
as the three-standard-deviation filter; however, the cut-off is four standard deviations. This is to 
demonstrate how a change in the cut-off value will alter the aggressiveness of the filter and vary the 
degree of change the filter can implement. The second type of statistical filter developed is a rolling-based 
statistical filter that is presented in Figures 15 and 16. This filter uses the rolling function in Python to 
take a rolling average of 100 data points at a time. The standard deviation is then calculated on this rolling 
basis so that the cut-off point changes as the window moves along the x-axis. Upon visual inspection, this 
filter is clearly less aggressive and shows almost no change in data compared to the previous statistics-
based filter. The rolling-based technique was implemented to see if it could be more sensitive to the 
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natural peaks and valleys of the data, but in doing so the filter removes almost no data. Changing the 
window size was explored and can help increase the aggressiveness of this technique, but overall, if there 
is significant contamination a single cut-off value is more effective than one that changes over time. The 
performance of the four statistical filters is summarized in Table 3. Overall, because of how robust the 
statistical filtering technique is, the user must decide how much or how little data to be removed. 

Table 2. Statistical filter performance. 

 

 
Figure 12. Time series of particle concentration with the four-standard-deviation statistical filter applied. 
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Figure 13. Polar projection of particle concentration with the four-standard-deviation statistical filter 

applied. 

 

 
Figure 14. Time series of particle concentration with the rolling statistical filter applied. 
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Figure 15. Polar projection of particle concentration with the rolling statistical filter applied. 

As stated in the previous section, a pure wind direction or wind speed filter would be too aggressive and 
could potentially remove good data, so a combination of speed and direction as a filter was applied to the 
AOS data as presented in Figures 17 and 18. The filter removes data contained within the direction range 
of 110-225◦ and recorded at a wind speed of less than 5 m/s. Figure 18 shows the polar projection of this 
filtering scheme and, interestingly, the filter has mixed results in terms of effectiveness. For certain small 
wind direction windows, the filter is effective at bringing the average particle concentration down, such as 
between 135-150 ◦. However, there are other wind directions, such as from 180-225◦, where the filter 
appears to remove good data points and causes the average to actually increase. The net effect of these 
two opposite trends on the year average value of particle concentration is still a decrease, which can be 
observed in Table 4; however, the polar projection demonstrates that this filter creates false flags and 
removes good data for some wind directions. While the filter overall does remove contaminated data 
points, it does not do so in a consistent or reliable manner, meaning a meteorological-based filter, 
regardless of conditions of filtering, is not effective.  

Table 3. Meteorological filter performance. 
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The final filtering scheme applied was a microphysical-based one. One important note to make about the 
microphysical-based filter is that the particle concentration data had to be averaged on a five-minute basis 
to match the frequency at which the microphysical data was collected. This means that the time scale for 
this filtering scheme is slightly different than the previous filters which work on a five-second frequency. 
The filtering scheme removes data points collected three standard deviations away from the mean particle 
concentration and at a geometric mean diameter of 40 nm or less. Figures 17 and 18 show the time series 
and polar projection of this filter and Table 5 shows the filter’s performance. As stated, the unfiltered 
trace is slightly different in shape due to the change in frequency sampling. In the polar projection, it can 
be observed that the microphysical filter is able to reduce the particle concentration across all degrees of 
concern. This consistency is what the meteorological filter was lacking when comparing filtered traces 
between Figures 19 and 17. 

 
Figure 16. Time series of particle concentration data with the microphysical filter applied. 



A Sirna et al., May 2025, DOE/SC-ARM-TR-316 

29 

 
Figure 17. Polar projection of particle concentration data with the microphysical filter applied. 

 
Figure 18. Time series of particle concentration data with meteorological filter applied. 
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Figure 19. Polar projection of particle concentration data with meteorological filter applied. 

2.4.3 Summary of Results 

All of the above filtering techniques are now compared for the statistical change they were able to make 
to average and median particle concentration values as shown in Table 5. The properties analyzed are the 
amount of data lost versus retained, and percent change in mean and median particle concentrations. In 
the ideal case, a filter will provide the largest decrease in particle concentration for the smallest amount of 
data lost, thus minimizing any false positives. All filters tested resulted in a net decrease in particle 
concentration; however, the effectiveness of these filters varies. The two filters to make the largest impact 
on the mean concentration for the smallest loss of data were the three-standard-deviation statistical filter 
and the microphysical filter. They produced a 35 and 35% decrease in mean for only a 3.20 and 3.98% 
loss of data respectively. This means these two filtering schemes were the most consistent in removing 
only contaminated data points. The least effective filter was the meteorological-based filter. There was 
still a decrease in mean concentration, indicating a removal of contaminated points, but the loss of data 
was triple that of the most effective filter, clearly indicating that good data was removed with 
contaminated data. Of all filtering schemes explored, the meteorological-based one is the only one 
making false positives and is therefore not an effective filter. The other statistical filters presented all had 
varying degrees of impact on the mean value for ranging amounts of data loss. The choice between which 
statistical filter to use is truly up to users depending on how aggressive they would like to be. 
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Table 4. Filtering scheme performance and evaluation. 

 

Overall, microphysical filtering proved to be both consistent and reliable for identifying and removing 
contamination. Overall, all the filters that were explored and deemed viable for application to a full data 
set were able to be built and successfully run. The consistency of some filters were better than others. The 
overall statistical performance will be analyzed in the next section. 

3.0 Summary and Conclusions 
This work aimed to parameterize conditions of contamination and explore a variety possible filtering 
techniques for the MOSAiC expedition aerosol measurements. Three methods of filtering were deemed 
feasible for applying to the MOSAiC data (microphysical, statistical, and meteorological); that application 
was done with the following results:  

• The study validated that contamination of arctic air measurements did occur during MOSAiC. 

• The tell-tale sign of this contamination was the very high particle concentration that coincided with 
peaks in black carbon concentration and a decrease in geometric mean diameter of the particles; a lot 
of small, freshly generated particles were detected from the direction of the ship superstructure. 

• Three filtering techniques were developed: meteorological, microphysical, and statistical. 

• A total of six filters were built using these techniques and applied to the MOSAiC data. 

• Of the three filtering techniques tested, only the meteorological-based filter yielded false positives 
(i.e., removing good data points), and increased the average particle concentration in some wind 
directions. 

• The three-standard-deviation filter removed the least amount of data for the biggest decrease in mean, 
removing about 3% of the data for a 35% decrease in mean. 

• Filters based on size distribution and statistics proved to be the most effective, removing high-
concentration events and decreasing the particle concentration average. 

While certain filtering techniques seemed to be more efficient in flagging contamination events in the 
AOS aerosol data, a choice of a filter and its parameters may depend on the nature of research being done. 
Also, a combination of multiple filtering techniques may be useful in certain cases. Thus, the procedures 
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developed in this work are designed to be flexible and user-configurable to simplify data QA/QC and 
facilitate the use ARM aerosol measurements from MOSAiC. The procedures developed in this work will 
be made available by ARM. 
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