ACRF Instrumentation Status:
New, Current, and Future

November 2008

Work supported by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research
DISCLAIMER

This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Abstract

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development. New information is highlighted in blue text.
Acknowledgments

This report is developed largely from the information submitted to and managed within our Instrument Mentor Monthly Summary (IMMS) reporting system (http://www.db.arm.gov/IMMS/). Special thanks to our Instrument Team for providing timely and complete updates to the IMMS, to Kathy Doty, our developer and administrator of IMMS, and Rolanda Jundt, who ensures this information is posted accurately on the ARM website.
Contents

Abstract .. iii
Acknowledgments .. iv
1. New Instrumentation ... 1
 1.1 Rotating Shadowband Spectrometer Overhaul ... 1
 1.2 Aerodynamic Particle-Sizing Spectrometer to Replace Optical Particle Counter at
 Southern Great Plains .. 1
 1.3 Infrared Thermometers for the Southern Great Plains Extended Facility Sites 1
 1.4 Add Scanning Capability to the W-Band ARM Cloud Radar ... 1
 1.5 Next-Generation Microwave Radiometers .. 1
 1.6 Photoacoustic Soot Spectrometer ... 1
 1.7 Field Campaigns .. 2
2. Existing Instrumentation ... 3
 2.1 Aerosol Observing System .. 4
 2.2 Atmospherically Emitted Radiance Interferometer .. 4
 2.3 Balloon-Borne Sound System ... 4
 2.4 Broadband Radiometer Station .. 4
 2.5 Carbon Dioxide Flux System .. 5
 2.6 Carbon Monoxide System ... 5
 2.7 Cimel Sun Photometer ... 5
 2.8 Disdrometer .. 5
 2.9 Eddy Correlation Station .. 5
 2.10 Energy Balance Bowen Ratio Station ... 6
 2.11 G-Band Water Vapor Radiometer .. 6
 2.12 Infrared Thermometer .. 6
 2.13 Micropulse Lidar ... 7
 2.14 Microwave Radiometer .. 7
 2.15 High-Frequency Microwave Radiometer ... 8
 2.16 Microwave Radiometer Profiler ... 8
 2.17 Millimeter Wave Cloud Radar .. 8
 2.18 Multi-Filter Rotating Shadowband Radiometer and Related Systems 9
<table>
<thead>
<tr>
<th>Section</th>
<th>Instrument or System</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.19</td>
<td>Narrow Field-of-View Radiometer ... 10</td>
</tr>
<tr>
<td>2.20</td>
<td>Optical Rain Gauge SGP .. 10</td>
</tr>
<tr>
<td>2.21</td>
<td>Precision Carbon Dioxide Mixing Ration System ... 10</td>
</tr>
<tr>
<td>2.22</td>
<td>Radar Wind Profiler – 915, 1290 MHz .. 10</td>
</tr>
<tr>
<td>2.23</td>
<td>Radar Wind Profiler – 50 MHz .. 10</td>
</tr>
<tr>
<td>2.24</td>
<td>Raman Lidar ... 11</td>
</tr>
<tr>
<td>2.25</td>
<td>Rotating Shadowband Spectrometer .. 11</td>
</tr>
<tr>
<td>2.26</td>
<td>Shortwave Spectrometer ... 11</td>
</tr>
<tr>
<td>2.27</td>
<td>Soil Water and Temperature System .. 11</td>
</tr>
<tr>
<td>2.28</td>
<td>Surface Meteorological Instrumentation ... 12</td>
</tr>
<tr>
<td>2.29</td>
<td>SuomiNet Global Positioning System .. 12</td>
</tr>
<tr>
<td>2.30</td>
<td>Tandem Differential Mobility Analyzer .. 12</td>
</tr>
<tr>
<td>2.31</td>
<td>Total Precipitation Sensor ... 13</td>
</tr>
<tr>
<td>2.32</td>
<td>Total Sky Imager ... 13</td>
</tr>
<tr>
<td>2.33</td>
<td>Tower - Meteorological Tower Systems .. 13</td>
</tr>
<tr>
<td>2.34</td>
<td>Vaisala Ceilometer .. 14</td>
</tr>
<tr>
<td>2.35</td>
<td>W-Band ARM Cloud Radar ... 14</td>
</tr>
<tr>
<td>3.1</td>
<td>ARM Program Volume-Imaging Array .. 15</td>
</tr>
<tr>
<td>3.2</td>
<td>Collaborative Adaptive Sensing of the Atmosphere .. 15</td>
</tr>
<tr>
<td>3.3</td>
<td>Absolute Scanning Infrared Radiometer ... 15</td>
</tr>
<tr>
<td>3.4</td>
<td>Raman Lidar for Optical Extinction and Water Vapor Profiles 16</td>
</tr>
<tr>
<td>3.5</td>
<td>1.6-Micron Multi-Filter Rotating Shadowband Radiometer Channel 16</td>
</tr>
<tr>
<td>3.6</td>
<td>Automatic Radiosonde Launcher for the North Slope of Alaska Barrow Research Site 16</td>
</tr>
<tr>
<td>4.</td>
<td>Small Business Innovation Research ... 17</td>
</tr>
</tbody>
</table>
1. **New Instrumentation**

This section describes approved new instrument deployment and upgrade activities for the current fiscal year.

1.1 **Rotating Shadowband Spectrometer (RSS) Overhaul**

Please refer to Engineering Change Order ECO-00661, *RSS Refurbishment*, in the RSS section of this report.

1.2 **Aerodynamic Particle-Sizing Spectrometer (APS) to Replace Optical Particle Counter (OPC) at Southern Great Plains**

Please refer to Engineering Change Order ECO-00640, *Replace AOS Optical Particle Counter with Aerodynamic Particle Sizing Spectrometer*, in the Tandem Differential Mobility Analyzer (TDMA) section of this report.

1.3 **Infrared Thermometers (IRTs) for the Southern Great Plains Extended Facility Sites**

Please refer to ECO-00345, *Install Zenith-Pointing IRT Network at SGP*, in the Infrared Thermometer (IRT) section of this report.

1.4 **Add Scanning Capability to the W-Band ARM Cloud Radar (WACR)**

Please refer to Engineering Change Order ECO-00658, *WACR--Add Scanning Capability*, in the W-Band ARM Cloud Radar (WACR) section of this report.

1.5 **Next-Generation Microwave Radiometers (MWRs)**

Please refer to Engineering Change Order ECO-00664, *Next Generation MWR Procurement/Deployment*, in the Microwave Radiometers (MWR) section of this report.

1.6 **Photoacoustic Soot Spectrometer (PASS)**

The Science and Infrastructure Steering Committee (SISC) approved the Working Group’s recommendations to deploy an instrument that provides photoacoustic extinction of aerosols. The PASS instrument and associated measurements will be added to the existing ACRF Aerosol Observing System (AOS) at the SGP. A science objective is to produce a high-quality data set to investigate the reported bias in the absorption measurements made by the particle/soot absorption photometer instruments.

Engineering Change Order ECO-00663, *Photoacoustic Instrument to Enhance Aerosol Optical Data Quality at ARM*, is approved and in process to document this specification, procurement, and deployment. Dubey Manvendra is the leader. The procurement requisition is complete and discussions are ongoing related to field installation details. The PASS instrument has been received and is undergoing characterization. The schedule for installing the PASS is estimated for completion in January 2009.
1.7 Field Campaigns

Contact: Sylvia Edgerton, ACRF Science Liaison

This section provides information for ACRF field campaigns that have a significant impact on instrumentation and Instrument Team resources. Please refer to the ACRF Field Campaign web page for approved activities at http://www.arm.gov/acrf/fc.stm.

FY2008-2009

AMF to CHINA 2008 – Engineering Change Order ECO-00646, AMF/AAF Deployment to China FY 2009, and Engineering Work Order, EWO-12358, Design Data System Infrastructure for China Taihu Site, are open to communicate information related to this deployment. Aerosols in China have exceptionally high-loading and diverse properties whose influence has been detected across the Pacific Rim. The rapid pace of changes in the atmospheric environment over China provides a natural testbed for identifying and quantifying the climatic effects of aerosols. Preliminary analyses of multiple satellite data sets (MODIS, TMI, TRMM) indicate more complex and unique aerosol indirect effects than what is found in relatively cleaner environments. Unfortunately, China is one of the least observed regions, especially in terms of aerosol and cloud properties. To verify the satellite findings and gain a deeper understanding requires either in situ measurements or independent, ground-based remote sensing data, or ideally both.

RHUBC-II 2009 – Engineering Work Order EWO-12438, Radiative Heating in Underexplored Bands Campaign 2 (RHUBC-II), documents instrumentation requirements for this experiment. The Radiative Heating in Underexplored Bands Campaign (RHUBC-II) was selected for support by ACRF as an offsite campaign. Led by principal investigators David Turner and Eli Mlawer, RHUBC-II will take place from August to October 2009 at a location near Cerro Chajnantor in Chile, at an altitude of more than 5000 m. This effort is a follow on to RHUBC-I, conducted from February 22 to March 14, 2007, at the ACRF North Slope of Alaska (NSA) site in Barrow. During RHUBC-II, the same spectral band will be explored; however, this absorption band is much more transparent in the dry, low-pressure conditions at Chajnantor. These conditions represent the upper troposphere that is poorly observed but important for climate studies. Therefore, significant fundamental advances that are pertinent to reducing uncertainties in the radiation calculation of global climate models will be gained.

FY2010-2011

Cloud, Aerosol and Precipitation in the Marine Boundary Layer. Scientists will take advantage of the user facility’s ARM Mobile Facility—a heavily instrumented portable atmospheric laboratory—to study low marine clouds and aerosols in the Azores. Led by Dr. Robert Wood from the University of Washington, the new award extends the original nine-month project duration on Graciosa Island from March 2009 to November 2010. Doubling the length of the deployment will provide significantly greater statistical reliability of the relationships between aerosol and cloud properties required for evaluation of climate and process models.

Arctic Lower-Troposphere Observed Structure. This two-month campaign in 2010 will focus on the fall transition season, when sea ice begins to form and dramatic changes in aerosol and cloud properties occur. Led by Dr. Johannes Verlinde from the Pennsylvania State University, the science team will use a
heavily instrumented tethered balloon to make routine ascents and descents in the lower 2 kilometers of
the atmosphere at Oliktok Point, Alaska. Supplemented with measurements from an instrumented ground
station, this campaign will be the first to capture a full atmospheric profile of in situ cloud microphysics,
aerosols, and radiative measurements during the Arctic transition season. The unique data set will
provide a thorough case for testing Arctic cloud processes used in climate models, and for testing the
algorithms used to retrieve these measurements.

Small Particles in Cirrus Clouds. Mid-latitude cirrus clouds are the focus of this study that will use
instrumented aircraft to sample clouds above the user facility’s Southern Great Plains site in Oklahoma.
Led by Dr. Jay Mace from the University of Utah, this field campaign will occur between October 2009
and June 2010, spanning the time of year when cirrus clouds are shown to be most prevalent above the
site. Data from the campaign will help scientists to address many outstanding questions regarding mid-
latitude cirrus properties and processes, and to validate and implement improved algorithms for
measurements of cirrus clouds at all the user facility’s research sites.

An intensive phase of the project will focus more on microphysical processes and field a more extensive
set of experimental probes that observe the aerosol and ice nuclei properties of the upper troposphere.
DOE and NASA will jointly conduct the intensive phase of the experiment.

Storm Peak Lab Cloud Property Validation Experiment. Dr. Mace is also the lead scientist for the
study of liquid and mixed-phase clouds at the Storm Peak Laboratory near Steamboat Springs, Colorado.
This campaign will debut the user facility’s second mobile unit, which is currently under development. It
will be deployed from approximately October 2010 through March 2011 at a location near the laboratory,
which operates at an elevation of 3210 meters above sea level. The close proximity of the mobile facility
and the laboratory’s instrument platform is expected to result in a correlative data set equivalent to
between 200 and 300 aircraft flights in liquid and mixed-phase clouds.

2. Existing Instrumentation

This section describes activities that are ongoing to improve the performance or maintain existing
instrumentation, including any planned or in-progress upgrades. The information is abstracted primarily
from the Instrument Mentor Monthly Summary (IMMS) reports database
(http://www.db.arm.gov/IMMS/), which can be used for a collective and historical view of instrument
status. Individual IMMS reports may be reviewed by following links to specific instruments from
instrument web pages (http://www.arm.gov/instruments). ACRF Mentors provide updates to our IMMS
under these categories:

1. Data Review
2. Instrument Performance Issues and Trends
3. Current Task Status
4. Near-term Plans
5. Accomplishments.

Information related to the progress and status of instrument engineering is available from our Engineering
Change Order (ECO) database (http://eco.arm.gov).
Helpful links to instrument-related ACRF web pages are listed below:

- Data Quality Reports, http://www.db.arm.gov/cgi-bin/PIFCARDQR2/SignIn.pl?form=dqr

2.1 Aerosol Observing System (AOS)

Mentor: John Ogren and Anne Jefferson, NOAA/ESRL/Global Monitoring Division (GMD)

There are no open engineering tasks related to the AOS instrument suite.

2.2 Atmospherically Emitted Radiance Interferometer (AERI)

Mentor: Dave Turner, Space Science and Engineering Center, University of Wisconsin

There are no open engineering tasks related to the Atmospherically Emitted Radiance Interferometer (AERI) instrument suite.

2.3 Balloon-Borne Sound System (BBSS)

Mentor: Rich Coulter (with Mike Ritsche and Donna Holdridge), Argonne National Laboratory

Engineering Change Order ECO-00691, Update all Digi-Cora-1 and DigiCora-II Chipsets, is approved for FY2008 implementation and is in process. Donna Holdridge is the leader. Due to changes with Vaisala radiosonde booms, new radiation correction tables must be added via updated chipsets. The radiation corrections are required due to the increase in structural integrity of the T/RH booms. Increased surface area leads to increased solar heating on the booms. The new chipset corrects for this increased heating. DigiCora-III systems already have the new software upgrades that address this issue. This request is only to upgrade spares and backup systems, which are used when the DigiCora-IIIIs fail, or for field campaigns, such as the upcoming RHUBC-II.

2.4 Broadband Radiometer Station (BRS, SIRS, SKYRAD, GNDRAD, BSRN)

Mentor: Tom Stoffel, National Renewable Energy Laboratory

Engineering Change Order ECO-00642, Replace SGP/RCF BORCAL Data Acquisition and Control System, is approved for FY2008 implementation and is in process. The data acquisition system in the Radiometric Calibration Facility (RCF) used for annual BORCAL activities is more than 10 years old and needs to be updated. National Renewable Energy Laboratory (NREL) has recently replaced their BORCAL data acquisition system using internal funds. The SGP system should be a duplicate of the NREL system for software compatibility and performance assurance. System components are on order.

Engineering Change Order ECO-00559, Pyrgeometer Calibration Improvement, is in process. Tom Stoffel and Ibrahim Reda have initiated an investigation into the source of the bias in the ACRF
pyrgeometer blackbody calibration system in accordance with ECO-00559. At blackbody temperatures less than -20°C, the Dow Corning 200 fluid viscosity increases, which inhibits mixing and results in a temperature gradient of 3°C from the base to the top of the hemispherical blackbody. A new set of fluid dispersion manifolds (perforated annuli) has been developed to reduce the temperature gradients in the blackbody. In addition, a replacement fluid with better low-temperature (viscosity) characteristics has been identified. Pyrgeometers calibrated using the new manifold and fluid will be compared with pyrgeometers having calibrations traceable to the World Infrared Standard Group (WISG) and with pyrgeometers calibrated by the NOAA Earth System Research Laboratory’s (ESRL’s) Global Monitoring Division.

Reda has replaced the fluid in the pyrgeometer blackbody calibration system at NREL with a new Dow Corning fluid that offers better low-temperature performance and provides more uniform blackbody temperature control. Preliminary data suggest the 3°C temperature difference between the top of the blackbody hemisphere and the 45° elevation at -30°C is now less than 1°C. Reda continues to explore methods for confirming/correcting this lower ΔT.

2.5 Carbon Dioxide Flux System (CO₂FLX)

Mentor: Marc Fischer, Lawrence Berkeley National Laboratory

There are no open engineering tasks related to the Carbon Dioxide Flux System (CO₂FLX) instrument suite.

2.6 Carbon Monoxide (CO) System

Mentor: Sébastien Biraud, Lawrence Berkeley National Laboratory

There are no open engineering tasks related to the Carbon Monoxide (CO) instrument suite.

2.7 Cimel Sun Photometer (CSPOT)

Mentor: None (external data provided by NASA AERONET). Infrastructure contact is Laurie Gregory at Brookhaven National Laboratory.

There are no open engineering tasks related to the Cimel Sun Photometer (CSPOT) instrument suite.

2.8 Disdrometer (DISDROMETER)

Mentor: Mary Jane Bartholomew, Brookhaven National Laboratory

There are no open engineering tasks related to the disdrometer instrument suite.

2.9 Eddy Correlation Station (ECOR)

Mentor: David Cook, Argonne National Laboratory

Engineering Change Order ECO-00657, *Replace Single Board Computer in ECOR*, is in process to upgrade the computers in the Eddy Correlation Station (ECOR) instruments. Dave Cook is the leader.
The computers are being upgraded due to maintenance and performance issues. Systems have been purchased and are in evaluation and testing.

Engineering Change Order ECO-00633, *Improve Eddy Correlation Station Software*, is in process. Tim Martin, in association with David Cook, has proposed to systematically evaluate, document, and reorganize the instrument software to allow for code maintenance and more flexible incorporation of additional logic and sensors, such as the proposed wetness sensor. In addition, the user interface needs to be improved to give access to more debugging and diagnostic messages from the ECOR program. Tim Martin reports that the ECOR Version 2.0 software is being tested at Argonne National Laboratory. The software will be deployed and tested on our ACRF systems soon.

Engineering Change Request ECO-00536, *Add Wetness Sensors to ECOR System*, is in process. Periods of dew, frost, and precipitation often cause data from the CO$_2$/H$_2$O sensor and sonic anemometer to be incorrect. Adding a wetness indication would provide the data user with a more reliable source of information concerning this condition. Wetness sensor testing began at Argonne in mid-January on an ECOR system similar to the ACRF ECORS. Testing so far indicates that different phases of water and types of dew/frost/precipitation produce different voltage levels from the wetness sensor. Changes to the ECOR programming are underway.

2.10 Energy Balance Bowen Ratio (EBBR) Station

Mentor: David Cook, Argonne National Laboratory

Engineering Change Order ECO- 00645, *Replace T/RH and PRTD Probes in EBBR with Combined T/RH/PRTD Probes*, is in process to upgrade the temperature and relative humidity sensors (RH) of the ACRF EBBR systems. These upgrades to the 14 operational systems will take place over the next 4 years; spares are included. Dave Cook is the leader. The new combined T/RH probes have been installed in two EBBR systems and are being calibrated at the vendor presently.

2.11 G-Band (183.3 GHz) Water Vapor Radiometer (GVR) (ProSensing)

Mentor: Maria Cadeddu, Argonne National Laboratory

There are no open engineering tasks related to the G-band (183 GHz) Vapor Radiometer (GVR) instrument suite.

There is also a G-band (183 GHz) Vapor Radiometer Profiler (GVRP) GVRP radiometer developed by Radiometrics under the U.S. Department of Energy (DOE) Small Business Innovative Research (SBIR) program. This system is also known as the MP183. The GVRP has 15 channels between 170 GHz and 183.31 GHz. This system has not completed the ACRF baseline processes.

2.12 Infrared Thermometer (IRT)

Mentor: Vic Morris, Pacific Northwest National Laboratory

Engineering Change Order ECO-00616, *Install IRTs in Ventilated Enclosures*, is in process to update our IRT enclosures. In implementing ECO-00345, *Install Zenith-Pointing IRT Network at SGP*, a HEPA-filtered, ventilated enclosure for the IRTs was designed that keeps debris and, incidentally, most rain, off
the gold mirror and IRT lens. This enhancement is being implemented on the Tropical Western Pacific (TWP) and NSA IRT instruments. Vic Morris is leading this ECO. Danny Nelson, Jeff Zirzow, and Krzystof Krzton are tasked under Vic’s direction to provide designs for SGP, NSA, and TWP respectively. Vic has recommended an enclosure solution for TWP, please reference details within the ECO.

Engineering Change Order ECO-00368, Increase Sample Rate of Infrared Thermometers, is in process to increase the IRT sampling rate to 5 Hz. All systems are functioning except Nauru (see EWO-12288, Update IRT Data Acquisition Software). Communications latency issues are also under investigation with our RocketPorts and Fiber Optic line drivers that are resulting in data collection problems.

Engineering Change Order ECO-00345, Install Zenith-Pointing IRT Network at SGP, is in process. In FY2004, six IRTs were purchased and nine additional IRTs were purchased in FY2005. Some of these have been deployed with the AMF. There are 12 SGP extended facility sites currently equipped with IRTs; 10 additional IRTs would be needed to permit an IRT to be deployed at all 22 SGP extended facilities. The ARM Working Groups and STEC recommended the addition of the remaining SGP IRTs during FY2008. Vic Morris is the leader. The goal is to complete installation of nine IRTs this year. One additional system will be budgeted for FY2009. This year’s allocation of IRTs (6) has been received by SGP site operations. Enclosure fabrication is on track or ahead of schedule. Installed IRT performance, in comparison to integrated AERI data, looks good. Installation of the new IRTs began back in August, and to date have only three Installations remaining: E02, E18, and E21.

2.13 Micropulse Lidar (MPL)

Mentor: Rich Coulter, Argonne National Laboratory

Engineering Change Order ECO-00684, Modify MPL to Provide Fast Switching of Polarization States, is approved and assigned to Rich Coulter for implementation. A contract with Sigma Space Corporation is needed to perform this design and modification. If successful, a plan to upgrade ACRF’s base of installed MPLs will be evaluated. The purchase order is in place and parts are on order.

2.14 Microwave Radiometer (MWR and MWR3C)

Mentor: Maria Cadeddu, Argonne National Laboratory

Engineering Change Order ECO-00664, Next-Generation MWR Procurement/Deployment, is approved for action. The ARM Working Groups and STEC have approved the competitive procurement of next-generation 3-channel microwave radiometers (MWR3Cs). The systems are specified to provide three channels operating at 23, 31, and 90 GHz. The strategy is to replace the current aging MWRs with systems that broaden ACRF’s measurement performance parameters and provide an economic product life cycle for the future. A procurement specification is in development based on the outcomes of the November 2007 “ACRF MWR Futures” workshop.

The contract for the MWR3C was awarded to Radiometrics. A preliminary design review was conducted at the Radiometrics facility in Boulder, CO.

2.15 **High-Frequency Microwave Radiometer (MWRHF)**

Mentor: Maria Cadeddu, Argonne National Laboratory

There are no open engineering tasks related to the MWRHF instrument suite.

NOTE: The two high-frequency microwave radiometers (MWRHFs) are new instruments that are still under testing.

2.16 **Microwave Radiometer Profiler (MWRP)**

Mentor: Maria Cadeddu, Argonne National Laboratory

There are no open engineering tasks related to the MWRP Instrument suite.

2.17 **Millimeter Wave Cloud Radar (35 GHz) (MMCR)**

Mentor: Kevin Widener, Pacific Northwest National Laboratory; Karen Johnson, Brookhaven National Laboratory

Engineering Change Order ECO-00680, *MMCR - External Calibration Source*, is approved and assigned to Kevin Widener to design a relative calibration source that can be mounted outside the field of view of MMCR antennas. If successful, this enhancement will provide an indication that the sensitivity of the radar receivers is changing.

Engineering Change Order ECO-00655, *MMCR - End-to-End Calibration Analysis*, is in process to provide a calibration study of the ACRF MMCR systems, as recommended and approved by the STEC for FY2008. A contract was awarded to ProSensing, Inc., to perform an end-to-end characterization of the MMCR transmitter/receiver calibration. There are two analysis tasks related to this ECO one for the MMCR and one for the WACR. The WACR analysis is complete.

Engineering Change Order ECO-00552, *Barrow MMCR-Polarization Upgrade*, is on hold (waiting). Because the PIRAQ-III processor does not support polarization, the installation of the orthomode transducer at Barrow is on hold while calibration issues are being reconciled.

Engineering Change Order ECO-00551, *Refurbish Millimeter Wave Cloud Radar Antennas*, was begun in 2007, and over a 3-year period, the MMCR antennas will be refurbished and characterized on an antenna range. The spare antenna is complete and the contract for the new feed and sub-reflector has been placed. Once these are completed, they will be installed on the antenna reflector and calibrated. The Barrow MMCR antenna will be refurbished first to avoid impacting planned field campaigns at SGP. Contract negations are in process for new antennas with a new contractor. For FY2008, two antennas with engineering and fabrication costs are approved for procurement and installation at the SGP and TWP sites. The SGP antenna is 10 foot in diameter, while antennas used at ACRF’s tropical sites are 6 foot in diameter. Two additional antennas are planned for FY2009 to support upgrades to ACRF’s TWP sites. The first two antennas (6 ft.) are about to be delivered from Millitech. The first will replace the 10-ft antenna while it is being evaluated for refurbishment at Millitech. If it is “refurbishable”, it will get a new feed, subreflector, and radome and won’t be gone too long from the site. If not, Millitech will build a new antenna, which will take considerably longer (~6-7 months). Either way, once we
have a good 10-ft antenna back, we will reinstall it and forward the 6-ft antenna currently being used at SGP to Darwin. Shipping logistics are under development.

Engineering Change Order ECO-00420, *Software I/Q Balancing on MMCR’s*, was approved to remedy a problem with balance of the MMCR I and Q channels. This slight imbalance makes spectral analysis very difficult under certain conditions. Radar data provided by the site scientist office at NSA are being analyzed to evaluate software fixes. Discussions continue.

Engineering Change Order ECO-00391, *Millimeter Wave Cloud Radar Spectra Processing*, is in process to filter the spectra files produced by the upgraded MMCRs (C40 or PIRAQ-III processors), which range from 8 to 15 GB per day. Engineering Change Order ECO-00575, *Study Network Transfer of MMCR and WACR Spectra to Archive*, is active for the Data System Engineering to support this task. Algorithms for eliminating clear-sky periods and compressing the files need to be developed and implemented locally. The data are collected, processed, and shipped hourly. The MMCR spectra compression software has been running at the SGP site since October 1, 2007. Baseline Change Request BCR-01301, *Install MMCR Spec Filter (Compress Spectra for MMCR)*, tracks this effort. The compression results are monitored via plots posted at http://c1.dmf.arm.gov/data/process/sgp/sgpmmcrspecmaskC1.a0/2007/.

Overall, the results look very good. There is concern that spectra for some very thin potential clouds are being removed. Approaches to identify these features and retain the spectra at such time-height points without saving very large hydrometeor-free regions of data are under evaluation. All raw (uncompressed) spectra data are being retained for 90 days to allow time to review the compression results. Discussion is ongoing to determine when the shipping of spectra on hard drives will be halted.

2.18 Multi-Filter Rotating Shadowband Radiometer and Related Systems (MFRSR, MFR)

Mentor: Gary Hodges, NOAA/ESRL/GM Division

Engineering Change Request ECO-00350, *MFRSR Integrating of Campbell Data Logger*, is in process and assigned to Gary Hodges to modernize the data acquisition systems for the multi-filter rotating shadowband radiometer (MFRSR) instruments. All SGP instruments are updated – a few lingering communication issues are being resolved. The TWP and AMF site upgrades are planned next to complete this ECO. The NSA upgrades will be handled by a new ECO, and are under evaluation in ECR-00688 due to the software revisions required to allow operation at high latitudes. A separate ECR is in discussion to complete the build and/or procurement of MFRSR and MFR spare components.

Engineering Change Order ECO-00659, *Add Two MFRs to the AMF Instrument Suite*, was entered to guide and document the addition of upwelling MFRs to the AMF. Gary Hodges is the leader. Some ramp up to provide this measurement is expected this year. The first radiometer will be installed and verified during the AMF Azores experiment in FY2009, even though surface albedo at the AMF main site will not be representative of the local scale due to the dominant effects of the surrounding sea surface. A second upwelling MFR is proposed for addition to the AMF supplemental site during FY2010; a spare MFR head will be purchased then.

Engineering Change Request ECR-00688, *Add Functionality for MFRSR Campbell System at Latitudes > 50 deg*, was submitted by Gary Hodges and is “On-Hold” due to resource issues. This revision to the MFRSR logger software will provide the capability of our MFRSRs to operate at latitudes greater than
50 degrees latitude. Also, there are ongoing discussions related to an enhancement of the shadowband positioning to enable higher quality retrievals of aerosol optical depth. Also, the need to expand the memory of the MFRSR data logger is under consideration to extend buffering capabilities when communication to data collectors is not available.

Engineering Change Request ECR-00692, *Purchase Data Loggers and heater controllers for MFRSRs*, was submitted by Gary Hodges and is in review. Upon approval the build and/or procurement of all spares necessary to support MFRSRs/MFRs will be executed.

2.19 Narrow Field-of-View (NFOV) Radiometer

Mentor: Gary Hodges, NOAA/ESRL/GMD

There are no open engineering tasks related to the Narrow Field-of-View (NFOV) instrument suite.

2.20 Optical Rain Gauge SGP (ORG)

Mentor: Mary Jane Bartholomew, Brookhaven National Laboratory

There are no open engineering tasks related to the Optical Rain Gauge SGP (ORG) instrument suite.

Note: There are also ORGs installed on the TWP and AMF metrological towers. Mike Ritsche is the mentor for these systems.

2.21 Precision Carbon Dioxide Mixing Ration System (PGS)

Mentor: Sebastien Biraud, Berkley National Laboratory

There are no open engineering tasks related to the Precision Carbon Dioxide Mixing Ration System (PGS) instrument suite.

2.22 Radar Wind Profiler – 915, 1290 MHz (RWP)

Mentor: Rich Coulter, Argonne National Laboratory

There are no open engineering tasks related to the 915- and 1290-MHz Radar Wind Profilers (RWPs) instrument suite.

2.23 Radar Wind Profiler – 50 MHz (RWP)

Mentor: Rich Coulter, Argonne National Laboratory

Engineering Change Order ECR-00662, *50-MHz Wind Profiler Decommissioning*, is submitted to begin the process of removing this RWP. This recommendation was generated by the ARM Sunset Committee, which is chaired by the ARM Chief Scientist. This aging system has experienced maintenance and performance conditions that are too expensive given the scientific utility of the corresponding data set. Site operations reports that the 50-Mhz Wind Profiler has been removed-final disposition of instrument components are being completed.
2.24 Raman Lidar (RL)

Mentor: Rob Newsom, Pacific Northwest National Laboratory

There are no open engineering tasks related to the Raman Lidar (RL) instrument suite.

2.25 Rotating Shadowband Spectrometer (RSS)

Mentor: Peter Kiedron, NOAA/ESRL/GMD

Peter Kiedron demonstrated that the rotating shadowband spectrometer (RSS), built by Yankee Environmental Systems, Inc., is capable of providing valuable measurements of direct, diffuse, and global spectral irradiance. Peter has also identified problems with the RSS that affect the stability of its calibration and the linearity of its response. Peter has recommended that the RSS be removed from service and sent to him for a complete overhaul.

An Engineering Change Request (ECR), ECR-00661, RSS Overhaul: Perform Maintenance and Overhaul of RSS, was submitted and approved to perform the upgrade and overhaul of the RSS. Peter Kiedron is the lead. The ARM Working Groups and STEC recommended the re-engineering of the RSS for implementation in FY2008. A BCR is in process (BCR-01457, Defield RSS and Ship to NOAA and Boulder) that has removed and shipped the RSS to NOAA for refurbishment. A Data Quality Report is filed to document the outage and a message is posted on the RSS Instrument webpage. The disassembly, analysis, reassembly, and characterization of the RSS have identified a series of component and configuration re-engineering issues that were not anticipated. Additional effort and testing are required; parts are on order.

2.26 Shortwave Spectrometer (SWS)

Mentor: Connor Flynn, Pacific Northwest National Laboratory

There are no open engineering tasks related to the Shortwave Spectrometer (SWS) instrument suite.

2.27 Soil Water and Temperature System (SWATS)

Mentor: Daniel Hartsock, University of Oklahoma

The soil water and temperature system (SWATS), deployed at the SGP site, is designed to provide information about the temperature of the soil and the status of water in the soil profile. Because the SWATS array is aging, the sensor arrays are undergoing a replacement program.

Engineering Change Order ECO-00493, Replace Failing SWATS Sensors, is in process to add new redundant sensor arrays that will be installed at all SGP extended facility sites. These will be installed in a phased manner: five sites per year over 4 years, beginning in 2005 with the sites having multiple failed sensors given highest priority. After the soil recovers from the installation process in 6-12 months, the new sensor array will be connected to the existing SWATS data acquisition system in place of the old sensor array. Sensor arrays for FY2009, from Campbell Scientific, have arrived at the SGP and are calibrated and ready for installation.
Daniel Hartsock has prepared a status report on the SWATS refurbishment, which is attached to ECO-00493. BCR-01508 to update calibration coefficients is complete.

2.28 Surface Meteorological Instrumentation

Mentor: Mike Ritsche, Argonne National Laboratory (SMET, SMOS, SURTHREF, THWAPS, MET, METTWR [NSA Site])

Engineering Change Order ECO-00595, Upgrade T/RH Probes and Wind Sensors for NSA Met System. Ice develops on the wind vanes, cup anemometers, and aspirator inlets for the temperature and RH sensors, which clog and affect the data quality. To alleviate these problems, the mentor has proposed to replace the wind speed and direction sensors at NSA (both Barrow and Atqasuk) with sonic anemometers and to replace the temperature and RH probes with new, heated probes designed to operate in cold environments. The upgrades to the NSA meteorological instruments were implemented and the as-built documentation was uploaded. Progress is being made on updates to the associated Instrument Handbooks.

Engineering Change Request ECR-00672, Upgrade Dynamic Rain Gauge Calibration System, is approved. This task is in process to improve the characterization and performance of ACRF’s precipitation measurements.

2.29 SuomiNet Global Positioning System (SuomiNet)

Mentor: None (external data provided by SuomiNet/COSMIC). Rick Wagener, Brookhaven National Laboratory, is our infrastructure contact.

Please see http://www.unidata.ucar.edu/data/suominet/ and http://www.arm.gov/xds/static/suomigps.stm for the details on the SUOMIGPS data.

2.30 Tandem Differential Mobility Analyzer (TDMA)

Mentor: Don Collins, Texas A&M University

Engineering Change Request ECO-00640, Replace AOS Optical Particle Counter with Aerodynamic Particle Sizing Spectrometer, the ARM Working Groups and STEC approved the addition of an aerodynamic particle-sizing spectrometer (APS) in FY2008 to replace the Optical Particle Counter (OPC) component of the TDMA. Don Collins, TDMA Instrument Mentor, has responsibility for integrating the APS with the SGP AOS. The APS has now been installed and is functioning properly (thanks largely to Pat Dowell). A permanent shelf is being constructed and will be shipped to SGP soon. The TDMA control software has been updated to record and graph the APS data. A few initial glitches had to be worked through, but everything seems to be working very well now. The unprocessed size distributions measured by the TDMA and APS agree surprisingly well in the overlap size range. Working has begun on the software that will be used to process the two data sets together and merge them into a single size distribution.

Engineering Change Request ECO-00587, Develop Collection and Ingest for TDMA. Data from the TDMA currently are acquired and processed by Don Collins. Processed data are then delivered to ACRF on a monthly basis and stored in the IOP area of the ACRF Data Archive as “beta data.” An ingest is
being developed to produce netCDF files for inclusion in the main Data Archive. The communications
group is contacting Don Collins to develop a web area, enter instrument metadata, and edit the instrument
handbook. The TDMA needs to have an entry added to the IMMS reporting system. TDMA raw data are
now available at the ACRF Archive.

Data from 2005-2007 are processed for delivery to the ACRF Data Archive. The raw data delivery to the
Archive is a second task under ECO-00587; some raw data files have begun to flow to the Archive.

2.31 Total Precipitation Sensor (TPS)

Mentor: Mark Ivey, Sandia National Laboratory

Engineering Change Order ECO-00344, *Snow Measurement Instrumentation Needs for the NSA*, is in
process to add and evaluate this capability. Bernie Zak is the leader.

2.32 Total Sky Imager (TSI)

Mentor: Vic Morris, Pacific Northwest National Laboratory

Engineering Change Order ECO-00674, *Tasks Associated with TSI Camera and Software Upgrade*, is
approved for implementation to provide an upgraded camera for the Total Sky Imager (TSI). This ECO is
approved with a hold pending the design review to insure cost and overall impacts are reasonable. An
environmental housing for the Axis 211 camera was purchased for testing and design purposes.

Engineering Change Order ECO-00644, *Subcontract to Upgrade TSI Software*, was approved to upgrade
the TSI software to allow use of new versions of the Axis camera. Concepts to incorporate the packaging
and mechanical design of the new version of the Axis camera will be covered in a new ECR. Progress
continues: five of the six tasks are now completed. The final task to refine clear-sky reference images
and seasonal azimuth angles is ongoing.

Engineering Change Order ECO-00625, *Upgrade TSI Control Boards*, was approved and is in process to
update the control boards of the TSI-880 systems. This update will reconcile issues with the real-time
clock and power supplies. The subcontract has been placed with RMRCo, and the repairs and testing are
successfully complete—2 boards were repaired and 8 additional boards are being fabricated for spares.

2.33 Tower - Meteorological Tower Systems (TWR)

Mentor: David Cook, Argonne National Laboratory

Engineering Change Order ECO-00645, *Replace T/RH and PRTD Probes in EBBR with Combined
T/RH/PRTD Probes*, was approved to provide a replacement meteorology system for the tower. The new
system is using sonic anemometers in place of the cups and vanes, and a new Vaisala T/RH system in
place of the present ones. Testing of the new system will begin in November at Argonne National
Laboratory. The new combined T/RH probes have been installed in two EBBR systems and are being
calibrated at the vendor presently.
2.34 Vaisala Ceilometer (VCEIL)

Mentor: Vic Morris, Pacific Northwest National Laboratory

There are no open engineering tasks related to the Vaisala Ceilometer (VCEIL) instrument suite.

2.35 W-Band (95-GHz) ARM Cloud Radar (WACR)

Mentor: Kevin Widener, Pacific Northwest National Laboratory

Engineering Change Order ECO-00681, SWACR: Sampling Strategy, Software, Products, is approved and assigned to Pavlos Kollias to define scanning strategies, the operational modes, and the value-added products (VAP) envisioned to produce out of the SWACR. The final statement of work with Pavlos is in place.

Engineering Change Order ECO-00658, WACR–Add Scanning Capability, is in process to plan the initial science, operational, and technical objectives of the development and lead to a procurement specification. Kevin Widener is the leader. During the December 2007 ARM STEC meeting, a scientific and programmatic consensus was reached to add a scanning capability to the SGP WACR. This enhancement to the WACR will provide an ACRF product for evaluating the 3D cloud properties first at the SGP site and then, depending on portability (or transportability) and robustness, other ACRF research sites. The contract with ProSensing is placed and the scanner is being procured. Removal and shipment of the WACR from the SGP site to ProSensing is complete. The target return date to the SGP is March/April 2009 for evaluation prior to shipping the system with the FY2010 AMF2 (or other field campaign support) experiment. A preliminary design review was conducted and documented in the ECO. A design review was conducted in November. The system design is acceptable and on track. A narrow field-of-view camera and IRT (narrowband centered around 11 microns) are being added in a co-pointing configuration with the radar. The Data System Engineering team is ramping up on the ingest.

Engineering Change Order ECO-00654, WACR–Spectra Notch Filter. The WACR has a software deficiency in the way that the direct current (DC) signal is processed in the Fast Fourier Transform (FFT). ProSensing has identified a method for handling this by incorporating a notch filter taking many averages of the I/Q signal and using this in the FFT. The datastream will remain unchanged. The software was installed and tested on the SGP WACR and will be installed on the AMF WACR as the system is routed through ProSensing from China on the way to the Azores.

ECO-00391, Millimeter Wave Cloud Radar Spectra Processing, proposes an evaluation of the feasibility of implementing data reduction algorithms at each MMCR and WACR installation and shipping the resulting files to the ACRF Data Archive via the Internet. A version of this software is in the release process to test ECO-00391 and ECO-00575. Implementation is underway and documented in BCR-1349, Install WACR_Spec_Filter in Production.

3. Future Instrumentation Planning

In this section, instrumentation that has been proposed for future acquisition and discussed by the ARM Working Groups—but not yet approved for purchase—are presented with any status information.
3.1 ARM Program Volume-Imaging Array (AVA)

The ARM Volume-Imaging Array (AVA) is a proposed radar system to be deployed at the SGP site to address the ARM Program’s need to map 3D cloud and precipitation structures at short to medium ranges (i.e., 20-75 km). The AVA system will provide time-resolved 3D precipitation fields, domain-averaged rainfall rate, cloud coverage throughout a volume, cloud-top heights, hydrometeor phase information (using polarization), horizontal and vertical variability of clouds and precipitation, and low-level convergence and divergence using dual-Doppler techniques. Principal elements of the AVA proposal prepared by Pavlos Kollias include the following:

- Three networked scanning radars arranged in a triangle with 20-30 km legs: one operating at 35 GHz (same 8.6-mm wavelength as the MMCR), capable of scanning the vertical region probed by the current MMCR, and two radars operating at 9.4 GHz (3.2-cm wavelength, so-called “X-band”). All three radars will be transportable, scanning, polarimetric, and Doppler.
- Development of a useful 3D cloud VAP similar to the existing active remote sensing cloud layer (ARSCL), but on a regular 3D grid.
- Development of an “AVA Simulator.” Patterned after the well-known ISCCP Simulator, the AVA Simulator will perform forward simulations of radar observables, using as input large-eddy simulation (LES) model and cloud-resolving model (CRM) outputs of cloud properties together with the characteristics of the AVA radars. The results will be used to develop and optimize volumetric radar scanning strategies, develop and evaluate inverse retrieval techniques, and develop prototype 3D ARSCL-like VAPs for the ARM community.
- A collaborative effort with the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) to deploy the CIRPAS 9.4-GHz phased-array radar at the ACRF SGP site every year for 1-2 months of continuous observations.

STATUS – Consideration of the AVA, as such, is on hold, until simulations have been carried out to demonstrate its capabilities and further refine the requirements.

3.2 Collaborative Adaptive Sensing of the Atmosphere

ACRF is a member the Collaborative Adaptive Sensing of the Atmosphere (CASA) consortium; this concept is being assessed to determine its utility to ARM and ACRF science objectives. There is a good analysis data set available to the community that spans the CLASIC experiment. The precipitation fields and related data products from the CASA array are being incorporated into ARM cloud modeling and properties research. In parallel, a life-cycle cost and logistical feasibility assessment is underway within the ACRF infrastructure, including site preparation and leasing, infrastructure, operations, towers, installation costs, radar modifications, data infrastructure, and processing impacts. See http://www.casa.umass.edu.

STATUS – Ongoing; reviewing needs and impact.

3.3 Absolute Scanning Infrared (ASIR) Radiometer

To provide an absolute infrared (IR) flux reference, which could be used to calibrate the Eppley PIRs, Ellsworth Dutton suggested that ARM develop an absolute scanning infrared (ASIR) radiometer. This
instrument would be functionally equivalent to an ASIR developed by Rolf Philipona for the World Meteorological Organization (WMO). This instrument would not be used for routine data acquisition, but instead would provide a calibration reference. As such, it would participate in WMO inter-comparisons at Davos, Switzerland, every 5 years.

STATUS – In December 2006, a description of the desired instrument capabilities was published in Fed Biz Ops (solicitation number 111506). Based on the published description, rough order-of-magnitude cost estimates have been received from several interested organizations. At this time, an estimated beginning of the instrument deployment would be FY2010—depending on the review of overall instrument priorities by the STEC and ACRF Infrastructure Management Board.

3.4 Raman Lidar (RL) for Optical Extinction and Water Vapor Profiles

There is the need to deploy a Raman or high-spectral resolution lidar to measure extinction at the NSA Barrow site to provide measurements of optical extinction and water vapor profiles.

STATUS – Scientists within the ARM Working Groups are refining science needs and discussing instrument and measurement approaches. A target milestone for deployment, pending favorable scientific and infrastructure review, will take place in FY2010.

3.5 1.6-Micron Multi-Filter Rotating Shadowband Radiometer (MFRSR) Channel

This device was built by replacing an unfiltered channel on a MFRSR with an InGaAs detector and a 1.6-µm filter for scientific evaluation. The Radiative Processes Working Group would like to have these data available for analysis and run at the SGP in field campaign mode. Before a field campaign can begin, this system needs to run through the SGP Cosine Bench Calibration. Pending review of the data, the Radiative Processes Working Group would like to consider the costs to add a 1.6-µm channel to select ACRF MFR/MFRSR heads. This task is approved by the STEC to continue for evaluation. Sally McFarlane, the Science Translator for the Radiative Processes working group reports: “The Radiative Processes Working Group suggested that ARM should evaluate the addition of a near-IR channel to the MFRSR for the potential to improve retrievals of aerosols, cloud size distributions, and surface albedo. As a test of this capability, an unfiltered channel on a MFRSR was replaced with an InGaAs detector and a 1.6-µm filter for scientific evaluation. This MFRSR was run at the SGP central facility from 12/20/07 through 2/8/08. This data are now available on the ARM site for evaluation purposes: http://www.db.arm.gov/cgi-bin/PIP/viewPIP.pl?pipNo=33. Please contact Joe Michalsky (joseph.michalsky@noaa.gov) if you have any questions about the data set.”

3.6 Automatic Radiosonde Launcher for the North Slope of Alaska Barrow Research Site

The sonde launcher is proposed to optimize downstream operational costs and thereby enable additional daily sonde launches. However, additional information is requested to determine its ability to work reliably in such an extreme climate. This information may be obtained either from demonstration or, perhaps, verification from operations at a similar site.

Doug Sisterson talked with Vaisala about this system. Their specification does state performance in climates from tropical to polar; there is a need to verify NSA suitability. There is an autosonde operating
in Whitehorse, Yukon, but that is only at about 60.66 N (Barrow is at 71 N). There is also a system at Bodo, Norway, at 69 N. Based on the December STEC meeting discussions, this system is on hold until possibly FY2010.

4. Small Business Innovation Research

The U.S. Department of Energy (DOE) Small Business Innovative Research (SBIR) web page is available at http://www.er.doe.gov/sbir/. The DOE SBIR program develops instrumentation that can be applied to the science and measurement objectives of the ACRF.