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1.0 Summary 
The main goal of this field project was to characterize the chemical and physical properties of 
light-absorbing particles (LAP) present in the atmosphere and snowpack. The specific field efforts 
included: 1) online measurement and sampling of light-absorbing particles using a Magee Scientific 
model AE33 aethalometer (AE33) and a time-resolved aerosol collector (TRAC); and 2) sampling of 
snowpack during observed events of LAP deposition on snow, confirmed by onsite U.S. Department of 
Energy Atmospheric Radiation Measurement (ARM) user facility measurements and meteorological data. 
The ongoing research objectives of our follow-up sample and data analysis include: 1) Characterization of 
aerosol regimes and sources, identifying particle-type populations, mixing states, and atmospheric 
transformations based on correlative analysis of our detailed chemical imaging and chemical 
characterization measurements and real-time records from the second ARM Mobile Facility (AMF2) and 
other instruments available from the Surface Atmosphere Integrated Field Laboratory (SAIL) experiment; 
2) Assessment of the optical and chemical properties of snowpack deposits to investigate how aerosol 
deposition influences snowpack lifetime. 

The AE33 and TRAC were deployed at the Rocky Mountain Biological Laboratory (RMBL), located 
200 m north of the main AMF2 site. Because of various restrictions on travel, field work, and user facility 
operations during COVID‐19 pandemic outbreak, our field project started later than originally planned. 
Specifically, we started our field operation at SAIL only in April 2022, after travel restrictions by Purdue 
University to its personnel were lifted. The AE33 was deployed from 04/05/2022 until 10/09/2023, 
providing real-time measurements of the atmospheric mass loadings of LAP along with the collecting of 
time-tagged bulk samples of aerosols deposited on the filter tape. The AE33 was down from 10/03/2022 
until 12/08/2022 due to lost communication and remote troubleshooting of the underlying problems. The 
TRAC was deployed from 06/17/2023 until 07/31/2023 to collect samples of individual particles for 
chemical imaging. In collaboration with RMBL staff, we collected samples of snow polluted by long-
range transported atmospheric aerosol from pollution events in February 2022 and April 2023, These 
were two major LAP haze episodes that darkened the surface of snowpack in the area of study, as 
illustrated in Figure 1. 

 
Figure 1. LAP deposits on the snowpack at the SAIL field site. Photo courtesy of Dr. C. Cox, NOAA. 
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A combination of molecular characterization and chemical imaging techniques are used by our group to 
characterize the aerosol and snowpack samples. Assessment of the analyses results will contribute 
essential data to improve predictive understanding of aerosol effects on the climate.1 

LAP are primarily composed of organic brown carbon (BrC), mineral dust (MD), and black carbon (BC). 
The concentration of BrC and BC has increased due to increases in the population density in the Rocky 
Mountains and more intense wildfire events.2,3 Additionally, changes in climate and land use has 
increased the concentration of mineral dust.4 While BrC and MD are less absorbing than BC, their 
regional mass loadings are high, and therefore their contribution to changes in the snow surface albedo is 
substantial.5,6 Snow albedo is directly decreased by the presence of LAP, and indirectly decreased by 
enhanced snow grain growth.7 The net effect of light-absorbing particles on alpine climates is 
uncertain due to the effects of snow albedo feedback.8,9 

Atmospheric particles have complex composition of organic compounds, inorganic salts, mineral dust, 
and black carbon (soot), exhibiting a wide range of molecular structures, morphologies, physical 
properties, and chemical reactivity.10–14 The key aerosol metrics are particle external and internal ‘mixing 
states’.15,16 External mixing denotes particle ensembles when different chemical species exist in distinct 
particles, while internal mixing occurs when different chemical components are homogeneously 
distributed throughout the individual particles.17 The mixing states of aerosol populations are complex 
and vary as a function of particle size, altitude, and age.18–21 Fundamental understanding of the physical 
properties and chemical composition of aerosols requires advanced analytical approaches for imaging of 
particle components and quantitative assessment of their mixing states.15,22 In our project, we use 
synchrotron-based scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine 
structure (STXM/NEXAFS) spectroscopy and computer-controlled scanning electron microscopy coupled 
with energy-dispersive X-ray spectroscopy (CCSEM/EDX) for chemical imaging of individual 
particles.18,23,24 Additionally, we investigate molecular composition and optical properties of BrC 
chromophores in bulk aerosol and snowpack samples using multimodal high-resolution mass 
spectrometry techniques developed and advanced by our team.27-29 

2.0 Results 
The field deployment tasks of our project were completed on 10/09/2023. The AE33 was operated to 
monitor the concentrations of LAP. The instrument inlet was equipped with a cyclone with a particle 
cutoff of 2.5 μm and placed 5 m above ground level. Hour-resolved LAP mass loadings at seven 
wavelengths were reported by the instrument’s built-in algorithm, which calculates mass loading from 
the rate of change of the attenuation of light transmitted through the aethalometer filter tape. The 
absorbance of the filter-deposited bulk aerosol samples measured at 880 nm is an operationally defined 
reference value for calculation of the BC atmospheric mass loading (ng/m3). Hourly resolved 
measurements from AE 33 have been uploaded to the ARM data server as an ARM0816 data product. 
The data set includes: 1) absorbances (Mm-1) at seven wavelengths of 370, 470, 520 590, 660, 880, and 
950 nm, 2) estimated mass loadings (ng m-3) at each of the wavelengths assuming mass absorption 
coefficients of BC, 3) absorption Ångström exponent (AAE) of BrC calculated as the slope of a linear fit 
of log(λ) versus log(Absλ), based on 370, 470, and 520 nm datapoints, 4) AAE of BC calculated as the 
slope of a linear fit of log(λ) versus log(Absλ), based on 590, 660, 880, and 950 nm datapoints, 5) CO2 
atmospheric mixing (ppm) at the site monitored with a Vaisala CARBOCAP carbon dioxide probe 
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GMP343. A summary data file with the time tags of particle samples collected on microscopy substrates 
using TRAC has been uploaded as an ARM0822 data product. 

The sample analyses tasks are still ongoing at the time of this report; they will be followed with data 
analysis and interpretation. The chemical imaging experiments require use of Environmental Molecular 
Sciences Laboratory/Pacific Northwest National Laboratory and Advanced Light Source/Lawrence 
Berkeley National Laboratory user facilities, which are scheduled for our group later in 2024 and in 2025. 
Chemical composition, volatility, and optical properties of organic carbon in aerosol and snow samples 
are now being investigated following methodologies developed in our recent laboratory studies28,29 of 
snowpack samples collected in China.6,27 The latter was conducted withing the framework of our project 
as a case study to establish analytical protocols to streamline and facilitate analysis of the expected 
snowpack samples from SAIL. 

Below we highlight our selected ongoing efforts on the chemical characterization of samples collected 
during SAIL. 

AE33 measurements were used to select samples for detailed chemical analysis. Figure 2 exemplifies two 
different cases of BrC events inferred from field records. The first case shown in panel (a) was attributed 
to long-range transport of biomass burning aerosol from Canadian wildfires that reached the SAIL site on 
May 20, 2023, and effected the area until May 25, 2023. Filter samples caught the start, middle, and end 
of the plume. The second case shown in panel (b) is a diurnal series of biomass burning events from local 
campfires observed in mid-July of 2023. Each of these events started at 18:00 local time and ended by 
midnight. The time records and high AAE is consistent with fresh BrC emissions from local sources. Tan 
bars in Figure 2b represent individual TRAC samples. Within the period of local campfire episodes, k-
means a machine learning clustering algorithm was used to process AE33 records and identify samples 
with representative and statistically significant differences in particle optical properties. Three types of 
light-absorbing particles were identified: 1) strongly and 2) moderately absorbing BrC from biomass 
burning events, 3) background BrC-influenced various unspecific local sources. Samples from each of 
these distinct clusters are selected for the planned chemical imaging studies at U.S. Department of Energy 
user facilities. These samples are shown as green overlays in Figure 2b. 



A Laskin et al., March 2024, DOE/SC-ARM-24-007 

4 

 
Figure 2. Two events identified during deployment of the AE33. a) Canadian wildfire plume that 

effected the region in late May 2023 shows characteristics of aged BrC. b) Local campfires 
north of AMF2 show characteristics of fresh BrC. Tan bars represent individual TRAC 
samples; green overlay represent samples selected for chemical imaging. 

In a separate task, atmospheric particles from different altitudes were collected on tethered balloon system 
(TBS) flights on May 16, 2022, which coincided with a BC/BrC plume recorded by the AE33. Particle 
samples are analyzed with STXM/NEXAFS and CCSEM/EDX to characterize particle components and 
mixing states. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backwards 
trajectories of the airmass show it moved over several populated areas in western Colorado. Sampled 
particles likely originated when the air mass stagnated over Delta, Colorado. Figure 3 shows STXM 
particle size distributions (PSD) at separate sampling altitudes. Altitudes below 250 m show higher 
particle diversity with increased organic volume fraction that suggest freshly emitted biomass burning 
samples while altitudes above 250 m have aerosols typical of internally mixed aged aerosol. 

 
Figure 3. STXM/NEXAFS particle information. (a-d) Chemical mixing PSD of experimentally defined 

chemical components. (e-h) Organic volume fraction (OVF) measurements of the same PSD. 
(i) IM1 ascended from 0-250 m, IM3 ascended from 300-750 m, IM5 loitered between 300 
and 500 m, and IM6 ascended from 0-250 m during the top of the BC event. 
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Multimodal chemical analysis of bulk snow samples provides detailed chemical information on the 
composition of MD, particle size distributions of BC, and chemical speciation of BrC components. The 
exact timing of the haze events was identified with scanning mobility particle sizer (SMPS), cloud 
condensation nuclei counter (CCN), and nephelometer records from real-time measurements at AMF2. 
HYPSLIT backwards trajectories reveal the source of the particle haze events to be from central Arizona 
and likely influenced by the Phoenix metro area. Analysis of the BrC components shows that most 
water-soluble BrC chromophores are monoaromatic compounds with minor influence from substituted 
polyaromatic hydrocarbons (Figure 4).  

 
Figure 4. 3D LC-UV/Vis chromatogram of water-soluble organic compounds (WSOC) present in 

February snow samples. Fraction A is characterized as monoaromatic compounds, Fraction B 
is lignin depolymerization products associated with biomass burning, and Fraction C is 
substituted polycyclic aromatic hydrocarbons (PAH) associated with high-temperature 
combustion. 

High amounts of monoaromatic compounds without significant contribution from lignin 
depolymerization products are typical of urban emissions. CCSEM/EDX characterization of MD is 
focused on the Fe-containing particles as they tend to be the most absorbing in the visible range. 25,26 
Identified MD are Fe-aluminosilicates that ranged from 1-3 µm that were consistent with Arizona dust 
standards.25 Insoluble BC particles are imaged with a spatial resolution of 35 nm and they are identified 
based on their distinct NEXAFS absorption features at 285.4 eV. Sizes of the detected BC particles range 
from 30 to 100 nm, and they exhibit NEXAFS spectra consistent with biomass burning particles. 

Additional work involves chemical analysis of the aerosol samples collected on the AE33 tape using 
temperature-programed desorption direct analysis in real-time, high-resolution mass spectrometry,29 
quantifying the gas-particle partitioning and viscosity of deposited organic aerosol and quantifying its 
BrC components. Samples collected during the haze event apportioned to the Canadian wildfire in 2023 
and the local campfires events (Figure 1) will be the primary focus of this analysis. Additionally, 
chemical imaging of particle samples collected on the TRAC corresponding to the same campfire events 
will be performed to evaluate particle morphology and mixing states. 
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