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Acronyms and Abbreviations 

ANC ancillary site 
ARM Atmospheric Radiation Measurement 
CCN cloud condensation nuclei 
DMA differential mobility analyzer 
FIMS fast integrated mobility spectrometer 
HFIMS relative humidity-controlled fast integrated mobility spectrometer 
HTDMA humidified tandem differential mobility analyzer 
IOP intensive operational period 
RH relative humidity 
SCCN size-resolved cloud condensation nuclei 
TRACER Tracking Aerosol Convection Interactions Experiment 
UPS uninterruptible power supply 
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1.0 Summary 
Convective clouds play a critical role in the Earth’s climate system. Recent research has shown that a 
realistic representation of convective processes is critical to constraining climate sensitivity in global 
climate models. Theoretical and modeling studies showed that aerosols could have strong dynamic 
feedback to convection in warm and humid environments through enhancing ice-related processes and 
condensational growth. A few observation-based studies also suggested the influence of aerosols on 
convective cloud and precipitation properties. However, robust observational quantification of an aerosol 
effect on convective clouds isolated from other factors remains elusive. 

Understanding the impact of aerosol on convective clouds requires knowledge of the cloud condensation 
nuclei (CCN) spectrum, which represents the number of particles that uptake water and form cloud 
droplets as a function of supersaturation. The water uptake by aerosol is also of critical importance for the 
direct interaction of aerosol with radiation (i.e., aerosol direct effect) due to light scattering and absorption 
by aerosol. While both droplet activation under supersaturated conditions (i.e., relative humidity 
RH > 100%) and the hygroscopic growth under sub-saturated conditions (i.e., RH < 100%) are strongly 
influenced by particle hygroscopicity, the thermodynamic regimes and measurement methods are quite 
different. Aerosol particles, especially organic particles, can exhibit higher hygroscopicity for droplet 
activation than that for hygroscopic growth. In the subsaturated regime, the hygroscopicity of organic 
particles can also vary strongly with RH. However, global climate models usually treat organic species in 
aerosols with a constant hygroscopicity, potentially introducing substantial uncertainties in the 
quantification of aerosol radiative effects. 

During the intensive operational period (IOP) of the U.S. Department of Energy Atmospheric Radiation 
Measurement (ARM) use facility’s Tracking Aerosol Convection Interactions Experiment (TRACER), 
two guest instruments, a size-resolved cloud condensation nuclei (SCCN) system and an RH-controlled 
fast integrated mobility spectrometer (HFIMS), were deployed at the ancillary site (ANC) from July 3rd 
to September 10th, 2022 (Figure 1). 

 
Figure 1. SCCN system and HFIMS deployed at the ANC site during TRACER IOP. 
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The SCCN system provides activation fraction spectra of size-selected particles and allows the derivation 
of particle hygroscopicity (κCCN) under supersaturated conditions (Frank et al. 2006, Moore et al. 2010). 
The spectrum of activation fraction was obtained for five dry particle sizes ranging from ~ 40 nm to 
~ 165 nm every 60 to 90 minutes. The HFIMS is based on the FIMS technology invented by our group, 
and jointly developed by Aerosol Dynamics Inc. and our group with support from the U.S. Department of 
Energy Small Business Innovation Research program (Pinterich et al. 2017b, Wang et al. 2019, 
Zhang et al. 2022, Zhang et al. 2021). The key component of the HFIMS is a water-based FIMS, which 
measures the size distribution of humidified particles with high time resolution (Pinterich et al. 2017b, 
2017a). By replacing the second DMA inside a traditional humidified tandem differential mobility 
analyzer (HTDMA) with the water-based FIMS, the measurements of the size distribution of humidified 
particles, and thus the hygroscopic growth factor, is significantly accelerated in the HFIMS. During the 
deployment, hygroscopic growth of particles with dry diameter of 35, 50, 75, 110, 165, and 265 nm at 
75%, 85%, and 90% RH were measured every 22 minutes. Particle hygroscopicity under sub-saturated 
conditions (κGF) can be derived from the measured particle hygroscopic growth. The combination of the 
two instruments provided size-resolved aerosol hygroscopicity under both super- and sub-saturated 
conditions. 

2.0 Results 

2.1 Preliminary Results 

We classified the airmasses arriving at the ANC site during the IOP into two clusters. The first cluster 
represents marine airmasses from the Gulf of Mexico with minimum influences from continental 
emissions. The second cluster includes the continental airmasses that often were strongly influenced by 
urban emissions (Figure 2). 

 
Figure 2. Clustered backward trajectories of airmass arriving at the ANC site during the TRACER IOP. 

Figure 3 shows the particle size distribution, chemical composition, average κGF under RH=90%, and 
κCCN on August 16th (marine airmass) and August 13th (continental airmass). The marine airmass 
exhibits a bimodal size distribution while the aerosols in the continental airmass on August 13th display a 
unimodal size distribution (Figure 3a). For the marine airmass, sulfate is the dominant chemical species 
throughout the day, followed by organics and ammonium, and the contribution from nitrate to the 
submicron aerosol mass is minor. In comparison, for the continental airmass, organics are the most 
dominant, followed by nitrate, sulfate, and ammonium (Figure 3b). Both κGF and κCCN show a general 
increasing trend with particle diameter (Figure 3c,d), suggesting higher fractions of more hygroscopic 
species (e.g., sulfate) in larger particles. Aerosols in the marine airmass show higher hygroscopicity than 
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those in the continental airmass (Figure 3c,d), consistent with the fact that the composition of aerosols in 
marine airmasses is more dominated by sulfate. 

 
Figure 3. (a) Contour plot of particle number size distributions. (b) Mass concentrations of organics, 

sulfate, nitrate, and ammonium. (c) Average κGF for particles with diameters of 35, 50, 75, 
110, 165, and 265 nm at 90% RH. (d) κCCN for particles with diameters of 40, 50, 75, and 
110 nm. The left and right panels show data collected on August 16th (marine airmass) and 
August 13th (continental airmass), respectively. 

2.2 Further Research Opportunities 
Data from these two instruments will allow high-level data quality checks through closure studies, and the 
development of a CCN spectrum with high time resolution and value-added aerosol microphysics data 
sets that include size spectrum, mixing state, hygroscopicity growth, and CCN activity. These 
value-added data sets will allow the scientific community to examine both the impact of aerosols on 
physical processes and properties of deep convective systems and the impact of convective systems on the 
transport and cloud-processing of aerosols. 

Data from the HFIMS and SCCN system can be combined with other ARM Aerosol Observing System 
measurements to quantify the variations of aerosol hygroscopicity with saturation regime and RH, and 
elucidate the key controlling factors and underlying mechanisms for the variations. The measurements 
during the two-month deployment will allow us to statistically examine the values of κCCN and κGF for 
ambient aerosols. We will compare the values of κCCN and κGF, and examine the variation of κGF with 
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RH for representative aerosol types, including relatively clean background aerosols from the Gulf of 
Mexico (i.e., marine airmass), and those strongly influenced by urban pollution and/or regional biogenic 
emissions (continental airmass). We can gain important insights into the underlying mechanisms by 
examining the trend of κGF with RH and the dependence of κCCN with particle size and composition. 
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4.0 Lessons Learned 
Measurements were interrupted near the end of August due to a power outage and failure of UPS. A more 
robust UPS unit is highly desirable. 
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