Stochastic Approach to Study Cirrus Structure Using ARM
Millimeter Wavelength Radar Observations

PENNSTATE : : :
G K. Ivanova, Pennsylvania State University |

UMNMIYERSITTY

Motivation Method of Analysis

: : ‘ol - It is known that two equations govern the dynamics of a system.
Knowledge Of the local dynamlcal proper"rles within cirrus and The Fokker-Planck equation for the probability distribution functions

the radiative response due to these properties is still lacking. p(xt) [ 9 32
The interactions between the synopthic conditions in which > —ng (x,1) 4 o D, (x,t) | p(x,1)

cirrus form and maintain, and the small-scale of individual And the Lanaevin equa,“on for the state of the system

generating cells are still not quantitatively understood. dr
S’rochasnc approximation

1'o the fast nonlinear processes

Observations: 2o 1 April 19, 2004 | 1 All slow, large scale processes
MMCR + Because we infer a stochastic model from discrete empirical datag,
measurements s the Ito calculus is more relevant to describe the dynamics of the

at ARM SGP site
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system. The Kramers-Moyal expansion of the drift D, and diffusion
D, coefficients is:

D, (x.0)=h(x. r)+a§( 1 o(x.0)
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We find that 2hr scale (~100 km) cirrus A
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We demonstrate that

The time-dependent, non Gaussian pdfs can be produced by a linear
system (linear drift D,) with multiplicative noise (quadratic D,).

The former is tentatively identified with larger-scale forcing and
the latter with in-cloud circulation and turbulence.

Obtained quadratic dependence of D, leads to the existence of
noise-induced drift term.

The noise-induced drift presents the stochasticity in the dynamics
of the system, the influence of the small-scale noise on the slow,
large-scale deterministic processes.

We find that at the scale of the generating cells

The effective drift has larger values at the top and the base because
it is in a closer contact with the large-scale conditions.

The larger values of the noise-induced drift obtained for the middle
50% of both cirrus A and B are in accordance with what is expected
from the ice crystal growth and deposition region.
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We find correlations with period ®,=200s at the top and with period

®»,=600s at the upper 33% of cirrus A. These scales are suggestive of
phenomena that occur on larger scales simultaneously with the processes
that are taking place in the generating cells.

We find no periodicity in cirrus B.
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