
Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14-18, 2005 

Parameterization of the Autoconversion Process: 
Kessler-Type, Sundqvist-Type, and Unification 

 
 

Y. Liu, P.H. Daum, and R.L. McGraw 
Brookhaven National Laboratory 

Upton, New York 
 
 
Introduction 
 
A key process that must be parameterized in atmospheric models of various scales (from large eddy 
simulation models to cloud-resolving models to global climate models) is the autoconversion process 
whereby large cloud droplets collect small ones and become embryonic raindrops.  Accurate 
parameterization and physical understanding of this process is especially important for studies of the 
second indirect aerosol effect.  (Rotstayn 2000; Rotstayn and Liu 2005).  All the autoconversion 
parameterizations that have been developed so far can be generically written as 
 
 0P PT=  (1) 
 
where P is the autoconversion rate (g cm-3 s-1); P0 represents the autoconversion rate after the onset of 
the autoconversion process (rate function hereafter), and T represents the threshold function describing 
the onset of the autoconversion process.  
 
The rate function P0 has been the primary focus of previous studies (Kessler 1969; Manton and 
Cotton 1977; Liou and Ou 1989; Baker 1993; Liu and Daum 2004).  The threshold function T, however, 
has received little attention.  The only two available expressions are ad hoc in nature (Kessler 1969; 
Sundqvist 1978; Del Genio et al. 1996).  Lack of physics behind these ad hoc threshold functions is a 
deficiency of existing autoconversion parameterizations.  
 
This work focuses on the threshold function, and is an extension of our two recent studies that derive 
theoretical expressions for the rate function (Liu and Daum 2004) and the critical radius associated with 
the Kessler-type parameterizations (Liu et al. 2004).  By generalizing Sundqvist-type parameterizations, 
we show that Kessler-type parameterizations are special cases of the corresponding Sundqvist-type 
parameterization, unifying the two types of parameterizations.  A new threshold function is derived by 
considering the effect of truncating the cloud droplet size distribution on the autoconversion rate. 
Combining the new threshold function with the Liu-Daum rate function leads to a new type of 
autoconversion parameterization that has a firm theoretical basis. 
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Development of a Kessler-Type Parameterization  
 
Without loss of generality, later Kessler-type parameterizations can be written as 
 

( )0K m cP P H r r= −  (2) 
 
where the subscript “K” means that the corresponding variable is of Kessler-type.  The Heaviside step 
function H(rm − rc) is introduced as a threshold function to describe a sudden transition from cloud water 
to rain water when the driving radius rm is larger than the critical radius rc.  Previous effort has been 
mainly devoted to improving specification of the rate function P0 (see Liu and Daum 2004 for detailed 
discussions on existing autoconversion functions and their differences).  The Liu-Daum rate function is 
given by 
 
  (3) 6 1

6LHP Nκβ −= 3L
 
where =1.1 x 1010 cm-3 s-1, and β6 is a known function of the relative dispersion of the droplet size 
distribution. 

κ

 
The critical radius had been artificially tuned until recently when we derived an analytical expression 
from the kinetic potential theory (Liu et al. 2004; McGraw and Liu 2004) 
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where ν=3.0 x 10-23 (g), and βcon = 1.15 x 1023 (s-1). 
 
Despite this progress, Kessler-type parameterizations still suffer from the following deficiencies:  (1) the 
discontinuously abrupt transition from cloud water to rainwater described by the Heaviside step function 
is physically unrealistic; (2) the definition of the driving radius varies for different parameterizations, 
and (3) the parameterizations implicitly accounts for cloud droplets of all sizes in calculation of the 
autoconversion rate without considering the effect of truncating the droplet size distribution. 
 
Existing Sundqvist-Type Parameterizations and Generalization 
 
Sundquist (1978) proposed another ad hoc expression for the threshold function 
 

2

1 expS
c

LT
L

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (5) 

 
where Lc is the critical liquid water content that is often prescribed in atmospheric models.  A slightly 
different threshold function was introduced by Del Genio et al. (1996) 
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Equation (5) exhibits a cloud-to-rain transition sharper than Eq. (4), but still smoother than the 
Heaviside step function.  These Sundqvist-type parameterizations can be easily generalized, and the 
generalized Sundqvist threshold function is given by  
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where m = L/N is the mean mass, mc = L/N is the critical mass, and r3 is the mean-volume radius.  The 
empirical exponent µ > 0 is introduced to unify Kessler-type and Sundqvist-type parameterizations.  A 
new Sundqvist-type parameterization that explicitly accounts for the droplet concentration and relative 
dispersion in addition to the liquid water content can be obtained by combining the Liu-Daum 
autoconversion function and the generalized Sundqvist-type threshold function such that 
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 (8) 

 
Unification of Kessler-and Sundqvist-Type Parameterizations 
 
It is clear that the only difference between the Kessler-type parameterization and the generalized 
Sundqvist-type parameterization lies in their threshold functions.  Figure 1 shows that the Kessler-type 
parameterization becomes a special case of the generalized Sundqvist-type parameterization when m 
approaches µ. 
 

 
 
Figure 1.  Illustration of the generalized Sundqvist-type threshold function for different values of 
exponent µ.  It is evident that the generalized Sundqvist-type threshold function approaches a 
Heaviside step function when µ approaches 100. 
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Size Truncation Effect, Truncation Function, and New 
Parameterization  
 
Despite the nice features of the generalized Sundqvist-type parameterization, there is no physical basis 
for the form of the threshold function.  It turns out that the threshold function is equivalent to the size 
truncation function defined below. 
 
All the equations used in Liu and Daum (2004) to derive Eq. (3) hold when truncating the cloud droplet 
size distribution between rc and rd (rd is the upper truncation radius), except that Eq. (3) becomes 
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where mc and md are the critical mass and the upper truncation mass, respectively, and the quantities 
with subscript “e” are for the cloud droplets between rc and rd, whereas their counterparts are for all the 
droplets (radius from 0 to µ).  For a typical exponential droplet size distribution.  he size truncation 
function α defined as 
 
    6 1 3

N Lβα α α α−=  (10) 
 
To evaluate α (αβ, αN, and αL), we employ a typical mass distribution of the Boltzman type (see Liu 
et al. [1995], Liu and Hallett [1997], and Costa et al. [2000] for justification of using this distribution) 
 

  ( ) expNn m
m m

⎛= −⎜
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⎟  (11) 
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Substitution of Eq. (8) into Eqs. (6b), (6c), and (6d) yields the following expressions: 
 
  e ecx

Nα dx− −= −  (12a) 
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 ( ) ( ) ( ) ( )2 21= 2 2 e 2 2 e 1 e 1 e
2

c d cx x x
c c d d c dx x x x x xα − − −⎡ ⎤ dx−⎡ ⎤+ + − + + + − +⎣ ⎦⎣ ⎦     (12d) 
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According to Eq. (9d), for a given xd, α is a unique function of xc.  When xd = ∝, Eq. (9d) becomes 
 

  ( ) ( ) 221= 2 2 1 e
2

cx
c c cx x xα −

∞ + + +  (12e) 

 
Figure 2 shows α as a function of xc for xd = 1 (dotted), 2 (dashed), 10 (dot-dashed), and ∝ (solid), 
respectively.  It is clear from this figure that α quickly approaches α∝ after xd approaches 10 (Note that 
the dot-dashed curve for xd = 10 is virtually overlaps the solid curve for α∝).  Because the condition that 
xd = 10, or rd = 101/3  r3, is usually satisfied (e.g., xd = 37 if rd = 50 µm and r3 = 15 µm), it is reasonable 
to assume that α =α∝.  Furthermore, α∝ exhibits the threshold behavior expected for the threshold 
function.  The equivalence of the size truncation function and the threshold function is evident from the 
fact that rc signals the onset of the autoconversion process.  For consistency with the common form of 
the parameterization (i.e., Eq. [1]), α∝ is hereafter referred to as the new threshold function and denoted 
as TNew. 
 
Comparisons of Figures 3 with 2, and Eq. (8) with (1) indicate that Eq. (13) is a threshold function.  
Therefore, an entirely new parameterization can be obtained by combining Eqs. (3), (4), and (11).  
Figure 3 compares this new parameterization with the corresponding Kessler-type and two typical 
Sundqvist-type parameterizations. 
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 Figure 2.  Size truncation function as a function of xc for xd = 1 (dotted), 2 (dashed), 10 (dot-

dashed), and µ (solid), respectively.  Note that the curve for xd = 10 overlaps with the µ curve. 
 
 

 
Figure 3.  Comparison of the new type of autoconversion parameterization with the existing ones.  The 
dashed and solid curves represent that for N = 50 cm-3 and N = 500 cm-3, respectively.  The black, 
green, red and purple colors represent results from the new parameterization, the Kessler-type 
parameterization with r3 as the driving radius, and the Sundqvist-type parameterizations with µ = 2, 4, 
respectively.  The blue color simply represents the Liu-Daum autoconversion function, or without the 
threshold effect.  The Lc values (Lc = 0.19 gm-3 for N = 50 cm-3; Lc = 1.04 gm-3 for N = 500 cm-3 are 
determined by setting xc = 1 in Equation (16) such that 9 3/ 49.8 10cL N−= × . 
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Concluding Remarks 
 
It is argued that the autoconversion rate P can be generally expressed as a product of two distinct parts: 
the autoconversion function P0 and the threshold function T, and that existing parameterizations can be 
classified into either Kessler-type or Sundqvist-type according to their threshold functions.  Existing 
Sundqvist-type parameterizations are first generalized by introducing an empirical exponent µ, and then 
extended to explicitly account for the effect of the cloud droplet concentration on the autoconversion 
rate.  The generalized Sundqvist-type parameterization includes the corresponding Kessler-type 
parameterization as a limiting case of µ →∝, unifying the two traditionally different types of the 
autoconversion rate. 
 
A function defined as the size truncation function is introduced to quantify the effect of size truncation 
of the cloud droplet size distribution on the autoconversion rate.  It is shown that the threshold behavior 
associated with the autoconversion process can be represented by the size truncation function, providing 
a unified physical explanation for the threshold function.  A new type of parameterization is obtained by 
coupling the new threshold function with our recently derived expressions for the rate function and 
critical radius.  The new parameterization further reveals the approximations and eliminates many 
deficiencies of the existing Kessler-type and Sundqvist-type parameterizations.  For example, in contrast 
to Kessler-type parameterizations, this new parameterization does not require specification of the 
empirical driving radius and critical radius.  Furthermore, it is shown that Sundqvist-type 
parameterizations with smooth cloud-to-rain transitions describe the autoconversion rate better than 
Kessler-type parameterizations with discontinuously sharp transitions.  The fact that the autoconversion 
rate is a product of the rate function and the threshold function also raises questions as to those 
parameterizations based on fitting numerical results from detailed microphysical simulations with a 
simple function.  
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