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Introduction 
 
Because of both the various effects clouds exert on the earth-atmospheric system and the cloud 
feedback, correct representations of clouds in numerical models are critical for accurate climate 
modeling and weather forecast.  Unfortunately, determination of clouds and their radiative feedback 
processes is still the weakest component of current general circulation models (e.g., Senior and Mitchell 
1993, Cess et al. 1996). 
 
Using radiative fluxes at the top of atmosphere (TOA) available from satellite observations made by the 
Earth Radiation Budget Experiment (ERBE; Barkstrom 1984), one could assess cloud radiative effects 
observed by the satellites (e.g., Harrison et al. 1990), and the ability of general circulation models to 
represent these effects could be assessed by comparing the simulated cloud radiative effects at the TOA, 
caused by all clouds as a whole, to that from satellite observations (e.g., Kiehl et al. 1994, Chen and 
Erich 1995).  However, the agreement between model’s simulation and satellite observations could be 
due to the presence of compensating errors associated with different cloud types. 
 
Data products from the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer 
1991, Rossow et al. 1996, Rossow and Schiffer 1999) provide retrievals of cloud amount, cloud optical 
depth, and cloud top pressure, i.e., information for defining various cloud types.  These products have 
been used widely for evaluating the representation of clouds in large-scale numerical models and for 
better understanding effects of various cloud types, defined by cloud top pressure and optical depth, on 
the TOA radiation budget (e.g., Hartmann et al. 1992, Chen et al. 2000, Webb et al. 2001, Hartmann 
et al. 2001, Zhang et al. 2001). 
 
Cloud-resolving models (CRMs) are increasingly being used for understanding cloud processes and for 
better representing these processes in large-scale models (e.g., Chaboureau and Bechtold 2002, 
Khairoutdinov and Randall 2001, Kohler 1999, Krueger et al. 1995).  However, detailed evaluations of 
the ability of CRMs to represent the occurrence of various cloud types have not been made mainly due 
to lack of observations on comparable spatial and temporal resolution. 
 
During the past decade, detailed observations of clouds and radiation have increased.  The long-term 
high time-resolution cloud radar (and other) observations at the Atmospheric Radiation Measurement 
(ARM) Cloud and Radiation Testbed (CART) sites have provided information for cloud, atmosphere, 
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and radiative flux.  Algorithms have been developed to retrieve macrophysical and microphysical 
properties of clouds from ground-based measurements (e.g., Dong and Mace 2003, Wang and Sassen 
2002a, Mace et al. 2001).  On the other hand, cloud properties for large spatial and temporal domains are 
now available from satellite observations with spacial resolution on the order of one to several 
kilometer(s) every half-hour using advanced retrieval methods (e.g., Platnick et al. 2001, Han et al. 
1999, Minnis et al. 1998, Minnis et al. 1995a and 1995b).  These datasets make it possible to determine 
and evaluate the occurrence frequencies and radiative forcings of various cloud types in a CRM (or 
single-column model [SCM]/general circulation model) simulation. 
 
Observations 
 
In this study, observations from the millimeter wave cloud radar (MMCR) located at the ARM Southern 
Great Plains (SGP) Central Facility (CF) and from the satellite retrievals over the SGP CART site 
provided by Patrick Minnis’ group at National Aeronautics and Space Administration (NASA) Langley 
Research Center are used to evaluate the occurrences (and radiative forcings) of various cloud types 
simulated by a CRM.  Short descriptions of both datasets follow. 
 
Observations from the Millimeter Wave Cloud Radar 
 
The MMCR is a vertically pointing, single-polarization radar that operates at a frequency of 35 GHz 
(λ = 8.7 mm).  The radar possesses a Doppler capability that will allow the measurement of cloud 
constituent vertical velocities.  To optimize the radar for sensitivity, spatial resolution, and a reduction of 
range side-lobe artifacts the MMCR uses four operational modes.  The most sensitive modes can detect 
reflectivity values approaching -50 dBZ.  The MMCR probes the extent and composition of clouds, and 
also measures radar reflectivity of the atmosphere up to 20 km.  The time-resolution of MMCR is about 
39 sec. for all four operating modes.  Depending on the mode in use, the MMCR has a vertical range 
gate resolution of 45 m and 90 m and a range distance from 0.1 km to 15 km.  By using a narrow beam 
width of 0.2° to 0.3°, the MMCR has a horizontal field of view of 35m to 50 m at a height of 10 km.  
Observations from the MMCR have been used to evaluate hydrometer prediction by a global model.  
Weaknesses present in the MMCR include its availability at a single point within the SGP site, i.e., SGP 
CF (latitude 36.61°N, longitude 97.49°W), that it can detect objects other than clouds such as insects, 
and that it is unable to detect the smallest cloud particles (approximately re ≤4.0 µm) (Wang and Sassen 
2002b).  Since the un-detected smallest cloud particles are radiatively insignificant, the MMCR is useful 
for studying the microphysical properties of most cloud layers.  A micropulse lidar (MPL) can 
distinguish clouds from insects so that it is used together with the MMCR merged moments to detect 
boundary layer clouds. 
 
Combining the MMCR reflectivity with other information, Mace et al. (2001; MCA hereafter) retrieved 
microphysical properties including ice water path (IWP), layer mean effective radius (re), and number 
concentration of ice crystals, of single-layer thin cirrus clouds over the SGP site since November 1996.  
The high time resolution (3 min averages every 8 min) and long-term coverage make these retrievals 
useful for evaluating the representation of cirrus clouds in atmospheric numerical models (Luo et al. 
2003).  The weaknesses include its availability at a single point and for only one cloud type. 
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Satellite Observations 
 
Satellite observations we used include both the radiative fluxes at the TOA from geostationary 
operational environmental satellite-8 (GOES-8) and cloud products generated by Patrick Minnis’ group 
at NASA Langley Research Center.  The broadband longwave (LW) flux was obtained by conversion 
from narrow band LW radiance.  The monthly mean uncertainty (rms error) is within 10 W/m2 over the 
SGP SCM analysis domain (Khaiyer et al. 2002).  The pixel level OLR has good quality too, although 
satellite navigation errors result in pixel shifts of 4- to 8-km.  The reflected shortwave (SW) flux is 
calculated from broadband albedo, whose monthly mean uncertainty (rms error) is within 0.02 over the 
SGP SCM analysis domain based on the results from Khaiyer et al. (2002).  Geostationary satellite cloud 
products are useful because they include cloud information over a large spatial domain at 4-km space 
resolution and at half-hour time intervals for all cloud types, so that occurrences, properties, radiative 
effects, and spatial distributions of various cloud types can be analyzed.  Their disadvantages include the 
varying reliability of the retrievals.  One source of uncertainties in satellite retrievals is the assumptions 
made about the cloud, atmosphere, and surface characteristics.  The most important assumptions 
include:  (1) cloud optical properties are uniform over the image pixels; hence, cloud cover of pixel is 
either zero or one and (2) clouds are single layers. 
 
Minnis’ group used a pair of multi-spectral algorithms, the visible infrared solar-infrared split-window 
technique (VISST) for daytime and Solar Infrared Station (SIRS) method for nighttime, as described by 
Minnis et al. (1995a) using the models of Minnis et al. (1998), together with the technique of Minnis and 
Smith (1998) to analyze the half-hourly, 4-km GOES-8 imager data (0.65 µm, visible [VIS]; 3.9 µm, 
solar infrared [SIR]; 10.8 µm, infrared [IR]; and 12.0 µm, split-window [SWC]).  The ISCCP retrieval 
used a VIS-IR bispectral method in daytime and an IR-only method in nighttime so that cloud optical 
properties could not be retrieved for nighttime.  The multi-spectral algorithms use radiative radiances at 
two more channels:  the SIR radiance to estimate cloud particle size and the SWC radiance to help 
determine cloud phase (Young et al. 1997). 
 
Minnis uses the general approach for quantifying clouds, which consists of two stages:  cloud 
identification and cloud properties retrieval.  Cloud is identified by comparing an observed radiance or 
set of radiances at different wavelengths to the values expected from a clear (cloudless) scene (pixel).  If 
the observed radiance is sufficiently different from the clear-sky value, the pixel is designated as cloudy.  
For each cloudy pixel, variables including cloud phase, cloud top temperature, cloud optical depth, 
effective droplet radius (re) or effective ice crystal diameter (De), and liquid water path (LWP) or ice 
water path (IWP) are determined iteratively by matching the observed radiances with results from 
radiative transfer models and cloud microphysical models for a wide range of particle sizes and cloud 
and clear-sky temperatures.  Minnis uses the profiles of temperature and humidity from the Rapid 
Update Cycle (RUC) 3 hourly soundings.  In this study we used the Minnis cloud products over the 
ARM SGP Cloud and Radiation Testbed (CART) site during the summer 1997 intensive observation 
period (IOP).  There are about 7000 pixels every half hour within the SGP SCM analysis domain. 
 
Occurrence Frequency of Various Cloud Types 
 
The effects of clouds on the earth-atmosphere system’s radiative budget (and hydrological cycle) are 
different for various cloud types.  The net radiative effect of clouds depends on cloud type occurrence 
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frequencies.  We used the Minnis satellite retrievals within the SGP SCM analysis domain, together with 
the MMCR observations at the SGP CF, to evaluate the cloud type occurrence frequencies in a 
simulation performed by the UCLA/CSU CRM using the ARM variational analyses. 
 
Methods for Analyzing Cloud Occurrences 
 
Based on the Minnis half-hourly pixel level cloud products including cloud phase, cloud-top pressure, 
and cloud visible optical depth, we calculated the occurrence frequencies of various cloud types, as 
defined by total cloud visible optical depth and cloud-top pressure of highest cloud layer, at nearly half-
hour intervals.  The occurrence frequency of a cloud type is the fraction of the total number of pixels 
occupied by the cloud type within the SGP SCM analysis domain. 
 
The ISCCP simulator was developed by S. Klein (GFDL) and M. Webb (UKMO) as a connection 
between results from a general circulation model/SCM and observations from satellite and single-point 
ground-based instruments.  The ISCCP simulator divides a general circulation model/SCM predicted 
grid-mean cloud water/ice content at each level into a number of sub-grid columns using the profile of 
model cloud fraction together with a cloud overlap assumption.  Each sub-grid column is considered as 
either clear or containing a single cloud layer, similar to a satellite pixel.  For each sub-grid column, the 
IR radiance at the TOA is calculated from a satellite’s field of view, including emission/absorption of 
surface, water vapor and clouds at all levels, while cloud optical properties (visible optical depth and IR 
emissivity) are determined from the model’s cloud water/ice content and droplet/crystal size 
distribution.  The IR radiance from cloud is then determined.  The cloud-top temperature is computed 
using inverse Planck function and cloud-top pressure is determined as the model level with the same 
temperature.  The occurrence frequencies of a variety of cloud types defined by cloud visible optical 
depth and cloud-top pressure, following the definitions of ISCCP, are then calculated by the ISCCP 
simulator. 
 
Unlike a general circulation model/SCM, a CRM explicitly simulates two-dimensional (2D) or three-
dimensional (3D) cloud fields, so no overlap assumption is needed to get a cloud distribution.  We 
modified the original ISCCP simulator for use in our CRM analysis.  Each CRM grid column is 
considered as a satellite pixel and has a single cloud type. 
 
To calculate the visible (0.65 µm) cloud optical depth and cloud IR (10.5 µm) emissivity due to the 
CRM simulated liquid water clouds, we used the parameterization of Hu and Stamnes with the cloud 
droplet effective radius specified as 10 µm.  For ice clouds, we used the parameterization of Fu and Liou 
(1993).  The CRM included two different sizes of ice crystals:  re = 25 µm and 75 µm, which represent 
small ice crystals and “snow” (large ice crystals) respectively.  For mixed phase clouds, the visible 
optical depths of liquid water droplets and ice crystals are added to obtain the total visible optical depth, 
while the absorption coefficients of cloud droplets and ice crystals are added to obtain the total cloud 
absorption coefficient used for calculating the LW emissivity.  We determined the corresponding cloud 
type frequencies in the CRM simulation using the modified ISCCP cloud type simulator program every 
5 min.  Cloud type occurrence frequency is defined as the fraction of model columns that contain each 
cloud type. 
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We focus our analysis on the ABC subperiods (14 days) during which cloud formed/decayed mainly 
within the ARM CART site.  Since the satellite cloud-detection and cloud-property retrieval used by 
Minnis’ group are different in night and day, we examine the time-averaged cloud type frequencies 
during the daytime and nighttime, separately.  Due to larger uncertainties in the satellite retrievals 
around sunrise and sunset, we exclude these times and define daytime as from 0800 to 1700 local time 
and nighttime as 2000 to 0040.  Because the satellite cloud-property retrieval method used for nighttime 
can not accurately derive the values of τ greater than 10 and most very thin clouds with optical depth (τ) 
less than 0.1 are not detected at any time, and that most clouds during the IOP are high clouds, we 
grouped the clouds into eight types (Figure 1):  four high-level types:  very thin (τ:  0.1 - 1.3), thin 
(τ:  1.3 - 3.6), moderate (τ:  3.6 - 9.4), and thick (τ >9.4), 2 mid-level and low-level types:  thin  
(τ:  0.1 - 9.4) and thick (τ >9.4).  Note that the cloud names used in Figure 1 and hereafter are for 
convenience; they are different from conventional definitions of optically “thin,” “moderate,” and 
“thick” clouds. 
 
The MMCR observed cloud amount is the cloud occurrence frequency (COF) averaged.  The COF is 
computed using the MMCR merged moments and MPL data at about 39 sec intervals.  Based on the 
mean profile of pressure during the entire IOP, the height of 680 mb level is about 3.0 km and that of the  
 

 
 
Figure 1.  The cloud types defined by cloud visible optical depth and cloud-top pressure used in 
this study. 
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440 mb level is about 6.5 km above the ground.  We then define the MMCR observed clouds with 
highest-tops above 6.5 km above the ground as high clouds, between 3.0 and 6.5 km as mid-level 
clouds, and below 3.0 km as low-level clouds and compute their frequencies respectively. 
 
Cloud Occurrence Frequency:  Comparison Among Observations and CRM Simulation 
 

Total Cloud Amount 
 
Table 1 provides a comparison of the total cloud amounts averaged during daytime and nighttime of the 
ABC subperiods from the MMCR, Minnis, and the CRM simulation.  The two CRM cloud amounts:  
one including clouds with visible optical depth less than 0.1 and the other not, are computed.  The 
former (CRM1) should be compared to the MMCR results, while the latter (CRM2) to Minnis.  The total 
nighttime cloud amount from Minnis data (.52) is close to the MMCR observations (.55), but .12 lower 
than the MMCR observations in daytime (.42 vs. .54).  The CRM total cloud amounts are .42 during day 
and .40 during night, lower than the MMCR with nearly equal amounts in nighttime and daytime.  
Compared to Minnis, the CRM cloud amounts for τvis greater than 0.1 are lower too.  The ratio of cloud 
amounts in daytime and nighttime (Table 2) from the MMCR observations is 1.0, while that from the 
CRM simulation is 1.0 and Minnis is 0.8.  This suggests that Minnis missed some cloud occurrence 
during daytime and the CRM simulated correct diurnal cycle of total cloud amount though 
underestimated total cloud amount. 
 

Table 1.  The total cloud amount during daytime and 
nighttime of ABC subperiods from MMCR, Minnis, and 
the CRM simulation. 

 MMCR Minnis CRM1 CRM2 
DAY .54 .42 .42 .36 
NIGHT .55 .52 .40 .35 

 
Table 2.  The day/night ratios of total cloud amounts and 
high cloud amounts during the ABC subperiods from 
MMCR, Minnis, and the CRM simulation. 

 MMCR Minnis CRM 
All Clouds 1.0 0.8 1.0 
High Clouds 0.9 0.5 1.0 

 
High-, Mid-, and Low-Level Cloud Amounts 

 
The cloud amounts at high-, mid- and low-levels averaged over the ABC subperiods from the MMCR, 
Minnis, and the CRM (including/excluding clouds with τ <0.1) are shown in Table 3.  We computed two 
versions of the CRM high-, mid-, and low-level cloud amounts.  In one version, the CRM high-, mid-, 
and low-level clouds are defined as the highest level with reflectivity greater than -40 dBze above 
6.5 km, between 3.0 and 6.5 km, and below 3.0 km, respectively.  This version (CRM1) is comparable 
to the MMCR observations.  Results from the other version (CRM2) were calculated using ISCCP 
simulator for clouds with optical depth greater than 0.1 and are comparable to Minnis data. 
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Table 3.  The time-averaged cloud amounts (%) at high-, mid-, and low-levels from the MMCR (MR), 
Minnis (MS), and the CRM simulation (C1 and C2) during daytime and nighttime of ABC subperiods. 

 High Middle Low 
 MR MS C1 C2 MR MS C1 C2 MR MS C1 C2 

DAY 48 26 37 30 4 8 3 4 2 8 2 2 
NIGHT 53 48 37 30 1 3 3 4 1 1 0 1 

 
The 10% difference of daytime Minnis total cloud amount from MMCR results from its 22% difference 
in the daytime high cloud amount.  The ratio of Minnis day/night high cloud amounts (Table 2) is 0.5, 
lower than the MMCR (0.9) and the CRM (1.0).  The Minnis mid- and low-level cloud amounts are 
larger than MMCR observations, particularly in daytime (16% vs. 6%).  We conclude that about half 
daytime high clouds were missed and/or misclassified as mid- and low-level clouds by the satellite 
retrieval, and that Minnis cloud amounts are more reliable at night than in the day. 
 
The CRM reproduced the predominance of high clouds: high clouds are 88% of the total cloud amount 
in daytime and 93% in nighttime while the fractions from the MMCR are 89% and 96%.  The CRM also 
reproduced the same diurnal cycle of high cloud occurrence as the MMCR observations:  day/night high 
cloud amounts ratio is 1.0, almost the same as the MMCR (0.9).  However, the CRM simulation 
underestimated the high cloud amount by 0.l1 in daytime and 0.16 in nighttime.  One possible reason for 
the underestimation of CRM’s high cloud amount is the lack of large-scale advection of clouds.  Too 
large a fall-speed of large ice crystals could contribute to lower cirrus cloud amount in the CRM.  Too 
low vertical resolution at mid- and upper-troposphere of the simulation (600 to 800 m) and large-scale 
forcing data (50 mb) could miss some shallow clouds.  Other deficiencies of the model and errors in the 
large-scale forcing data used to drive the model are also possible reasons 
 

Amounts of Cloud Types 
 
We can compare the CRM frequencies of cloud types defined by optical depth with Minnis data only 
because cloud visible optical depth retrieved from cloud radar combined with other information is 
available only for very thin and thin cirrus.  Figure 2 provides the daytime and nighttime amounts of the 
eight cloud types shown in Figure 1 for Minnis and the CRM.  It shows that the large decrease (0.22) of 
Minnis high cloud amount from nighttime to daytime occurs for the optically thin high clouds (types 1, 
2, and 3), particularly those with between 0.1 and 1.3 (which decreases by 0.14), while the thick high 
cloud amount remains the same.  These indicate that the satellite retrieval used for daytime missed some 
optically thin high clouds and misclassified some as mid-level and low-level clouds, so that the Minnis 
thin cloud amounts are more reliable during night than in daytime, and Minnis daytime cloud amount is 
more reliable for optically thick clouds than for optically thin clouds. 
 
Compared to Minnis data at night and thick cloud amounts in daytime, the CRM (a) thick high cloud 
amount during daytime is lower by 0.03; (b) optically very thin to moderate high cloud amounts at night 
is lower by 0.12.  In addition to previously discussed reasons, the specified re has possible impact on the 
CRM cloud amounts.  The MCA’s values, which are similar to the CRM’s (Luo et al. 2003), may be too 
large.  The CRM simulation had an amount of 0.06 (daytime) and 0.05 (nighttime) for cloud with τvis 
less than 0.1.  Using a smaller value of re for thin clouds would increase τ and hence change the amounts 
of cloud types.  Particularly high thick cloud amount would increase. 
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Figure 2.  The time-averaged cloud amounts (%) for the eight cloud types from Minnis and the CRM 
simulation during the selected subperiods A, B, and C.  The value above each bar is the corresponding 
cloud amount.  (a) Minnis daytime.  (b) CRM daytime.  (c) Minnis nighttime.  (d) CRM nighttime. 
 
The diurnal cycles of the eight cloud type amounts (Figure 3) show a dramatic change in Minnis data 
around sunrise and sunset for very thin high clouds and a lesser change for thin high clouds.  This, in 
conjunction with the comparison to MMCR observations, indicates again that there is a systematic bias 
in the daytime detection by satellite retrieval of very thin and thin high clouds.  The CRM nighttime 
very thin to moderate high cloud amounts are lower than Minnis data.  Possible reasons, as discussed 
previously, include a single 2D simulation, large ice crystals falling too fast, too low vertical resolution 
at high-level, and lack of large-scale hydrometers advection.  Compared to Minnis data, the CRM 
simulated too low amounts of mid- and low-level thin clouds.  This is partly due to Minnis’ 
overestimation in daytime.  The CRM turbulence condensation scheme was not used in the simulation, 
so that small cumulus could not be simulated.  This could result in less thin clouds at low- and mid-
levels.  The CRM seems to underestimate thick high cloud amount in the morning (06 to 12 hr local  
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Figure 3.  The amounts of various cloud types from Minnis (red lines) and the CRM simulation (blue 
lines) composited at each hour of day during the selected subperiods A, B, and C. 
 
time) and in early night (18 to 21 hr), and slightly overestimate it late night (01 to 05 hr).  Both Minnis 
and the CRM show very few amounts of thick mid- and low-level clouds. 
 
Using Minnis and the CRM 3 hr time-series of each of the eight cloud type amounts for the entire IOP 
and the subperiods A, B, and C, we computed the temporal correlations between the CRM and Minnis, 
as well as the CRM normalized standard deviations.  These results are illustrated using Taylor diagrams 
(Figure 4).  Except for thin clouds at mid-level (green symbol ‘5’ in Figure 3) and thick clouds at low-
level (red symbol ‘8’), the correlations of the CRM cloud type amounts with Minnis data are better 
during the ABC subperiods than the entire IOP.  The improvement is significant for high clouds (blue 
symbol ‘H’, 0.36 to 0.67) while correlations remain almost the same for mid- and low-level clouds 
(green symbol ‘M’ and red symbol ‘L’, 0.58 to 0.53 and 0.42 to 0.47, respectively), and the 
improvement is more obvious for thin clouds (black symbol ‘t’, 0.16 to 0.47) than thick clouds (black 
symbol ‘T’, 0.62 to 0.66).  During the entire IOP and the ABC subperiods, thick high clouds have the 
best correlation with Minnis (0.59 and 0.64), and thick mid-level clouds have the second best correlation 
(0.59 and 0.62), while very thin high clouds have the worst correlation (-0.02 and 0.18).  These results 
are expected considering that thick clouds generated by local convection are mostly formed and 
dissipated locally while very thin cirrus with longer life time usually have larger large-scale advection,  
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Figure 4.  Taylor diagrams for the CRM 3-hourly occurrence frequencies of various cloud types.  
(a) The entire IOP.  (b) The subperiods A, B, and C.  Blue symbols are high cloud types:  1 is very thin, 
2 is thin, 3 is moderately thick, 4 is thick, and H is all high clouds.  Green symbols are mid-level cloud 
types:  5 is thin, 6 is thick, and M is all mid-level clouds.  Red symbols are low-level cloud types:  7 is 
thin, 8 is thick, and L is all low-level clouds.  Black T is thick clouds, and t is thin clouds.  The reference 
fields are the corresponding cloud type frequencies from Minnis data. 
 
which is not included in the simulation, and also Minnis very thin and thin cirrus amounts are unreliable 
in daytime.  During ABC subperiods, the CRM cloud type amounts have too small normalized standard 
deviation particularly the thin clouds at mid- and low-levels, except for the thick low-level clouds. 
 
Cloud Radiative Forcing 
 
Definition of Cloud Radiative Forcing 
 
We are aware that cloud processes are internal to the climate system and interact strongly with other 
climate processes while the term “forcing” usually refers to an external process.  However, the term 
“cloud radiative forcing” (CRF) is defined here as the difference between the absorbed radiative flux 
under all-sky and clear-sky conditions: 
 
 CRF = H – Hclr (1) 
 
Where H is the radiation absorbed by the earth-atmosphere system in a region and Hclr is the correspond-
ing clear-sky absorbed radiation.  By definition, the CRF is a measure of the impact of clouds on the 
energy balance of the earth.  The absorbed radiation is 
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 H = s(1 – α) – OLR = s – OSR – OLR (2) 
 
where s is incident solar radiation, α is albedo, OSR is reflected solar radiation, and OLR is outgoing 
LW radiation.  The CRF is then 
 
 CRF = (s – OSR – OLR) – (sclr – OSRclr – OLRclr) (3) 
 
where the suffix “clr” indicates the clear-sky fluxes and no suffix refers to all sky fluxes.  At the TOA, 
since, sclr = s. we get 
 
 CRF = (OSRclr – OSR) + (OLRclr – OLR) (4) 
 
The first and second parts of the right-hand-side (r.h.s.) of Eq. (4) are, respectively, the SW CRF and 
LW CRF.  The solar and IR effects of clouds have offsetting effects in terms of the energy balance of 
our planet.  In the LW, clouds generally reduce the radiation emitted to space and tend to heat the planet.  
In the solar (or SW) clouds reflect more solar radiation, due to generally higher albedo of clouds than 
the underlying surface, and tend to cool the planet.  The net radiative effect of clouds depends on their 
macrophysical properties (amount, temperature, and vertical distribution) and radiative properties 
(emissivity and reflectivity), as well as the characteristics of the surface and the atmosphere. 
 
Methods for Analyzing Cloud Radiative Forcing 
 

Method for Analyzing Minnis Data 
 
Using half-hourly Minnis pixel-level data, we averaged the TOA LW flux and SW albedo over the 
pixels which are within SGP SCM analysis domain and either detected as clear or with reliable retrieval, 
to get area averaged LWflux and albedo for all-sky, clear-sky, and each of the 8 cloud types shown in 
Figure 1, respectively.  During twilight, the SGP SCM analysis domain is partly daytime and SW albedo 
is averaged over daytime pixels only.  The fractional areas for clear-sky and for each of the 8 cloud 
types are also computed. 
 
We then linearly interpolated to get TOA LW fluxes, area-averaged SW albedos, and the fractional areas 
for all-sky, clear-sky, and cloudy-sky at one hour intervals.  Since clear-sky LW flux and area-averaged 
SW albedo are needed for CRF calculations at each hour, values at two available times closest to the 
interpolated time are used for interpolation.  The hourly averaged SW upward flux is calculated from the 
SW albedo (α), using 
 

 ( )θ×









××α=α= cos

d
mSsOSR

2d
 (5) 

 
where S (1366 W/m2) is the solar constant at the mean sun-earth distance (dm), d is the instantaneous 
sun-earth distance, θ is the hourly averaged solar zenith angle.  For each hour of the IOP, the values of 
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cos (θ) and 
d
md

 and at the SGP CF are computed by integrating over 6 even time windows, i.e., each 

window is 10 min. 
 
The hourly overcast CRF is the difference in radiative fluxes between overcast and clear conditions, 
while CRF is obtained by weighting the overcast CRF by the cloud amount.  We calculated the hourly 
LW and SW overcast CRFs and CRFs for each cloud type at each hour. 
 

CRM Radiation Calculation 
 
We calculated the LW and SW fluxes at TOA from the cloud and atmospheric fields simulated by the 
CRM using the radiative transfer (RT) model developed by Fu and Liou (1992, 1993).  In this radiation 
code, 6 and 12 bands are used for solar and thermal IR regions, respectively. 
 
The required inputs to the RT model at the surface include SW spectral albedo, IR spectral emissivity, 
and skin temperature.  The 3-hourly broadband surface albedo was computed using the broadband 
downward and upward surface fluxes from Solar and Infrared Observation Station (SIROS) measure–
ments at the SGP CART site.  These were averaged for each 3 hr of daytime over the whole IOP to get 
the mean values.  We linearly fitted the broadband albedo (α) as a function of cos (θ) and used the fit to 
obtain the spectral albedo:  cα, while c is 0.428, 1.507, and 1.542 for wavelength of 0.2 - 0.7, 0.7 - 1.3, 
and 1.3 - 4.0 µm, respectively.  The surface is considered in 80% grass and 20% shrub. 
 
We calculated the surface skin temperature (Ts) from the downward (Fdn) and upward (Fup) LW flux 
measurements by SIROS using the following formula, assuming that the surface emissivity (ε) is 0.98, 
 

 
( ) 25.0

dnup
s

F1F
T 








εσ

ε−−
=  (6) 

 
where σ is the Stefan-Boltzmann constant.  The domain averaged 3 hr Ts is interpolated to get the values 
at 5 min intervals.  At each 5 min, the domain averaged Ts is used for all grid columns. 
 
The re used is 10 µm for liquid water droplets, 25 µm for small ice crystals, and 75 µm for large ice 
crystals (“snow”).  The surface water vapor mixing ratio is obtained from the observed time-varying 
temperature and relative humidity at 2 m above the ground.  The solar insolation (s) as another required 
input is computed every 5 min including the variation of earth-sun distance (d) and solar zenith 
angle (θ). 
 
The TOA LW and SW fluxes for all-sky are simply the averages over the entire CRM domain.  To get 
the TOA clear-sky fluxes, we selected fluxes at columns without cloud or containing cloud with τ less 
than 0.1.  This is reasonable since such optically thin clouds were mostly missed by the satellite retrieval 
and their radiative effects are negligible.  The amount and TOA fluxes from each of the eight cloud 
types were also determined.  We computed the LW and SW overcast CRFs and CRFs, and the net CRF 
the same as for the Minnis data.  Again, we focus our analysis for the selected subperiods A, B, and C. 
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Cloud Radiative Forcing:  Comparison between Minnis and CRM 
 

Clear-Sky Fluxes 
 
We compared the CRM and Minnis clear-sky fluxes during the ABC subperiods by compositing them at 
each hour of the day.  The TOA CRM reflected SW flux is larger than Minnis flux.  When averaged 
over daytime (0800 to 1700 local time), Minnis reflected SW flux at TOA is 169.7 W/m2, while the 
CRM’s is 188.3 W/m2.  This indicates about 0.02 difference in albedo (11% of Minnis clear-sky albedo).  
We suspect that the surface albedo used in our CRM radiative transfer calculation is too large.  The 
SIROS measured the surface fluxes at 6 locations within the SGP CART site.  The albedo at those 
locations may be larger than the average over the whole SGP CART site.  The clear-sky OLR in the 
CRM appears to have a weaker diurnal signal than observed.  Minnis clear-sky OLR is 302.7 W/m2 in 
daytime and 284.2 W/m2 in nighttime, compared to the CRM’s 295.6 W/m2 and 287.9 W/m2.  The 
amplitudes are 18.5 W/m2 (Minnis) and 7.7 W/m2 (CRM).  The 7 W/m2 difference in daytime OLRs 
from Minnis and the CRM corresponds to about 1oK difference in effective radiating temperatures.  
Possible reasons for differences in diurnal amplitude of clear-sky OLRs include (a) the skin temperature 
derived from the SIROS measurements may be not representative of the entire SGP CART site; 
(b) clear- and cloudy-sky OLRs differ in nature:  clear-sky OLR is larger/smaller than cloud-sky OLR in 
daytime/nighttime.  However, the CRM used the same area-averaged skin temperature for each grid 
column.  This could decrease/increase estimated daytime/nighttime clear-sky OLR and hence reduce the 
amplitude of diurnal cycle. 
 

Overcast CRFs of Various Cloud Types 
 
Minnis data show that high and/or thick clouds have larger LW overcast CRFs than lower and/or thinner 
clouds.  The cloud types in descending order of LW CRF are thick high, moderate high, thin high, thick 
mid-level, very thin high, thin mid-level, thick low-level, and thin low-level.  The CRM reproduced 
these results. 
 
For both Minnis and the CRM, optically thicker clouds reflect more SW flux than thinner clouds for the 
same cloud amount.  The cloud types in descending order of SW overcast CRF are thick high, thick mid-
level, thick low-level, moderate high, thin high, thin mid-level, thin low-level, and very thin high.  The 
CRM cloud types have smaller SW overcast CRFs than do their counterparts measured by Minnis.  The 
differences are within 25 W/m2 and mainly because of 18 W/m2 larger CRM clear-sky SW reflected 
flux, except for thick low-level cloud whose CRF is - 73 W/m2 smaller than Minnis.  However, there 
may be large uncertainty in SW flux from this cloud type in Minnis data since the occurrence of such 
clouds is only 0.01 during daytime of ABC subperiods. 
 

CRFs Under Observed/Simulated Cloud Amounts 
 
Figures 5 to 7 provide the LW, SW, and net CRFs of each cloud type averaged over the ABC subperiods 
including twilights from Minnis and the CRM.  Basically, the CRM simulation reproduced the major 
features of LW, SW, and net CRFs as estimated from the satellite data, though noticeable differences 
exist.  The CRM LW CRFs of optically thin to thick high clouds and mid- and low-levels thin clouds 
(types 2, 3, 4, 5, and 7) are smaller than Minnis due to lower amounts simulated, while the CRM LW  

13 



Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 2003 

 
 
Figure 5.  The longwave cloud radiative forcings (CRFs) of the eight cloud types during the subperiods 
A, B, and C from (a) Minnis data and (b) CRM results.  The value above each bar is the LW CRF for 
that cloud type. 
 

 
 

Figure 6.  Similar to Figure 5 but for shortwave CRF. 
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Figure 7.  Similar to Figure 5 but for the net cloud radiative forcing:  LW CRF – SW CRF. 
 
CRFs of other cloud types are almost the same as Minnis.  It is interesting that the CRM SW CRFs of 
cloud types 2, 3, 4, 5, and 7 are smaller than Minnis, as found for their LW CRFs.  The differences 
between the CRM and Minnis SW CRFs of cloud types 4, 5, and 7 (-6.8, -1.8, and -2.4 W/m2) are more 
significant than the corresponding differences in LW CRFs (-2.3, -0.9, and -0.4 W/m2), due to larger 
overcast SW CRFs than overcast LW CRFs of these cloud types.  Similarly, the differences between the 
CRM and Minnis SW CRFs of cloud types 2 and 3 (-0.5, -1.3 W/m2) are less significant than the 
corresponding differences in LW CRFs (-1.9 and -1.9 W/m2), due to smaller overcast SW CRFs than 
overcast LW CRFs of these cloud types. 
 
The net CRFs (Figure 7) of optically very thin to moderate high clouds (types 1, 2, and 3) are warming, 
while other cloud types are cooling and thick high clouds had the largest cooling effect, as revealed by 
both Minnis and the CRM.  However, the CRM cloud types 4, 5, and 7 have less significant cooling 
effect (-2.8, -0.2, and -0.5 W/m2) than Minnis (-7.3, -1.1, and -2.5 W/m2), while the CRM cloud types 2 
and 3 have less significant warming effect (2.4 and 1.1 W/m2) than Minnis (3.8 and 1.7 W/m2).  Table 4 
provides the CRFs by all cloud types as a whole from Minnis and the CRM.  The LW and SW CRFs 
estimated from Minnis data are 38 and -43 W/m2, respectively, while the CRM simulation had smaller 
absolute values (31 and -31 W/m2).  As a result, the net CRF is -5 W/m2 from Minnis and 0W/m2 from 
the CRM simulation. 
 
Summary and Discussion 
 
Comparing the CRF and cloud amount from a model simulation with observations is a traditional way in 
model evaluation.  However, CRF and cloud amount alone do not give many clues about the causes of 
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difference/similarity between models and observations.  We have evaluated clouds in a CRM in a way 
that dissects TOA CRF and cloud amount into cloud type distributions, which reveals much more cloud 
information than the traditional method does.  We used data from cloud radar observations and 
geostationary satellite pixel-level cloud products from Minnis’ group at NASA Langley Research Center 
at the ARM SGP CART site to evaluate the occurrence frequencies and radiative effects of various 
cloud types in a CRM simulation for the summer 1997 IOP.  Such a study has not been done before 
mainly because of lack of observations at resolution comparable to a CRM’s grid. 
 
To compare with MMCR observations of cloud occurrence, we defined cloud boundaries by reflectivity 
of hydrometers.  The CRM reproduced the dominance of high cloud, but underestimated high cloud 
occurrence by 0.13 compared to the MMCR observations.  The lack of large-scale advection of cloud 
condensation, errors in the large-scale forcing data, limitation of one single 2D simulation, too low 
vertical resolution at mid- and high-troposphere of both the CRM simulation and the large-scale forcing 
data, large ice crystals falling too fast, and other defects in model’s formulations are all possible reasons. 
 
To compare with satellite data, the ISCCP simulator was used to analyze the CRM results.  The CRM 
simulation reproduced the cloud type distribution estimated from satellite data.  The simulated thick 
cloud temporally correlated better with the satellite observations (0.67 and 0.62 during ABC subperiods 
and entire IOP) than thin cloud (0.47 and 0.16 during ABC subperiods and entire IOP), partly due to less 
large-scale advection of thick clouds and partly because daytime satellite thin cloud amount is 
unreliable.  The improvements in ABC subperiods compared to entire IOP result from less large-scale 
cloud advection, also. 
 
The CRM reproduced the overcast LW and SW CRFs of various cloud types obtained from the satellite 
observations.  Both Minnis data and the CRM suggest that the net CRF of the optically thin high clouds 
had a warming effect at the TOA, while the other cloud types had a cooling effect.  The thick high cloud 
had the most significant cooling effect. 
 
The net CRF averaged over ABC subperiods by all cloud types from Minnis data and the CRM is -5 and 
0 W/m2, respectively.  How significant is the difference?  To answer this question, uncertainties of both 
the satellite CRF and the CRM CRF are needed.  For the former, we can compare the Minnis CRF with 
CRF from other data sources, such as ISCCP.  However, the ISCCP pixel-level cloud products contain 
only about 70 pixels within the SGP SCM analysis domain and at 3 hr intervals.  Therefore, there maybe 
large sampling errors in the derived CRFs.  The sampling errors of the ISCCP values could be 
determined by sub-sampling Minnis in the same way many times to get an ensemble of measurements.  
This could be done for a single time to determine spatial sampling errors, or for time averages to 
determine temporal and spatial sampling uncertainties.  For the latter, one of the methods is making an 
ensemble of the CRM simulations using different random seeds and then analyzing the uncertainties of 
the ensemble mean values.  Another method is sub-sampling the CRM simulation results to get multiple 
datasets and then examine the uncertainties of the mean values.  Quantifying these uncertainties is a 
meaningful future work. 
 
The specified re/De in the CRM radiation calculation could produce uncertainty.  The values used maybe 
too large.  Using smaller values could change cloud type amounts, e.g., increase thick high cloud 
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amount.  More accurate values from observations are desired.  It would also be interesting to quantify 
the CRM uncertainty caused by the specified droplet/crystal size. 
 
It is demonstrated that data from satellite retrieval and radar observations complement each other.  The 
pixel level satellite data can be used to evaluate the occurrence frequencies and radiative effects of 
various cloud types in a CRM, while radar observations can help determine the uncertainties in satellite 
retrieval.  For example, we found that about half daytime thin high clouds were missed and/or 
misclassified as lower-level clouds by the satellite retrieval.  For a CRM embedded in a general 
circulation model, i.e., a CRM is used as a super-parameterization in a general circulation model; we can 
apply this method—combining radar and satellite observations—to the sites/general circulation model 
grid columns where a MMCR is located.  It is obvious that this method can be applied to a SCM, too. 
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