On Attenuation of Solar Radiation Within Atmospheric Microwindows of the N₂O Band 1170 cm⁻¹ from Winter Ground-Based Measurements

A. Kh. Shukurov Oboukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia

Introduction

As is known, ground-based measurements of transmittance of solar radiation within the atmospheric window $v = 750 - 1250 \text{ cm}^{-1}$ were carried out basically at spectral resolution $\delta v \approx 1 \div 10 \text{ cm}^{-1}$ in warm seasons with significant thickness W_z (cm) of precipitated layer of vertical column water vapor. It is difficult to estimate from those measurements the N₂O contribution to absorption of the radiation within spectral microwindows from the band $v = 1120 - 1200 \text{ cm}^{-1}$, because of non-insignificant selective absorption by water vapor at these conditions. In winter conditions, the spectral structure of N₂O absorption band 1170 cm⁻¹ from spectral interval $v = 1120 - 1200 \text{ cm}^{-1}$ is exhibited quite distinctly. In this work, the results of estimation of N₂O transmission functions are presented for spectral intervals of microwindows from the N₂O absorption band 1170 cm⁻¹ at $W_z \leq 0.5$ cm and surface temperatures $t \leq 0^{\circ} \text{ C}$.

Data from Measurements

The initial data are spectra of the solar radiation I_v , which were registered by spectrophotometer UR-20 in a range v = 750 - 1250 cm⁻¹ with $\delta v \approx 5$ cm⁻¹ at different air masses M. Measurements of I_v were done from January 28 through February 27, 1972, and on March 8 and 9, 1999, at Zvenigorod Scientific Station of the Institute of Atmospheric Physics (200 m above sea level). From these data, the transmission function P_{N2O} was estimated within the microwindows from the spectral band v = 1120 - 1200 cm⁻¹ taking into account the water vapor contribution to the absorption of solar radiation at known W_z (A. Kh. Shukurov 1999, K. A. Shukurov et al. 1998). W_z was determined using dependence of change in depth of the minimum of HDO absorption band 2724 cm⁻¹ on thickness of precipitated water vapor layer along the beam direction $W = W_z \times M$ (Shukurov and Shukurov 1998). For P_{N2O} estimation, there were used about a hundred spectra I_v obtained in 1972 (M = 3 - 12) and ten spectra I_v obtained in 1999 (M = 2 - 4). Temperatures during the measurements changed from -25° C to -5° C, W_z from 0.1 cm to 0.5 cm.

Results

Using the data from these measurements, the transmittance curve $P_{N2O}(M)$ as function of M was obtained for different microwindows at M = 2 - 12. Deviations of distinct P_{N2O} values from the function $P_{N2O}(M)$ are within limits $\Delta P \approx \pm 0.02$. Results of estimation of mean P_{N2O} values for spectral intervals of microwindows with the centers at $v \approx 1143$, 1158, 1170, 1194 cm⁻¹ and M = 2, 4, ..., 12 are presented in Table 1. Note that $P_{N2O}(v \approx 1181 \text{ cm}^{-1}) \approx P_{N2O}(v \approx 1158 \text{ cm}^{-1})$.

Table 1. Transmittance P _{N2O} as functions of air mass M.				
Ν	$v = 1143 \text{ cm}^{-1}$	$v = 1158 \text{ cm}^{-1}$	$v = 1170 \text{ cm}^{-1}$	$v = 1194 \text{ cm}^{-1}$
2	0.97	0.90	0.93	0.95
4	0.95	0.82	0.89	0.92
6	0.93	0.77	0.86	0.90
8	0.91	0.72	0.84	0.88
10	0.89	0.69	0.82	0.86
12	0.88	0.65	0.80	0.84

Summary

Because atmospheric N₂O content is nearly constant, the transmittance values given in Table 1, as well as their dependence on air mass, can be used to account for the N₂O contribution to absorption of solar radiation when studying characteristics of atmospheric window v = 750 - 1250 cm⁻¹.

Acknowledgments

This work was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement Program (Contract No. 353199-A-Q1).

References

Shukurov, A. Kh., 1999: On attenuation of solar radiation by the atmosphere in N₂O band 1170 cm⁻¹ and continuum 800 - 1200 cm⁻¹ in winter. *Transactions (Doklady) of the Russian Academy of Sciences/ Earth Science Sections*, **364**. In press.

Shukurov, K. A., A. Kh. Shukurov, and G. S. Golitsyn, 1998: On aerosol and molecular extinction of solar radiation in transparency "window" v = 750 - 1250 cm⁻¹ from atmospheric measurements. In *Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting*, DOE/ER-0738. U.S. Department of Energy, Washington, D.C.

Shukurov, A. Kh., and K. A. Shukurov, 1998: On estimation of water vapor content in the atmosphere from measurements of radiation transmittance in minimum of 2724 cm⁻¹ HDO absorption band along slant and horizontal paths. *SPIE*. In press.