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Introduction
The representativeness and accuracy of the measurements
or estimates of the lateral boundary fluxes and surface
fluxes are crucial for the single-column model and budget
studies of climatic variables over Atmospheric Radiation
Measurement (ARM) sites. Since the direct measurements
of these fluxes have limited resolution, it is desirable to use
high-resolution Doppler-radar data to retrieve the three-
dimensional wind and temperature fields and improve the
representativeness and accuracy of the estimated fluxes.

To this end, a number of techniques of variational data
assimilation (VDA) are currently being developed (Sun
et al. 1991, Qiu and Xu 1992, Xu et al. 1993). This paper
is intended to address the following specific issues:

• How is the retrieval error affected by the observational
error?

• Could the observational error cause a bias in the
retrieval?

• Does the retrieval error depend on the model grid
resolution and how?

Theoretical Analysis
Let us assume that the physical process is governed by the
one-dimensional advection equation

(1)

The variational data assimilation method seeks the best
estimate of u(x) in Equation (1) that minimizes the following
cost function:

∂Q
∂t

+ u(x)
∂Q
∂x

= 0

(2)

where

T = the assimilation time interval

L = the assimilation domain

ε = a small but positive parameter

ub(x) = a known background of u(x)

qo(x,t) = the observed value of Q

q(x,t) = the predicted value of Q from Equation (1)
with the observed initial condition.

To facilitate the theoretical analysis, we assume that Q is
observed at two time levels, t = t1 and t = t2, and the values
of qo(x,t) at t1 and t2 are denoted by q1 and q2, respectively,
so linear interpolation can be used for the discrete forms of
∂q
∂x  and qo. With these approximations, the minimum

condition of the cost function,
∂J
∂ui

 = 0, leads to the

following explicit expression for the retrieved velocity, at a
given discrete point x=xi:

(3)

where ui=u(xi), Ai and Bi are functions of the first order finite
differences of q1 and q2 associated with the grid spacing
∆x.
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Real observational data are not free of noise. For simplicity,
we assume that the noise is uncorrelated in time and in
space and obeys the Gaussian probability distribution.
From Equation (3), the statistic mean and variance of the
retrieved ui can be derived as follows:

(4)

(5)

where the overbar represents statistical mean; F1, F2 and
F3 are functions of ∂q j / ∂x  (j = 1, 2) and the standard
deviation of noise (denoted by σ) in the observations of q1
and q2.

To measure the systematic bias of the retrieved velocity,
we define

(6)

where ua is the true advection velocity. To measure the
RMS difference between the retrieved ui and the true
advection velocity ua, we define

The theoretical results are shown in Figure 1. As shown, ui
can be seriously underestimated when ∆x is small or
slightly overestimated when ∆x is large. For a given σ level
of observational noise, the standard deviation σu of the
retrieval increases with ∆x first and then decreases and
approaches a constant value when ∆x is large. When σ is
large, the position of maximum σu shifts to a larger value
on the ∆x axis.

Numerical Experiments
The above theoretical analysis is obtained for a simplified
VDA in which only linear steps of time integration are
considered at a given grid point. In this section, the
robustness of the theoretical results is tested against the

ui =−
q2 −q1

T
F1

σu
2 = ui −ui( ) 2

=ui
2 −ui

2

r =ui /u a   and   d= r −1

σa
2 =σ u

2 + ui −ua( ) 2
=σ u

2 + 1− r( ) 2 ua
2 (7)

=
2σ2

T 2 F2 +
q2 − q1( )2

T2 F3

Figure 1. Theoretical estimates of (a) the retrieval bias d
= r -1, and (b) the retrieval error standard deviation σu
versus grid size ∆x for different values of the standard
deviation of measurement noise σ. Here, ua = 5.0ms-1, qx
= 4.0x10-3 m-1, T = 100s, ε = 2.0x10-8 m-2.

statistics of retrieved velocities obtained in a large number
of numerical experiments. A leap-frog central differential
scheme is used with a time filter for the time integration of
Equation (1). This numerical scheme is also used to create
the “true” (noise-free) field of Q(x,t), denoted by Qa. With
a given true advection velocity ua(x), Qa is integrated from
an initial condition, then the “observational data” for q1 and
q2 are “generated” by adding random noise on Qa. For
each set of q1 and q2, a sample of retrieved velocity field,
denoted by ur(x), is obtained through the numerical VDA.
In each numerical experiment, 200 samples of the retrieved
fields are collected.
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The domain-averaged relative bias of the retrieved velocity
〈ur〉 with respect to true velocity ua is defined by

(8)

where the angle braces denote averaging over 200 samples,
and the overbar with superscript x denotes domain-averaging
along the x axis. The theoretical estimate is closely com-
pared with the numerical result of rd in Figure 2, where σ=0.5,
ua(x) = 5.0 m/s, and the initial value of Qa is given by
Asin(2πx/λ) with 0 < x < L, A=5.0, and λ=104m. The theoretical
estimate of the variance of the retrieved velocity is also
verified by the numerical experiments (not shown). The
robustness of the theoretical results is tested by 60 numerical
experiments with different settings of A,σ and ua.

Error Suppression
The power spectrum of the variance of the retrieved
velocity and its spatial correlation coefficient suggest (not
shown) that the error field of the retrieved velocity behaves
very much like a white noise field. Thus, the error can be
effectively suppressed if a three-point filter is used as a
weak constraint for the retrieved velocity field (see C2 in
Figure 3).

rd =
ur x( ) −ua x( )

x

ua (x)
x

Furthermore, Equation (7) indicates that σa
2 is proportional

to the true velocity ua, so σa
2 should decrease with ua. This

result implies that the error can be further reduced if the
moving reference frame technique (Gal-Chen 1982) is
used in the VDA retrieval, because ua can be reduced in a
moving reference frame (see C3 in Figure 3).

Summary and Conclusions
The model has a critical grid size below which the retrieved
velocity can be systematically smaller than the true value
(see Figure 1a). The variance of the retrieved velocity is
proportional to the variance of noise and the time tendency
of the observed variables; it also depends on the model
resolution (see Equation [5] and Figure 1b). The retrieval
can be improved by applying a spatial filter to the retrieved
field and/or by performing the VDA retrieval in a moving
reference frame.
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Figure 3. Domain-averaged RMS difference between the
retrieved and true velocities. C1 is fixed frame without
spatial filter; C2 is fixed frame with spatial filter; C3 is
moving frame with spatial filter.

Figure 2. Theoretical estimate and numerical result for the
domain-averaged relative deviation of the retrievals versus
grid size ∆x. The noise standard deviation is σ = 0.5.
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