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Key Points: 11 

 Long-term downwelling longwave radiance observations reveal distinctive trends 12 

across the infrared spectrum. 13 

 Significant positive radiance trends in weak absorption bands indicate earlier 14 

detectability of climate change. 15 

 Radiance trend uncertainty mainly results from natural variability, emphasizing the 16 

need to continue the measurements.   17 
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Abstract 18 

Downwelling longwave radiation is an important part of the surface energy budget. Spectral 19 

trends in the downwelling longwave radiance (DLR) provide insight into the radiative drivers 20 

of climate change. In this research, we process and analyze a 23-year DLR record measured 21 

by the Atmospheric Emitted Radiance Interferometer (AERI) at the U.S. Department of 22 

Energy Atmospheric Radiation Program Southern Great Plains (SGP) site. Two AERIs were 23 

deployed at SGP with an overlapping observation period of about 10 years, which allows us 24 

to examine the consistency and accuracy of the measurements and to account for 25 

discrepancies between them due to errors associated with the instruments themselves. We 26 

then analyzed the all-sky radiance trends in DLR, which are associated with the surface 27 

warming trend at SGP during this same period and also the complex changes in 28 

meteorological conditions. For instance, the observed radiance in the CO2 absorption band 29 

follows closely the near-surface air temperature variations. The significant positive radiance 30 

trends in weak absorption channels, such as in the wings of the CO2 band and in the weak 31 

absorption channels in the H2O vibration-rotational band, show earlier detectability of 32 

climate change. The magnitude of the radiance trend uncertainty in the DLR record mainly 33 

results from internal climate variability rather than from measurement error, which highlights 34 

the importance of continuing the DLR spectral measurements to unambiguously detect and 35 

attribute climate change. 36 

1 Introduction 37 

Longwave radiation is a key component of the atmospheric energy budget that drives 38 

climate change. At the top of the atmosphere (TOA), the outgoing longwave radiation (OLR), 39 

as well as its spectrally resolved radiance, is monitored by satellites with global coverage and 40 

long-term records (e.g., Liebmann & Smith, 1996; Stephens et al., 2012). This allows us to 41 

study changes in OLR and to test climate models (e.g., Brindley & Bantges, 2016; Harries et 42 

al., 2001; Huang & Ramaswamy, 2009; Huang, Ramaswamy, Huang, et al., 2007; Huang, 43 

Ramaswamy, & Soden, 2007; Palchetti et al., 2020; Pan et al., 2015; Wielicki et al., 2002). 44 

Even when there is continuous spatiotemporal coverage of OLR spectra, the compensating 45 

effects of greenhouse gas opacity and temperature warming make it difficult to detect climate 46 

change in satellite measurements (Huang, 2013; Huang & Ramaswamy, 2009). 47 

Downwelling longwave radiation emitted by the atmosphere is one key component in 48 

the surface energy budget (Stephens et al., 2012; Trenberth et al., 2009). Compared to the 49 

radiation budget at the TOA, the surface radiation budget is more uncertain and longwave 50 

radiation is a main contributor to the uncertainty (Trenberth et al., 2009; Wild et al., 2012). 51 

This is largely due to the paucity of global and long-term downwelling longwave radiance 52 

(DLR) observations. Despite the limits of spectrally resolved DLR records, it has been 53 

demonstrated that DLR measurements are useful for understanding the surface energy 54 

balance and testing climate models. For example, Lubin (1994) explained the super 55 

greenhouse effect by using observed DLR spectra over equatorial oceans; Feldman et al. 56 

(2015) used the DLR spectra to measure CO2 radiative forcing at the Southern Great Plains 57 

(SGP) and the North Slope Alaska sites; Shupe and Intrieri (2004), Kapsch et al. (2016), 58 

Huang et al. (2019), Sokolowsky et al. (2020) and several others diagnosed the DLR 59 

variability in relation to sea ice, clouds and other climate changes in polar regions. 60 

Climate change is driven by changes in energy balance. This leads us to an 61 

overarching question regarding the surface energy balance: can climate change be detected 62 

and understood by monitoring the DLR spectrum? One advantage of the DLR, compared to 63 

the OLR, is that the compensating effects mentioned earlier vanish. In the DLR, the 64 
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greenhouse gas opacity and temperature warming effects reinforce each other to increase 65 

DLR. This makes DLR a potentially advantageous observation for monitoring climate change 66 

(Huang, 2013). The signals from different meteorological variables such as temperature, 67 

greenhouse gases, and clouds imprint different spectral signatures. This allows for a spectral 68 

fingerprinting of their changes (Huang et al., 2010). At the SGP site, the fifth generation 69 

European Centre for Medium-Range Weather Forecasts atmospheric reanalysis dataset, 70 

ERA5 (Hersbach et al., 2020), shows that there has been a significant warming in surface air 71 

temperature with a magnitude of  ~0.045 K/year between 1996 and 2018 (Figure 1). Can this 72 

warming be detected from the DLR spectral records at that site? 73 

 74 

Figure 1. Warming trend at SGP. Shown here is the ERA5 monthly mean 2-meter air 75 

temperature time series at the SGP site (average of nine 0.25x0.25 resolution grid boxes 76 

centered at: 97.5 W and 36.5 N) between 1996 and 2018. The anomaly is defined with 77 

respect to multi-year monthly mean of each calendar month. 78 

We have two primary objectives in this paper. First, we are interested in constructing 79 

a long-term monthly DLR spectral record based on 23 years of measurements by the 80 

Atmospheric Emitted Radiance Interferometers (AERIs) installed at the U.S. Department of 81 

Energy Atmospheric Radiation Measurement (ARM) SGP site. Two AERIs have been 82 

deployed at this site and have rendered 10 years of overlapping observations but with 83 

different sampling strategies (i.e., 3-min sky average every 8 minutes vs multiple 20-s sky 84 

average observations every 4 minutes). We will examine the accuracy and consistency of the 85 

measurements and assess them against synthetic spectra simulated from collocated 86 

atmospheric measurements using a benchmark radiation model. Second, we will analyze the 87 

combined long-term DLR spectral trends for the period of 1996-2018. We are interested in 88 

ascertaining if the radiance trends in the AERI bands dominated by near-surface emission are 89 

consistent with the warming temperature trend shown by ERA5 (Figure 1). This work will 90 

also test the veracity of the trends documented by Gero and Turner (2011) using the early 91 

years of the DLR record and analyze the contributions from different sky conditions.  92 
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2 Data and Methods 93 

2.1 AERI data processing 94 

The AERI is a ground-based Fourier transform spectrometer that measures the DLR 95 

emitted from the atmosphere with an accuracy of 1% ambient radiance at high temporal and 96 

spectral resolution (Knuteson et al., 2004a, 2004b). The measurements cover the spectral 97 

range between 520 and 3020 cm-1 with a resolution of 0.5 cm-1; however, we focus on the 98 

mid-infrared spectral range from 520 to 1800 cm-1 in this paper. Two high-emissivity 99 

blackbodies, a hot blackbody with a fixed temperature at 60 degrees Celsius and another 100 

blackbody at ambient temperature (Knuteson et al., 2004a), are used for radiometric 101 

calibration based on the method of Revercomb et al. (1988). The long-term average of all 23  102 

annual mean DLR spectra and the standard deviation of monthly mean DLR spectra over the 103 

23 years for different sky conditions at the SGP site are shown in Figure 2. We classify the 104 

scene into three different conditions: clear-sky, thin-cloud, and thick-cloud; the classification 105 

method will be explained in section 2.2. The main difference in DLR between different sky 106 

conditions is primarily in the window portion of the spectrum (between 800 – 1200 cm-1) 107 

shown in Figure 2a. The standard deviation of thick-cloud DLR is found to be the smallest 108 

among all the different sky conditions in the window band (Figure 2b), which indicates small 109 

variability of the radiating temperature of the thick clouds.  110 

 111 

Figure 2. (a) Long-term average of all 23 annual mean AERI spectra for different sky 112 

conditions at SGP. (b) Standard deviation of monthly mean AERI spectra for different sky 113 

conditions at SGP.  (RU: Radiance Units; 1 RU = 1 mW/(m2 sr cm-1)) The insets in the two 114 

panels indicate the corresponding zoomed-in results in the CO2 absorption band.  115 

The two AERIs deployed at SGP have different observational periods and different 116 

sampling frequencies. AERI-01 operated from July 1995 to March 2014, while AERI-C1 has 117 

operated from February 2004 to the present. C1 is the designator of the Central Facility 118 

location of the SGP site. Historically E14 was an alternate designator for the same location. 119 

AERI-C1 was named AERI-E14 before 2011, e.g. in Gero and Turner (2011). The two 120 
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AERIs were deployed side-by-side (within 5 meters of each other). Given their vertical field 121 

of view (FOV) of 2.6 degrees full-angle, both instruments view the same portion of the sky; 122 

86% of the FOVs of the two AERIs are overlapped at the altitude of 1 km. The overlapping 123 

observations make it possible to test the accuracy and consistency of the measurements. 124 

However, the two instruments differ with respect to their sampling frequency. AERI-01 125 

measures one DLR spectrum approximately every 8 minutes; its measurement cycle includes 126 

a 200-s sky-dwell period (Knuteson et al., 2004b) and the rest of the cycle is used for viewing 127 

the blackbodies for calibration. AERI-C1 uses a rapid mode with ~20-s sampling cycle 128 

(Turner et al., 2006). Such differences in the measurements necessitate appropriate 129 

procedures to homogenize the data from the two AERIs for inter-comparisons and trend 130 

analyses.  131 

 132 

Figure 3. Data processing flowchart. Yellow and purple squares represent AERI-01 and 133 

AERI-C1 DLR data respectively. Blue squares represent important data processing steps. 134 

Pink squares represent radiative transfer model simulations. Details of processing steps are 135 

provided in the text. 136 

Figure 3 shows the flowchart illustrating the data processing adopted in this paper. 137 

First, rigorous quality control is performed on the data to retain reliable observations. During 138 

the long history of observations at the SGP site, many factors have caused errors including: 139 

contamination of the scene mirror, malfunction of the interferometer, and failure of the 140 

detector temperature sensor. We first discard all the erroneous data based on the AERI 141 

quality control reports from the ARM program 142 

(https://adc.arm.gov/discovery/#/results/instrument_class_code::aeri). In addition, similar to 143 

the quality control method described in Turner and Gero (2011),  the hatch status and the sky 144 

view noise equivalent radiance tests are also implemented.  145 

After the Quality Control step, we average the AERI-C1 spectra over 8-min intervals, 146 

to be consistent with the AERI-01 sampling period. Then, in the Sky Classification step, we 147 

apply a machine learning algorithm (detailed in section 2.2 below) to classify the sky 148 

conditions as one of clear, thin cloud, or thick cloud overhead based on the 8-min mean 149 
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radiance spectra. Next, we compute averages of all 8-min spectra of each sky type within 150 

each hour and then average the hourly spectra of the same hour of the day to obtain a 151 

monthly averaged diurnal cycle. It is verified that there is uniform diurnal sampling in each 152 

month; no data of the 24-hour diurnal cycle is missing. Next, the monthly mean spectra are 153 

obtained by averaging the monthly averaged diurnal cycle. Monthly means are discarded 154 

when the count of hourly spectra is below 400 (~ 55%).  155 

Some channels in the center of the CO2 absorption band (~ 667 cm-1) and the water 156 

vapor absorption band (1300 – 1800 cm-1) for which the near-surface atmosphere is so 157 

opaque that the channels are essentially uncalibrated are discarded in the Optical Depth 158 

Screening step. These strongly opaque channels are identified using the criterion that the 159 

gaseous optical depth for a 1-meter layer of atmosphere at the surface is above 0.5. Finally, 160 

the monthly-anomaly spectra are obtained by subtracting from each monthly mean spectra 161 

the long-term average of all 23 monthly mean spectra for that calendar month (which 162 

effectively removes the seasonal cycle). These monthly-anomaly time series are illustrated in 163 

Figure 4, and are used in the following analyses and figures. The long-term trends in the DLR 164 

monthly mean spectra are analyzed based on the monthly-anomaly spectra. Synthetic clear-165 

sky DLR, computed using collocated radiosonde data and a radiative transfer model 166 

(described below), are used as a baseline to evaluate the measurements of the two AERIs 167 

during the overlapping period; details are provided in Appendix A.  168 

 169 
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 170 

Figure 4. Monthly anomalies of AERI-observed DLR spectra and hourly spectra count in 171 

each month. 172 

Both AERIs produced more than 600 hourly mean spectra per month nearly 90% of 173 

the time (Figure 4c). The strongest monthly DLR anomalies are seen in the window band 174 

(800 – 1200 cm-1) (Figure 4a, 4b). The pattern of the DLR anomalies in the overlapping 175 

observational period is similar in both AERI-01 and AERI-C1. 176 

2.2 Sky classification 177 

Clouds strongly influence the DLR spectra, especially in the atmospheric window 178 

(800 – 1200 cm-1). In order to identify the causes of the DLR trends, we separate the clear-179 

sky spectra from the cloudy cases and examine their trends separately.  180 

A sky-classification model is developed using a machine-learning method based upon 181 

the k-nearest neighbor (k-NN) algorithm (Cunningham & Delany, 2020). The 8-min AERI-182 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres 

 

01 and AERI-C1 spectra for the period between 1 March 2011 and 31 July 2012 are used to 183 

train the k-NN model. We use the same inputs and truth data from Raman Lidar as in Turner 184 

and Gero (2011). The k-NN classification achieves an accuracy of 94.8%. This algorithm 185 

determines the sky to be clear or cloudy, while the cloudy sky is then further classified to be 186 

thin-cloud when 70-minute averaged 985 cm-1 brightness temperature is lower than 250K; 187 

otherwise, it is classified to be thick-cloud. We also tried a classical backpropagation 188 

gradient-descent classification algorithm as used by Turner and Gero (2011), which achieves 189 

an accuracy of 90%. The resulting trends are not sensitive to the classification method 190 

chosen. The results presented below are based on the k-NN algorithm. 191 

Based on the classification of thin-cloud and thick-cloud, the thick-cloud emitting 192 

temperature range is smaller than that for thin-cloud, primarily because thick-clouds are 193 

opaque clouds relatively close to the surface while thin-cloud may be either partially cloudy 194 

scenes or clouds higher in the troposphere.  This is why the thick-cloud classification has the 195 

smallest standard deviation of DLR among the three different sky conditions. 196 

2.3 Homogenization 197 

During the overlapping observational period, discrepancies larger than the 198 

documented AERI absolute calibration uncertainty (Knuteson et al., 2004a) were observed 199 

between the monthly mean spectra observed by AERI-01 and AERI-C1. Large radiance 200 

discrepancies occur, especially in the window band, and are found to mainly come from 201 

clear-sky scenes (see Figure B1 and discussions in Appendix B). This suggests that the 202 

discrepancies likely result from calibration (Rowe, Neshyba, Cox, et al., 2011; Rowe, 203 

Neshyba, & Walden, 2011) and other undetected errors (e.g., something in the FOV of one 204 

instrument but not the other). In order to avoid discarding meaningful data in the trend 205 

analysis, we simulate the clear-sky DLR spectra using a radiation model together with 206 

collocated atmospheric measurements and use these synthetic spectra as a reference to assign 207 

proper weights in combining the data of AERI-01 and AERI-C1, based on the findings of 208 

previous radiance closure studies (e.g., Turner et al., 2004) that demonstrated high accuracy 209 

in such synthetic spectra.  210 

The radiation model used here is the Line-by-Line Radiative Transfer Model 211 

(LBLRTM v12.9) (Clough et al., 2005). To compute the clear-sky DLR spectra at SGP, we 212 

use the temperature and water vapor profiles from the ARM Balloon-Borne Sounding System 213 

(https://www.arm.gov/capabilities/instruments/sonde). The water vapor mixing ratio profiles 214 

derived from radiosondes are scaled with a height-independent factor to match the 215 

precipitable water vapor retrieved by the microwave radiometer at the SGP site. This 216 

approach has been used to compensate for the dry-bias issue found in the radiosonde water 217 

vapor data (Holdridge, 2020; Revercomb et al., 2003; Turner et al., 2003; Wang et al., 2002). 218 

CO2 and CH4 concentration profiles are obtained from the CarbonTracker website 219 

(http://carbontracker.noaa.gov, Jacobson et al., 2020; Peters et al., 2007). O3 concentration 220 

profiles are adjusted from NASA’s Modern-Era Retrospective analysis for Research and 221 

Applications, Version 2 (MERRA-2, Gelaro et al., 2017) ozone product to get a better 222 

radiative closure with AERI-observed DLR (see more details in Appendix B). We use a 200-223 

level input profile for the LBLRTM simulations. The first and second levels are at 0m and 224 

10m above ground level respectively. The depth of each subsequent layer is increased by 2% 225 

relative to the one below.  226 

As radiosonde observations of near-surface layers are essential to the DLR spectra, 227 

the AERI data are selected to match the radiosonde launch time. We keep the spectra whose 228 

observation time is within 10 minutes of the radiosonde launch time. For each month, about 229 

https://www.arm.gov/capabilities/instruments/sonde
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70 clear-sky DLR spectra are simulated on average. The absolute values of the radiance 230 

biases (𝑅𝑏𝑖𝑎𝑠) are determined as the monthly mean radiance differences between the synthetic 231 

and observed DLR spectra.  232 

During the overlapping observational period, the monthly mean AERI-01 and AERI-233 

C1 DLR spectra are combined according to Equation (1) and Equation (2) using the ratio 𝑟, 234 

which represents the proximity of the AERI’s observed DLR spectra to the synthetic DLR 235 

spectra. 𝑟 is a function of wavenumber. The 5th, 50th and 95th percentiles of the ratio r across 236 

all AERI channels over the 23-year period are 0.55, 2.06, and 12.84 respectively. The 237 

weighted radiance used in the trend analysis is given by Equation (2), where 𝑅𝐴𝐸𝑅𝐼−01 and 238 

𝑅𝐴𝐸𝑅𝐼−𝐶1 represent the observed AERI-01 and AERI-C1 monthly mean DLR respectively.  239 

𝑟 =
𝑅𝑏𝑖𝑎𝑠(𝐴𝐸𝑅𝐼−01 −𝐿𝐵𝐿𝑅𝑇𝑀)

𝑅𝑏𝑖𝑎𝑠(𝐴𝐸𝑅𝐼−𝐶1 −𝐿𝐵𝐿𝑅𝑇𝑀)
(1) 240 

𝑅 = 𝑅𝐴𝐸𝑅𝐼−01 ×
1

1 + 𝑟
+ 𝑅𝐴𝐸𝑅𝐼−𝐶1 ×

𝑟

1 + 𝑟
(2) 241 

2.4 Trend detection 242 

A weighted linear regression method is applied to determine if there are any trends in 243 

the observed DLR. We develop our weighted linear regression model based on the regression 244 

model developed by Tiao et al. (1990) and Weatherhead et al. (1998).  245 

This model determines the radiance trend, 𝜔̂, in each AERI channel, as: 246 

𝜔̂ =
∑ 𝑊𝑡(𝑡 − 𝑡)𝑦𝑡

⋆𝑇

𝑡=1

1 − 𝜙
12 ∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1

(3) 247 

In Equation (3), 𝑇 represents the total number of months and 𝑡 represents the mean 248 

value of t. 𝜙 is the autocorrelation in the noise of the time series considering a first-order 249 

autoregressive (AR1) process, and 𝑦𝑡
⋆ represents the transformed radiance anomalies (see 250 

Figure A1) after removing the effect of the AR1 process (see details in Appendix A). 𝑊𝑡 251 

represents the weights which are determined as the intra-month variability of the all-sky 252 

observed DLR, shown in Equation (4): 253 

𝑊𝑡 =
𝑁𝑡

𝜎𝑡
2

(4) 254 

where 𝑁𝑡 and 𝜎𝑡
2 represent the number and variance of hourly observations in each month. 255 

Large variability of DLR results in smaller weights. We use the same weights for all sky 256 

conditions.  257 

Along with the magnitude of the trend it is also important to determine the associated 258 

uncertainty, 𝜎𝜔̂, which is shown in Equation (5). In Equation (5), 𝜎𝑁
2 and 𝜎𝑒

2 represent the 259 

variance of the error due to internal variability in the time series and the variance of the 260 

measurement error respectively. Here, we mainly account for two sources of uncertainty. 261 

First, there is the uncertainty arising from internal climate variability. This is accounted for 262 

by the term in Equation (5) associated with 𝜎𝑁 and 𝜙. Second, there is the uncertainty arising 263 

from instrumentation errors accounted for by the term in Equation (5) associated with 𝜎𝑒. We 264 

use the radiance difference between clear-sky LBLRTM simulation and clear-sky AERI-265 

observation as the measurement error. We assume that these two sources of uncertainty are 266 

independent of each other. The derivation of Equation (5) is given in Appendix A.  267 
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𝜎𝜔̂ =
12√∑ 𝑊𝑡

2(𝑡 − 𝑡)2𝑇

𝑡=1

∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1

√𝜎𝑁
2

1 + 𝜙

1 − 𝜙
+ 𝜎𝑒

2 (5) 268 

The derived 𝜎𝜔̂ in Equation (5) is referred to as the standard error of the trend 269 

magnitude. It is used to test whether the trends deviate significantly from 0 at the 95% 270 

significance level. A trend is considered to be significant at the 95% significance level if the 271 

trend magnitude is larger than 2𝜎𝜔̂. In following figures, the uncertainty envelope plotted in 272 

gray corresponds to the 95% confidence interval.  273 

3 Results 274 

3.1 All-sky radiance trends 275 

The homogenized DLR records have been constructed, based on monthly averaged 276 

AERI-01 data from 1996 to 2013 and AERI-C1 data from 2004 to 2018. In total, we have 23 277 

years of DLR data at SGP for analysis.  278 

It can be inferred from the monthly anomalies shown in Figure 4 that the DLR trends 279 

depend on the analysis period as the anomalies do not show monotonic changes over this 23-280 

year period. The AERI-01 data (Figure 4a) show more frequent negative anomalies after 281 

2011 in the window band (800-1200 cm-1), which is consistent with the negative trends 282 

reported in Gero and Turner (2011) for this instrument. However, including AERI-C1 data 283 

(Figure 4b) affords a longer DLR spectral record, and the latest several years are 284 

characterized by warm anomalies. 285 

 286 

Figure 5. The all-sky radiance trends. The spectral elements indicated with red dots have 287 

trends that exceed the 95% significant test. The shading in the figure is the 95% confidence 288 

interval. The inset shows the zoomed-in results of CO2 absorption band.  289 

The long-term all-sky radiance trends during the 1996-2018 period are shown in 290 

Figure 5. The all-sky DLR trends have different features in different spectral regions. In the 291 

CO2 absorption band centered around 667 cm-1, the trends are generally positive (i.e., 292 

radiance is increasing over time) and are statistically significant in the band wings but not at 293 

the center. In the window band (800-1200 cm-1), there are very few statistically significant 294 

trends. In the water vapor absorption band (1300-1800 cm-1), similar to the CO2 absorption 295 

band, the radiance trends are generally positive and statistically significant.  296 
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DLR in different AERI channels are controlled by different meteorological variables. 297 

To illustrate this point, Figure 6a shows the correlation coefficients between the 298 

deseasonalized and detrended monthly anomalies in the radiance (brightness temperature) 299 

spectra from the two AERIs and surface air temperature from ERA5. Note that AERI-01 and 300 

AERI-C1 have different observational periods, which result in different correlation 301 

coefficients especially in the window band. In the center of the CO2 absorption band (667 cm-302 
1) and channels corresponding to strong H2O absorption lines, the correlation coefficient is 303 

close to one, indicating that the variance in the radiance in these channels is primarily 304 

controlled by the surface air temperature. This is because the atmospheric absorption is 305 

strongly saturated in these channels and thus they are less sensitive to variations in the 306 

concentrations of the gases themselves and to temperatures of the atmospheric constituents 307 

farther removed from the surface. In comparison, in the wings of the CO2 band and the 308 

weaker H2O absorption lines, the atmospheric absorption is not saturated so that variability in 309 

DLR is subject to the variation in the temperature and gas concentration throughout the 310 

vertical column. This means that the trends both in temperature and gas concentrations drive 311 

the radiance to increase, which explains the stronger and statistically more significant trend 312 

signals in these channels, as seen in Figure 5.  313 

 314 

Figure 6. (a) The correlation coefficient between the AERI-observed brightness temperature 315 

spectra and near-surface air temperature from ERA5 at the SGP site over the 23-year period. 316 

(b-e) The time series of the deseasonalized brightness temperature and near surface air 317 

temperature in four AERI channels. In each title, the values in the parentheses are the 318 

correlation coefficients between near-surface air temperature from ERA5 and observed 319 

brightness temperature by AERI-01 and AERI-C1, respectively.  320 

In Figure 6, the time series of the brightness temperature in four selected AERI 321 

channels: a CO2 channel at 655.72 cm-1, a window channel at 887.63 cm-1, a O3 channel at 322 

1023.60 cm-1, and a H2O channel at 1447.89 cm-1 (Figures 6b to 6e) are displayed. There is 323 

good consistency between the AERI-01 and AERI-C1 observed brightness temperature in all 324 

four channels. The all-sky brightness temperature at the CO2 channel follows closely with the 325 

surface air temperature from ERA5 (Figure 6b). The near-surface warming of 0.045 K/year 326 
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(Figure 1) is equivalent to 0.071 RU/year at this channel, which is close to the observed all-327 

sky radiance trend of ~0.072 RU/year (averaged trend between 5 nearby channels).  In the 328 

H2O channel, the brightness temperature measured by the AERIs also follows the near 329 

surface air temperature (Figure 6e) but not as closely as the CO2 channel (Figure 6b). In 330 

contrast, the brightness temperature anomalies in the window and O3 channels have larger 331 

fluctuations than that in the CO2 and H2O channels and are evidently decoupled from the near 332 

surface air temperature (Figure 6c and 6d). 333 

That the radiance trend is reinforced by both warming and opacity effects in the weak 334 

absorption channels indicates the benefits of using these AERI measurements in climate 335 

change detection.  Assuming the trend magnitude and uncertainty determined from this 23-336 

year record remain unchanged into future, the years to detect a significant trend, 𝑛⋆,  at 90% 337 

significance level is: 338 

𝑛⋆ ≈
3.3𝜎𝜔̂

|𝜔̂|
× 23 𝑦𝑒𝑎𝑟𝑠 (6) 339 

where 𝜔̂ is the 23-year trend determined by Equation (3) and 𝜎𝜔̂ is the trend 340 

uncertainty determined by Equation (5). The derivation of Equation (6) is given in Appendix 341 

A.4.  Although the trends are considered significant when |𝜔̂| > 2𝜎𝜔̂, we require |𝜔̂| >342 

3.3𝜎𝜔̂ when computing 𝑛⋆. As discussed in Appendix C, this yields a more conservative 343 

estimation of 𝑛⋆ compared to the method of Leroy et al. (2008). 344 

Based on this equation, approximately 30 years are needed to detect a significant 345 

trend in the 2-meter air temperature from the ERA5 data shown in Figure 1 when 𝜔̂ and 𝜎𝜔̂ 346 

are substituted with the 2-meter air temperature trend magnitude and trend uncertainty,  347 

respectively. In comparison, Figure 7 shows earlier detectability of the radiance trends in 348 

weak absorption channels, such as in the wings of the CO2 band and in the weak absorption 349 

channels in the H2O vibration-rotational band. In Figure 7c, the earlier detectability of the 350 

radiance trends in the H2O vibration-rotational band is noticeable in the wings of strong 351 

absorption lines (i.e., where the optical depth is relatively lower). We can conclude that it is 352 

advantageous to monitor the DLR in these weaker-absorption channels for climate change 353 

detection.  354 
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 355 

Figure 7. Trend detectability. (a) Time to detect (T2D) radiance trends at 90% significance 356 

level in different AERI channels; in comparison, the T2D for the 2-meter temperature from 357 

the ERA5 reanalysis is about 30 years. (b) Zoomed-in figure of panel (a) in the water vapor 358 

absorption band. (c) The T2D (color-coded), in relation to atmospheric absorption strength, 359 

measured by the optical depth of a 1-meter-thick atmospheric layer near the surface. The 360 

horizontal line marks optical depth of 0.5.   361 

Trend detection in the radiance record is determined by comparing the trend signal to 362 

the uncertainties arising from different causes. Here, based on Equation (5), we account for 363 

uncertainties arising from climate internal variability (𝜎𝑁) and also instrumentation error (𝜎𝑒) 364 

(Figure 5). The overall uncertainty is notably large in the window band for the all-sky 365 

condition (Figure 5), which impedes the detection of any significant radiance trends in this 366 

especially variable spectral region. Analysis of the respective parameters in Appendix A (see 367 

Figure A2) indicates that internal climate variability dominates instrumentation error when 368 

shaping the overall uncertainty envelope in Figure 5. It is also found that the influence of the 369 

autoregressive process does not strongly influence the trend uncertainty, as evident by the 370 

small value of 𝜙, especially in the window band (Figure A2). We conclude that the trend 371 

uncertainty mainly arises from internal climate variability. 372 

3.2 Trends in different cloud conditions 373 

The results presented in the previous subsection demonstrate that the radiance trends 374 

in the window band are different from the greenhouse gas absorption bands; the window 375 

band is also prone to high levels of uncertainty due to the marked variability of the signal that 376 

ranges from small values in clear sky conditions to large values when opaque low-altitude 377 

clouds are overhead. Given the fact that clouds are a significant factor that influences this 378 

band (see Figure 2), we analyze the radiance trends under different cloud conditions in this 379 

subsection.   380 
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The fraction of time that each sky condition occurs in one month (referred to as ‘sky 381 

fraction’) based on the hourly spectra are shown in Figure 8. First, there is a good agreement 382 

between AERI-01 and AERI-C1 in the sky fraction monthly time series, with correlation 383 

coefficients of 0.94, 0.89, and 0.94 for clear-sky, thin-cloud, and thick-cloud, respectively. 384 

The clear-sky fraction between June 1996 and May 2010 from our classification is around 385 

42% which is comparable to what was found by Turner and Gero (2011).  386 

The clear-sky fraction increases at a rate of 0.170.09 % per year, while the thick-387 

cloud fraction decreases at a rate of -0.180.09 % per year. There is no significant trend for 388 

thin-cloud fraction. Understanding the atmospheric mechanisms that drive the trends in the 389 

sky fraction for different sky conditions are the subject of investigation in a future work.  390 

 391 

Figure 8. The monthly sky fractions of different sky conditions, categorized based on 8-392 

minute mean spectra at the SGP site. The overlapping observational period is between the 393 

two vertical thick black lines. 394 

Trends in AERI-observed DLR for different sky conditions based on the k-NN 395 

classifier are shown in Figure 9. In the window band, the clear-sky and thin-cloud trends are 396 

positive, while the thick-cloud trends are negative; however, none of those trends are 397 

statistically significant from zero because of the notably large trend uncertainty. The positive 398 

trend in the window band in the clear-sky data is likely due to increases in precipitable water 399 

vapor (PWV), as hypothesized by Gero and Turner (2011). The positive trend in the thin-400 

cloud classification suggests that either the clouds in these scenes are becoming more opaque, 401 

the clouds are becoming warmer (perhaps by moving lower in the troposphere), the PWV is 402 

increasing, or some combination of the three. The decrease in the thick-cloud trend in the 403 

window suggests that these thicker clouds are either becoming cooler or moving higher in the 404 

troposphere. In the spectral regions outside the window band, the trends for different sky 405 

conditions are generally positive and have the same features as the all-sky scenes.  406 
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 407 

Figure 9. The trends in AERI-observed DLR for different sky conditions at the SGP site. The 408 

spectral elements marked with red dots indicate that the trends pass the 95% significance test. 409 

The shading in the figure is the 95% confidence interval.  410 

The all-sky DLR trends are caused by changes in both sky fraction and the radiance of 411 

each sky condition. We use equation (7) to separate the contributions from these factors, in 412 

which 𝑅𝑎𝑙𝑙 represents the all-sky radiance, 𝑓𝑖 and 𝑅𝑖 represent the sky fraction and mean 413 

radiance for different sky conditions.  414 

𝑑𝑅𝑎𝑙𝑙

𝑑𝑡
= ∑

𝑑𝑓𝑖

𝑑𝑡
𝑅𝑖 + ∑

𝑑𝑅𝑖

𝑑𝑡
𝑓𝑖  +  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (7) 415 

The results of the decomposed trends based on Equation (7) are shown in Figure 10. 416 

The small residual term (purple line in Figure 10a), which comes from nonlinear effects, 417 

suggests that the overall all-sky radiance trends can be well explained by Equation (7). In the 418 

window band, the overall radiance trends are a result of the compensation between the sky 419 

fraction change (orange line in Figure 10a) and the radiance change (yellow line in Figure 420 

10a). In the opaque portions of the CO2 absorption band (centered at 667 cm-1) and H2O 421 

absorption band (1300 – 1800 cm-1), the overall radiance trends are caused by radiance 422 

change which is due almost entirely to the increases in the near-surface temperature because 423 

the atmosphere is already too opaque to reflect any gas concentration changes. 424 

The overall radiance trends caused by sky fraction changes (orange line in Figure 10a) 425 

are a result of the compensation between changes in the clear-sky (blue line in Figure 10b) 426 

and the thick-cloud fraction (yellow line in Figure 10b) except in the opaque regions of the 427 

CO2 absorption band (centered at 667 cm-1) and H2O absorption band (1300 – 1800 cm-1). In 428 

the CO2 absorption band and H2O absorption band, the perfect compensation between 429 

positive trends caused by clear-sky and thin-cloud sky fraction changes and the negative 430 
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trends caused by thick-cloud sky fraction changes results in almost no trends. In the window 431 

band, the negative trends are mainly caused by the thick-cloud fraction change.  432 

In the window band (800 -1200 cm-1), the overall radiance trends caused by radiance 433 

change (yellow line in Figure 10a) result from the compensation between positive clear-sky 434 

and thin-cloud radiance change trends and negative thick-cloud sky radiance change trends 435 

(Figure 10c). By contrast, in the CO2 absorption band (centered at 667 cm-1) and H2O 436 

absorption band (1300 – 1800 cm-1), the radiance changes for the three sky conditions all 437 

contribute similarly to the overall radiance trends caused by radiance change.  438 

 439 

Figure 10. The all-sky DLR trends decomposed into the contributions from the sky fraction 440 

and radiance changes of different sky conditions.  (a) The blue line represents the calculated 441 

all-sky DLR trends, which is the same as that from Figure 5. The orange and yellow lines 442 

represent the contribution from sky fraction change and radiance change determined using 443 

equation (7), respectively. The purple line is the residual term from Equation (7); (b) The all-444 

sky DLR trends caused by sky fraction change. The blue, orange, and yellow lines represent 445 

the contributions from clear-sky, thin-cloud, and thick-cloud fraction changes respectively; 446 

(c) The all-sky DLR trends caused by radiance change. The blue, orange, and yellow lines 447 

represent the contributions from clear-sky, thin-cloud, and thick-cloud radiance changes 448 

respectively. 449 

4 Discussion and Conclusions 450 

In this study, a long-term record of DLR at the SGP site has been constructed for 451 

analyzing the DLR trends, based on a weighted linear regression method that takes into 452 

account both natural climate variability and measurement error. Compared to previous 453 

studies, our analysis is based on a longer DLR record combined from the two AERIs at the 454 

SGP site, and makes use of synthetic DLR data in validating and differentiating the AERI 455 

measurements over their overlapping observational period. In addition, we quantitatively 456 

decompose the overall radiance trends due to the contributions from sky fraction change and 457 

the radiance change in each of these sky conditions.  458 
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The trends in DLR in different spectral ranges have different features. The trends are 459 

generally positive in the CO2 and H2O absorption bands, while no statistically significant 460 

trends are detected in the window band (Figure 5). We find that in the more opaque regions 461 

in the center of the CO2 and H2O absorption bands, the radiance is controlled by the near-462 

surface air temperature (Figure 6) because of the strong atmospheric absorption. The 463 

sensitivity of DLR to near-surface air temperature indicates the potential of DLR to monitor 464 

climate change. In the wings of these absorption bands, both the near-surface atmospheric 465 

warming and the increase of the abundance of these trace gases contribute to the radiance 466 

trends (Feldman et al., 2015), which makes a climate trend signal more readily detectable, as 467 

hypothesized by Huang (2013). In the window band, the radiance is decoupled from the near-468 

surface air temperature (Figure 6) because of the impact of sky-fraction changes of different 469 

scenes (clear and cloudy-skies). 470 

We find that the sky-fraction change and the radiance change led to compensating 471 

effects on the DLR trends. This compensation results in weakly (statistically insignificant) 472 

negative radiance trends in the window band (Figure 10). In contrast, the radiance trends are 473 

dominated by the radiance change in the CO2 and H2O absorption bands, which are similar in 474 

all three sky conditions.  475 

The influences of both natural climate variability and measurement error are 476 

considered when determining the uncertainty of the trend magnitude (Equation (5), Figure 477 

A2). We find that for all sky conditions, the majority of the uncertainty comes from the 478 

natural variability. This underlines the necessity of continuous DLR measurements to 479 

ascertain the DLR trends, especially in the window band (Figure 5).  480 

The two AERIs at the SGP site provide us with an excellent opportunity to test the 481 

accuracy and consistency of the instruments. The discrepancies between the two AERIs in 482 

the overlapping periods may have come from calibration error and other undetected 483 

instrumentation errors. In this study, we use synthetic data to differentiate and combine the 484 

two AERIs’ observations. Further investigation is required to understand the origin of the 485 

discrepancies and therefore to assure the measurement accuracy.  486 

This paper has focused on the detection, as opposed to attribution, of the DLR trends. 487 

In the clear-sky case, atmospheric temperature and radiative gas concentration changes 488 

(primarily water vapor) are likely the main contributors to the DLR changes. As for the 489 

cloudy-sky case, changes in both the atmospheric states and cloud properties may contribute 490 

to the DLR changes. Future work is warranted to understand and quantitatively attribute the 491 

DLR trends disclosed in this paper to different meteorological variables.  492 
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 507 
 508 

Appendix A: Trend Detection 509 

We first summarize the linear trend model and trend estimation from Tiao et al. 510 

(1990) and Weatherhead et al. (1998) in A.1 and A.2. We adopt the notation in their papers. 511 

Then we add the measurement error term to the trend detection in A.3 following Tiao et al. 512 

(1990).   513 

A.1 Basic linear trend modeling 514 

In order to detect a linear trend, we first construct a simple model that describes the 515 

monthly mean radiance 𝑌𝑡 as: 516 

𝑌𝑡 = 𝜇 + 𝑆𝑡 + 𝜔𝑋𝑡 + 𝑁𝑡, 𝑡 = 1, ⋯ , 𝑇 (𝐴1) 517 

where 𝜇 is a constant term, 𝑆𝑡 represents the seasonal component, 𝜔 is the trend magnitude to 518 

be determined, 𝑋𝑡 =
𝑡

12
 represents time measured in the units of year, 𝑁𝑡 represents the 519 

unexplained portion of the data (i.e. the noise), and 𝑇 represents the length of the data set in 520 

months. 521 

The seasonal component 𝑆𝑡 is determined by computing a long-term average of each 522 

calendar month. This component is subsequently removed from the monthly mean. 523 

𝑦𝑡 = 𝑌𝑡  −  𝑆𝑡 = 𝜇 + 𝜔𝑋𝑡 + 𝑁𝑡, 𝑡 = 1, ⋯ , 𝑇 (𝐴2) 524 

The noise 𝑁𝑡 is assumed to be autoregressive of the order of 1 (AR1): 525 

𝑁𝑡 = 𝜙𝑁𝑡−1 + 𝜖𝑡 (𝐴3) 526 

where 𝜖𝑡 is assumed to be random white noise with zero mean and common variance 𝜎𝜖
2, 527 

𝜖𝑡~𝑊(0, 𝜎𝜖
2). The autocorrelations in the noise come from various natural factors. 𝜙 is 528 

determined as the autocorrelation coefficient of the AR1 process after removing from 𝑦𝑡 a 529 

linear trend component obtained by regressing 𝑦𝑡 to time using a simple weighted linear least 530 

squares method (i.e., neglecting the AR1). The all-sky 𝜙 is shown in Figure A2a.  531 

The variance of the noise 𝑁𝑡 can also be determined from the detrended 𝑦𝑡 time 532 

series: 533 

𝜎𝑁
2 = 𝐶𝑜𝑣(𝑁𝑡, 𝑁𝑡) = 𝐶𝑜𝑣(𝜙𝑁𝑡−1 + 𝜖𝑡, 𝜙𝑁𝑡−1 + 𝜖𝑡)

= 𝜙2𝐶𝑜𝑣(𝑁𝑡−1, 𝑁𝑡−1) + 𝐶𝑜𝑣(𝜖𝑡, 𝜖𝑡)

= 𝜙2𝜎𝑁
2 + 𝜎𝜖

2

(𝐴4) 534 

Thus, 535 

𝜎𝑁
2 =

𝜎𝜖
2

1 − 𝜙2
(𝐴5) 536 

A.2 Trend estimation with weights 537 

Given 𝜙, to obtain the trend estimation, we consider a transformed model: 538 
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𝑦𝑡
⋆ = 𝑦𝑡 − 𝜙𝑦𝑡−1

= 𝜇(1 − 𝜙) + 𝜔(𝑋𝑡 − 𝜙𝑋𝑡−1) + 𝜖𝑡

= 𝜇(1 − 𝜙) + 𝜔 [
𝑡 − 𝜙(𝑡 − 1)

12
] + 𝜖𝑡

= 𝜇(1 − 𝜙) +
𝜔𝜙

12
+

𝜔(1 − 𝜙)𝑡

12
+ 𝜖𝑡

= 𝜇⋆ + 𝜔𝑡⋆ + 𝜖𝑡

(𝐴6) 539 

where 𝜇⋆ = 𝜇(1 − 𝜙) +
𝜔𝜙

12
 and 𝑡⋆ =

(1−𝜙)𝑡

12
. Thus, in the transformed model, the noise term 540 

𝑁𝑡 has been removed. 541 

The transformed DLR 𝑦𝑡
⋆ is shown in Figure A1. 542 

 543 
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Figure A1. Transformed monthly anomaly of AERI-observed DLR spectra based on 544 

Equation (A6) and hourly spectra count in each month.  545 

According to the weighted least square estimation: 546 

𝜔̂ =

∑ 𝑊𝑡(𝑡⋆ − 𝑡⋆)𝑦𝑡
⋆

𝑇

𝑡=1

∑ 𝑊𝑡(𝑡⋆ − 𝑡⋆)2
𝑇

𝑡=1

 =
∑ 𝑊𝑡(𝑡 − 𝑡)𝑦𝑡

⋆𝑇

𝑡=1

1 − 𝜙
12 ∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1

 (𝐴7) 547 

where 𝑊𝑡 represents the weights determined according to Equation (4), 𝑦𝑡
⋆̅̅ ̅̅ =

∑ 𝑊𝑡𝑦𝑡
⋆𝑇

𝑡=1

∑ 𝑊𝑡
𝑇
𝑡=1

, 𝑡⋆̅ =548 

∑ 𝑊𝑡𝑡⋆𝑇
𝑡=1

∑ 𝑊𝑡
𝑇
𝑡=1

, and 𝑡̅ =
∑ 𝑊𝑡𝑡𝑇

𝑡=1

∑ 𝑊𝑡
𝑇
𝑡=1

. 549 

The variance of the estimated 𝜔: 550 

𝜎𝜔̂
2 = 𝑉𝑎𝑟(𝜔̂) = 𝑉𝑎𝑟 [

∑ 𝑊𝑡(𝑡 − 𝑡)𝑦𝑡
⋆𝑇

𝑡=1

1 − 𝜙
12 ∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1

] =
𝑉𝑎𝑟 [∑ 𝑊𝑡(𝑡 − 𝑡)𝑦𝑡

⋆𝑇

𝑡=1
]

(
1 − 𝜙

12 )2 [∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1
]

2551 

=
𝑉𝑎𝑟 [∑ 𝑊𝑡(𝑡 − 𝑡)𝜖𝑡

𝑇

𝑡=1
]

(
1 − 𝜙

12 )2 [∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1
]

2 =
∑ [𝑉𝑎𝑟[𝑊𝑡(𝑡 − 𝑡)𝜖𝑡]]

𝑇

𝑡=1

(
1 − 𝜙

12 )2 [∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1
]

2552 

=
𝑉𝑎𝑟(ϵ𝑡) ∑ 𝑊𝑡

2(𝑡 − 𝑡)2𝑇

𝑡=1

(
1 − 𝜙

12 )2 [∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1
]

2 =
𝜎𝜖

2 ∑ 𝑊𝑡
2(𝑡 − 𝑡)2𝑇

𝑡=1

(
1 − 𝜙

12 )2 [∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1
]

2     (𝐴8) 553 

𝜎𝜔̂ =
𝜎𝜖

1 − 𝜙
12

√∑ 𝑊𝑡
2(𝑡 − 𝑡)2𝑇

𝑡=1

∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1

= 𝜎𝑁𝑔(𝑇, 𝜙, 𝑊) (𝐴9) 554 

In Equation (A9), 𝑔 is a function of 𝑇, 𝜙, and W with the explicit expression shown in 555 

Equation (A10). 556 

𝑔(𝑇, 𝜙, 𝑊) = 12√
1 + 𝜙

1 − 𝜙

√∑ 𝑊𝑡
2(𝑡 − 𝑡)2𝑇

𝑡=1

∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1

(𝐴10) 557 

Thus, 558 

𝜎𝜔̂ = 12 𝜎𝑁√
1 + 𝜙

1 − 𝜙

√∑ 𝑊𝑡
2(𝑡 − 𝑡)

2𝑇

𝑡=1

∑ 𝑊𝑡(𝑡 − 𝑡)
2𝑇

𝑡=1

(𝐴11) 559 

    From equation (A11), we conclude that the trend uncertainty is affected by the 560 

length of the available data, the natural variability in the data, the autocorrelation of the data, 561 

and the derived weights. 562 
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A.3 Effect of measurement error 563 

When we consider the instrumentation errors 𝑒𝑡 in the measurements, Equation A2 564 

becomes: 565 

𝑦𝑡 = 𝜇 + 𝜔𝑋𝑡 + 𝑁𝑡 + 𝑒𝑡, 𝑡 = 1, ⋯ , 𝑇 (𝐴12) 566 

𝑒𝑡 is considered to be white noise with zero mean and common variance 𝜎𝑒
2, 567 

𝑒𝑡~𝑊(0, 𝜎𝑒
2), and is considered independent of 𝑁𝑡 because 𝑁𝑡 originates from unobserved 568 

or unsuspected atmospheric factors, while 𝑒𝑡 comes from the instrument itself. 569 

In this case, the variance of noise comes from two parts: 570 

𝜎2 = 𝜎𝑁
2 + 𝜎𝑒

2 (𝐴13) 571 

    Similar to the derivation in Equation (A9), the variance of the estimated trend 572 

magnitude is: 573 

𝜎𝜔̂
2 = 𝜎𝑁

2𝑔2(𝑇, 𝜙, 𝑊) + 𝜎𝑒
2𝑔2(𝑇, 0, 𝑊)

= 𝜎𝑁
2

1 + 𝜙

1 − 𝜙

144 ∑ 𝑊𝑡
2(𝑡 − 𝑡)2𝑇

𝑡=1

[∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1
]

2 + 𝜎𝑒
2

144 ∑ 𝑊𝑡
2(𝑡 − 𝑡)2𝑇

𝑡=1

[∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1
]

2

= (𝜎𝑁
2

1 + 𝜙

1 − 𝜙
+ 𝜎𝑒

2)
144 ∑ 𝑊𝑡

2(𝑡 − 𝑡)2𝑇

𝑡=1

[∑ 𝑊𝑡(𝑡 − 𝑡)2𝑇

𝑡=1
]

2

(𝐴14) 574 

    The uncertainty of the all-sky radiance trend magnitude caused by the natural 575 

variability and the measurement error are shown in Figure A2b.  576 

 577 

Figure A2. Parameters concerning the radiance trends. (a) The all-sky autocorrelation 578 

coefficient based on an AR1 process; (b) All-sky DLR trend uncertainty decomposition based 579 

on Equation (A14). The blue line represents the total all-sky trend magnitude uncertainty, 580 

while the orange and yellow lines represent the all-sky trend magnitude uncertainty arising 581 

from natural climate variability and measurement error respectively. 582 
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A.4 Time to detect the trend 583 

The trend detection 𝜔 is judged to be real or significantly different from zero at the 584 

95% level if |𝜔̂| > 2𝜎𝜔̂. 𝜔̂ is approximately normally distributed, so 𝑧 =
𝜔̂−𝜔

𝜎𝜔̂
 follows a 585 

standard normal distribution. 586 

𝑃𝑟(|𝜔̂| > 2𝜎𝜔̂) = 𝑃𝑟 (𝑧 > 2 −
𝜔

𝜎𝜔̂
) (𝐴15) 587 

To detect a real trend of specified magnitude |𝜔|, with probability of 90%: requires 588 

that 2 −
𝜔

𝜎𝜔̂
< −1.3 ⇒ 𝜔 > 3.3𝜎𝜔̂. 589 

Thus, the number of years 𝑛⋆ of data required to detect the trend 𝜔̂ which is 590 

determined based on 23-year data, assuming that the trend and noise levels do not change 591 

relative to the 23-year period, is 592 

𝑛⋆ ≈
3.3𝜎𝜔̂

|𝜔̂|
× 23 𝑦𝑒𝑎𝑟𝑠 (𝐴16) 593 

 We note that the T2D estimation is different from ascertaining whether the trend 594 

magnitude measured from data is significantly different from zero. Hence, although in some 595 

channels the trend magnitude is assessed to be "significant", the estimated T2D may be 596 

longer than the record length (23 years). This is because when estimating T2D we recognize 597 

that the measured time series is one of the many possible realizations that, although governed 598 

by the same physical processes and thus of the same true trend, may not render the same 599 

trend magnitude in the data. This explains why the factor (3.3) used in the T2D estimation is 600 

different from that (2.0) used in the trend significance test. 601 

 602 

Appendix B: Homogenization of the two AERI records 603 

B.1 Comparison between the two AERIs 604 

During the overlapping observation period, the all sky monthly mean radiance 605 

difference between AERI-01 and AERI-C1 is shown in Figure B1. Since these two 606 

instruments have different sampling frequency, the AERI-C1 spectra are averaged to match 607 

the sampling of AERI-01 spectra before the comparison. From Figure B1a, there are 608 

noticeable discrepancies between the AERI-01 and AERI-C1 observations. Because of the 609 

different sampling frequency, the two AERIs have random errors of different amplitudes 610 

(Turner et al., 2006). However, we find that removing the random errors using the principal 611 

component analysis following Turner et al. (2006) has little impact on the discrepancies (not 612 

shown). We find that in more than 20% of the AERI channels in the spectral range from 700 613 

to 1300 cm-1 and for more than 12% of the overlapping observational months, the radiance 614 

difference between two AERIs is larger than the documented absolute calibration uncertainty 615 

(Knuteson et al., 2004a).  616 

For the AERI-C1 data stream, multiple instruments were used. All these transitions 617 

can be seen in Figure B1a as either subtle changes or obvious differences. First, the transition 618 

from AERI-04 to AERI-05 happened in September 2009, which caused subtle changes and is 619 

labelled by the green star in Figure B1a. These AERIs were among the several AERIs 620 

constructed by the University of Wisconsin – Madison for the ARM program. Next, in March 621 

2010, the instrument changed from AERI-05 to AERI-06, which is labelled by the green 622 

triangle in Figure B1a. Then, the transition from AERI-06 to AERI-106 happened in March 623 

2011, which caused more noticeable changes and is labelled by the green square in Figure 624 
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B1a. At this point, the AERI technology was licensed to a commercial vendor, and their units 625 

are now characterized by a three-digit number. So AERI-106 is the 6th unit constructed by the 626 

vendor. AERI-106 operated until July 2013, when it was replaced with the AERI-108 which 627 

has operated at the SGP site since then. We find that the radiance differences between all of 628 

these “AERI-C1” instruments and the AERI-01 have unique spectral signatures. 629 

 630 

Figure B1. (a) The monthly mean DLR difference between AERI-C1 and AERI-01 (AERI-631 

C1 – AERI-01). The green symbols indicate AERI-C1 instrument transitions; (b) Number of 632 

8-min spectra for each month (the counts are identical after AERI-C1 spectra are resampled 633 

to match AERI-01).  634 

When separating the measured spectra by different sky conditions, we find that the 635 

prominent difference between the two AERIs in the window band mainly comes from 636 

relatively clear sky conditions. Figure B2 shows the monthly mean radiance difference for 637 

different sky conditions in October 2006 as an example. Here the DLR at 985 cm-1 is used to 638 

classify the sky to be relatively clear or optically thin clouds (< 40 RU) or relatively cloudy 639 

(> 40 RU). We chose 40 RU based on the threshold that Turner and Gero (2011) used to 640 

classify cloudy sky to be thin or thick clouds scenes.   641 
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 642 

Figure B2. The monthly mean DLR difference between AERI-C1 and AERI-01 (AERI-C1 – 643 

AERI-01) for different sky conditions in October 2006. See text for details. 644 

We examined various instrumental parameters recorded with AERI measurements, 645 

including calibration blackbody temperatures and instrument responsivity, but found that no 646 

instrumental parameter explains the radiance difference between the two AERIs. It is possible 647 

that an unknown obstruction was partially in the FOV of one of the AERIs (e.g., unit AERI-648 

106), such as what was experienced with an early AERI at the SGP site (Knuteson et al., 649 

1999). 650 

B.2 Clear-sky LBLRTM simulations 651 

Since the differences between two AERIs mainly come from relatively clear sky 652 

scenes, we use clear sky synthetic spectra simulated by the LBLRTM as a metric to 653 

distinguish their relative accuracies. Here we use the classical backpropagation gradient-654 

descent classification algorithm mentioned in Subsection 2.2 to select clear-sky spectra. To 655 

ensure the case is clear, we set the algorithm threshold to be 0.8, which means the probability 656 

of the sky being clear is at least 0.8.  657 

After matching all datasets, including radiosondes and gas concentrations at SGP 658 

mentioned in section 2.3 to select atmospheric profiles, clear sky synthetic spectra are 659 

obtained during the overlapping observational period. For each month, about 70 DLR spectra 660 

are simulated on average. The LBLRTM simulation is validated based on the test in Feldman 661 

et al. (2015). We chose the same time slices selected in Feldman et al. (2015)  to simulate the 662 

DLR spectrum and we can achieve similar radiative closures between observation and 663 

simulation. 664 
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 665 

Figure B3.  The clear-sky monthly mean DLR difference between AERI-observations and 666 

LBLRTM simulations in October 2006.  667 

We originally used the ozone concentration profile from the Modern-Era 668 

Retrospective analysis for Research and Applications Version 2 (MERRA-2, Gelaro et al., 669 

2017) in simulating the synthetic spectra. A relatively poorer radiance closure between 670 

AERI-observations and LBLRTM simulations was found in the ozone absorption band near 671 

1040 cm-1(not shown). By comparing the in-situ measurements at SGP (available only at 672 

limited times), we find that this is due to poor representation of the near-surface (and hence 673 

lower tropospheric) ozone concentration in the MERRA-2 dataset. To address this issue, we 674 

vertically scale the ozone profile uniformly to achieve an improved radiance closure in the 675 

ozone band as exemplified by Figure B3 (AERI-C1 line); however, this change to the ozone 676 

absorption region between 1040-1140 cm-1 has little impact on the all-sky radiance trend 677 

detected in Figure 5.  678 

As demonstrated in Figure B3, we find that the AERI-C1 is generally in better 679 

agreement with LBLRTM simulations than AERI-01, especially in the window band. The 680 

radiance difference in each channel is used to weight the spectra of AERI-01 and AERI-C1, 681 

according to Equation (2), allowing us to develop an integrated record of monthly mean DLR 682 

spectra from the two instruments.  683 

Figure B4 shows the comparison between LBLRTM simulated clear-sky DLR trends 684 

(blue dots) and AERI-observed clear-sky DLR trends (red dots) over the 23-year period. The 685 

clear-sky DLR trends using simulated clear-sky DLR values are similar to the clear-sky DLR 686 

trends using AERI-observations indicating the reliability of the simulated DLR long-term 687 

record. 688 
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 689 

Figure B4.  Comparison between LBLRTM simulated clear-sky DLR trends (blue dots) and 690 

AERI-observed clear-sky DLR trends (red dots) over the 23-year period. The inset shows the 691 

zoomed-in comparison in the CO2 absorption band.  692 

 693 

Appendix C: Comparison of the estimations of time to detect radiance trends 694 

Leroy et al. (2008) proposed a formula (hereinafter referred to as the Leroy method) 695 

to calculate the minimum time to detect (T2D) a trend. T2D calculated using Equation (6) 696 

(hereinafter referred to as the Liu method) is longer than using the Leroy method.  697 

Figure C1 shows the time to detect (T2D) radiance trends at 90% significance level in 698 

different AERI channels using Liu the method and the Leroy method respectively. The 699 

signal-to-noise ratio 𝑠 in Equation (11) of Leroy et al. (2008) is set to be 3.3 in order to be 700 

consistent with our derivation in Appendix A4; the terms 𝜎𝑣𝑎𝑟 and 𝜎𝑚𝑒𝑎𝑛 in this equation 701 

correspond to 𝜎𝑁 and 𝜎𝑒 in Equation (5) respectively.  702 

The correlation coefficient between T2Ds obtained from the two methods is 0.93. 703 

T2D calculated using the Liu method is generally longer than that calculated using the Leroy 704 

method by 10 years when T2D is 40 years, and by 45 years when T2D is 100 years. 705 
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Figure C1.  Trend detectability comparison between using (a) the Liu method and (b) the 707 

Leroy method. 708 
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