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ABSTRACT: The potential for polarimetric Doppler radar measurements to improve predictions of ice microphysical

processes within an idealized model–observational framework is examined. In an effort to more rigorously constrain ice

growth processes (e.g., vapor deposition) with observations of natural clouds, a novel framework is developed to compare

simulated and observed radar measurements, coupling a bulk adaptive-habit model of vapor growth to a polarimetric radar

forward model. Bayesian inference on key microphysical model parameters is then used, via a Markov chain Monte Carlo

sampler, to estimate the probability distribution of the model parameters. The statistical formalism of this method allows

for robust estimates of the optimal parameter values, along with (non-Gaussian) estimates of their uncertainty. To

demonstrate this framework, observations from Department of Energy radars in the Arctic during a case of pristine ice

precipitation are used to constrain vapor deposition parameters in the adaptive habit model. The resulting parameter

probability distributions provide physically plausible changes in ice particle density and aspect ratio during growth. A

lack of direct constraint on the number concentration produces a range of possible mean particle sizes, with themean size

inversely correlated to number concentration. Consistency is found between the estimated inherent growth ratio and

independent laboratory measurements, increasing confidence in the parameter PDFs and demonstrating the effective-

ness of the radar measurements in constraining the parameters. The combined Doppler and polarimetric observations

produce the highest-confidence estimates of the parameter PDFs, with the Doppler measurements providing a stronger

constraint for this case.
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1. Introduction

Ice microphysical processes play a large role in governing

the life cycles and macrophysical structure—and therefore the

radiative properties—of many cloud systems. Unfortunately,

our understanding of ice processes is still relatively crude,

especially compared to our understanding of warm-cloud

microphysics. As a result, significant uncertainties exist in

the treatment of ice processes in models at all scales. The

challenges in modeling cold clouds persist in part because of

the myriad shapes ice crystals acquire during their lifetimes

(e.g., Baker and Lawson 2006; Bailey and Hallett 2009), along

with the complex interactions among these particles. Owing

to the lack of theoretical understanding, modeling the evolu-

tion of particle shape, mass, and fall speed remains a significant

challenge.

Recent modeling work has attempted to address this prob-

lem by allowing the bulk particle properties of ice hydrome-

teors (e.g., aspect ratio, density, and size) to evolve freely as

continuous variables that depend on the environmental tem-

perature and/or supersaturation (e.g., Chen and Lamb 1999;

Hashino and Tripoli 2007; Harrington et al. 2013a,b; Morrison

and Milbrandt 2015; Jensen and Harrington 2015; Chen and

Tsai 2016; Jensen et al. 2017, hereafter J17). These ‘‘particle-

property’’ approaches have a long history (e.g., Todd 1964;

Hindman and Johnson 1972; Cotton 1972) and attempt to

directly couple measured quantities to the evolution of

hydrometeor properties. Many of these approaches have

their roots in the work of Chen and Lamb (1994), where

laboratory-measured axis growth rates inform the prediction

of shape.

Although laboratory and in situ data are useful in con-

straining some aspects of how the ice particle properties

evolve, these measurements have some important limitations.

For example, large populations of interacting ice particles are

difficult to generate in an idealized laboratory setting, and thus

particles growing in the laboratory likely evolve differently

compared to those in nature. Despite these limitations, labo-

ratory experimentation and in situ observations are often used

to critique model performance (Fridlind et al. 2007; Avramov

and Harrington 2010, and many others); however, they are

rarely used in conjunction with modeling studies to reduce the

uncertainty and improve parameterizations of microphysical

processes.

One set of measurements that provides additional con-

straints but has yet to be fully exploited is radar remote sensing.

Radar remote sensing has been a popular choice to obtain a
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qualitative understanding of ice growth processes (e.g., Kennedy

and Rutledge 2011; Andrić et al. 2013; Kumjian et al. 2014;

Schrom et al. 2015; Leinonen and Moisseev 2015; Oue et al.

2015b,a, 2016; Kneifel et al. 2015; Kumjian et al. 2016;

Giangrande et al. 2016; Sinclair et al. 2016;Moisseev et al. 2017;

Kumjian and Lombardo 2017; Vogel and Fabry 2018). The

widespread usage of these measurements is partly because

radar provides a more statistically robust sampling of hydro-

meteor properties than in situ observations, owing to its more

comprehensive spatial coverage. However, the radar variables

are complex, inherently uncertain functions of the ice prop-

erties predicted by microphysical models (e.g., Kumjian et al.

2019), necessitating the use of retrievals or forward operators

to map between the model variables and radar variables. This

mapping becomes necessary because the particle property as-

sumptions used in the microphysical and forward models are

often inconsistent. In addition, many assumptions about the

particle properties—and, in turn, scattering properties—are

built into the frameworks of such retrievals or forward op-

erators (e.g., Ryzhkov et al. 2011); the validity of these ice

particle property assumptions and their impact on uncer-

tainties in the forward model or retrieval are often unexplored,

precluding a quantitative application of radar measurements

in evaluating microphysical models.

As such, particle-property modeling approaches, radar

simulators, and observations have yet to be combined—with

full consideration of the uncertainties inherent in each—to

yield insights into poorly understood ice processes. However,

recent improvements in radar forward models (e.g., Schrom

and Kumjian 2019, hereafter SK19), novel usage of Bayesian

parameter estimation techniques (e.g., Posselt and Vukicevic

2010;Morrison et al. 2020; van Lier-Walqui et al. 2020), and the

increasing availability of multiparameter radar measurements

collectively enhance the potential for radar measurements to

quantitatively inform ice microphysical models. Specifically,

Markov chain Monte Carlo (MCMC) samplers have shown

promising results in informing microphysical processes with ra-

dar observations (e.g., van Lier-Walqui et al. 2012). This method

is ideally suited to constrain the parameters associated with ice

particle growth and to characterize their error structures, even in

the presence of highly nonlinear sensitivities of the model to

perturbations of these parameters (Posselt and Vukicevic 2010).

The purpose of the effort described herein is twofold: first,

we demonstrate the utility of MCMC in estimating the un-

certain parameters in an ice particle growth model, informed

by polarimetric and Doppler radar observations. Given the

relative novelty of our approach, we avoid combinations of

growth processes (i.e., vapor growth, riming, and aggregation)

and focus solely on constraining simulations of vapor-grown

planar ice crystals in an observed Arctic mixed-phase cloud

(combined growth processes will be discussed in a future

study). Second, we explore the relations among the MCMC-

derived parameters governing the ice crystal shape, those

governing the model kinematic and thermodynamic environ-

ment, and the radar measurements. We also develop a method

to incorporate various crystal structures into the modeled ice

effective density, a variable that strongly impacts the model

uncertainty.

The microphysical model for vapor deposition and the

kinematic model framework are described in section 2,

along with a description of the new parameterization of ice

effective density. Section 3 describes the observations as-

sociated with the Arctic vapor deposition case and describes

the parameter estimation technique. The results are pre-

sented in section 4, followed by a discussion and summary

in section 5.

2. Microphysical and kinematic models

a. Microphysical model

We use the Ice-Spheroids Habit Model with Aspect-Ratio

Evolution (ISHMAEL; J17). ISHMAEL has been used to

explore mixed-phase stratocumulus formation (Simpfendoerfer

et al. 2019) and dissipation (Sulia et al. 2014), a quasi-idealized

3D squall line (Jensen et al. 2018b), and orographic precipi-

tation from the IMPROVE-2 campaign (Jensen et al. 2018a).

Following Chen and Lamb (1994), ice particles are represented

by spheroids with the major and minor dimensions referenced

to the semiaxis lengths of the basal (a) and prism (c) faces,

respectively, of an ice crystal. This approach provides a

mechanism to change the aspect ratio (f5 c/a) of the modeled

crystals, as well as their effective density (reff). The ability of

this model to freely evolve ice crystal f, maximum size, and reff
is well suited for the purpose of simulating polarimetric radar

measurements of branched planar crystals, which depend on

the same quantities (e.g., SK19). As in Harrington et al. (2013a),

we represent the particle size spectra using Gamma distribu-

tions within a bulk parameterization for the evolution of the

particle properties during growth—in this study, the shape

parameter is fixed, with the total number and slope parameters

evolving according to the growth equations. We fix the shape

parameter for the purposes of simplicity; since the shape pa-

rameter tends to have a larger impact on the smallest sizes in

the particle spectrum, the reflectivity-weighted observations

used herein are less sensitive to the shape parameter, and

therefore likely provide minimal information needed to con-

strain this parameter.

To evolve shape during vapor growth, the model incor-

porates the mass distribution hypothesis of Chen and

Lamb (1994),

dc

da
5

a
c

a
a

c

a
[G

c

a
, (1)

where ac and aa are the deposition coefficients for the a and

c axes of the crystal, respectively, and G is the inherent

growth ratio. The deposition coefficients (and thus G) ac-

count for all surface processes that influence the incorpo-

ration of water molecules into the bulk crystalline lattice.

They can be thought of as growth efficiencies with values

between zero and unity, and thus describe the overall mass

uptake and the evolution of particle shape (Lamb and Scott

1974; Libbrecht 2003). The G has a known temperature (T)

dependence at liquid saturation that can be directly quantified

from laboratory data (Lamb and Scott 1974) or predicted

based on laboratory-determined critical supersaturations
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(Nelson and Baker 1996; Zhang and Harrington 2014;

Harrington et al. 2019). Thus, G governs particle f evolution,

allowing the development of planar (oblate) or columnar

(prolate) particles over time. However, laboratory measure-

ments of G indicate a wide range of values for a given tem-

perature (as much as a factor of 2; see Fig. 3 in Chen and Lamb

1994). Therefore, it is a source of uncertainty in simulations

of vapor growth.

The initiation of ice crystals requires a nucleation mecha-

nism; however, the ice nuclei concentrations for the simulated

case are unknown. Instead of using an explicit ice nucleation

scheme, we employ the method of Ovchinnikov et al. (2014),

where a target ice number concentration Nice is replenished if

the ice crystal population is depleted belowNice, conditional on

supersaturation with respect to ice si $ 5%. By sampling dif-

ferent values of Nice, we attempt to constrain its value and

determine its relations to the other microphysical parameters

within our parameter estimation framework.

Supercooled liquid water is represented here as in J17,

where it is assumed to follow a Gamma distribution. However,

the liquid water simulated for this case is minimal, with simu-

lated liquid water path (LWP) values on the order of those

observed during this case (#20 gm22; Oue et al. 2016); in situ

photographs of the observed particles also appear unrimed

during this case. Because these liquid drops have negligible

impact on the radar variables, and riming was minimal during

this case, the treatment of the liquid phase herein has little on

impact the parameter estimation results.

b. Size-dependent deposition density parameterization

Another uncertainty in ISHMAEL is the assumed structure,

or secondary habit characteristics (e.g., placement and di-

mensions of branches and subbranches, hollowing), of growing

ice crystals. All microphysical models implicitly or explicitly

parameterize these secondary habit structures with a reff that

corresponds to the mass of the structures divided by the par-

ticle volume; this particle volume is typically assumed to be

that of a sphere or spheroid (e.g., Brown and Francis 1995;

Heymsfield et al. 2004). We assume the particle volume herein

to be that of the smallest hexagonal prism that encloses the

crystal. In doing so, the scattering properties are most closely

related to the ice crystal structure [as in Schrom and Kumjian

(2018) and SK19]. In contrast, using a spherical bounding

volume to characterize the effective density of thin planar

crystals will enclose an artificially large region of air, substan-

tially reducing the effective density and resulting in severe un-

derestimates of the near-field interactions responsible for the

polarimetric scattering properties (Schrom and Kumjian 2018).

Themodel of J17 calculates reff by assuming that mass added

during a short interval of vapor deposition has a ‘‘deposition

density’’ (rdep) that represents the mixture of air and ice as-

sociated with an assumed secondary habit structure, where

rdep # the density of ice ri 5 920 kgm23. Thus, the change in

particle volume is determined by rdep. rdep is often parame-

terized as a function of T and si based on laboratory mea-

surements (Chen and Lamb 1994). The parameterization is

generally applied once a crystal grows beyond some core

semiaxis size of ac,

r
dep

(a)5

(
r
i
, if a# a

c

r
dep

(T , s
i
), if a. a

c
.

(2)

Though this approximation for rdep was never meant to capture

the true structure of branched crystals, it inherently assumes a

crystal structure with a solid-ice core of semiaxis length ac and a

coverage of branches and subbranches that is fixed in size

during growth for a. ac; these assumptions naturally lead to a

reff that rapidly approaches rdep (see below).

Improvements to this approach are possible, and should

align with the observational evidence of planar crystals grow-

ing at temperatures near 2158C (e.g., Nelson 2005; Takahashi

2014), showing that rdep varies with size. Additionally, a variety

of structures are possible at these temperatures, including

more fern-like dendrites, broad-branched sector plates, and

thin-branched stellar crystals (e.g., Magono and Lee 1966;

Bailey and Hallett 2009; Takahashi 2014). Hereafter, these ice

crystal forms are collectively referred to as ‘‘branched planar

crystals.’’ Predicting these structures based on the ambient T

and si is not possible with current theory, and may be funda-

mentally limited to a certain degree of natural variability given

randomness of ice crystal defects, ice nuclei properties, etc.

(e.g., Libbrecht 2005). However, capturing the variability in

these structural features is desirable because of the significant

impact the ice structure has on its electromagnetic scattering

properties (SK19).

To improve the estimation of ice structure, we adapt the

synthetic branched planar structure generation method from

SK191 for the purpose of developing an analytical, size-

dependent rdep model, given in the appendix. An attractive

feature of this structure generation method is that it depends

on several physically identifiable quantities that can readily

be implemented in a microphysical modeling framework.

Additionally, for a given set of these quantities, we can de-

termine both an analytical rdep function with respect to the

crystal size and the corresponding evolution of ‘‘real’’ struc-

tures that may, at least qualitatively, be evaluated using images

of ice crystals from the event (e.g., Oue et al. 2016). However,

rather than performing scattering computations for these

structures directly, we use the bulk physical properties (e.g.,

f, reff, and size) simulated by the microphysical model as

inputs to the analytical SK19 radar forward model, allowing for

the uncertainty in scattering properties given a set of simulated

bulk physical properties to be incorporated into the Bayesian

parameter estimation method. The fact that the same assumed

shapes were used in the development of the SK19 radar forward

model ensures that the simulated scattering and physical prop-

erties within our framework are consistent, and thus provides

for a more robust estimation of assumed shape parameters.

The differences between the size-dependent- and fixed-rdep
models can produce large differences in the crystals’ electro-

magnetic scattering properties during growth. We demonstrate

1 The method in that study was used to calculate scattering

properties of semirealistic crystals; analytical fits of these scattering

properties to the physical properties of f, reff, and size were then

used to develop the radar forward model that we adopt herein.
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this by comparing the differential reflectivity ZDR predicted

using both rdep functions for single-particle growth coupled to

the branched planar crystal forward model of SK19. We arti-

ficially evolve f as a function of size for a single branched

planar crystal using thef–size power law relation of SK19, with

exponent b 5 0.5 and a growing from 0.01 to 3 mm. For the

fixed-rdep model, we set rdep5 250 kgm23 and ac5 0.1mm; for

the size-dependent rdep model we use the same ac and values of

fb 5 0.4, fi 5 0.5, and ft 5 0.3 (defined in the appendix). We

choose these parameters to demonstrate a different structure

evolution that has a similar reff at its maximum size as that for

the fixed-rdep model. rdep and reff for these two models are

shown in Fig. 1. The fixed-rdep model produces a reff that de-

creases rapidly from solid ice to the fixed rdep value as a grows

beyond ac. In contrast, the size-dependent-rdep parameterization

decreases at a slower rate with a.

With respect to the scattering properties, both models have

rapidly increasingZDR up to;7.3 dB during the early stages of

vapor growthwhere a, ac (Fig. 2, lower right). Once a. ai, the

fixed-rdep model features rapid decreases in reff, and ZDR de-

creases to a minimum value of ;4 dB, before increasing to

;6 dB at a5 amax. For the size-dependent rdep, ZDR decreases

gradually to a local minimum of;6.3 dB near a5 0.5 mm. As

a increases further, the ZDR reaches another local maximum

of ;6.6 dB before decreasing to ;6 dB at a 5 amax (Fig. 2,

upper left).

These two distinct ZDR behaviors are a consequence of the

unique reff curves at different stages of growth; despite both

particles eventually reaching similar f and reff (and thus sim-

ilar ZDR), they approach these values through vastly different

paths in the f–reff particle-property space, further illustrating

the impact of the assumed crystal structure in interpreting

vertical profiles of radar measurements. The growth pathway

associated with the size-dependent rdep model is consistent

with observations (e.g., Oue et al. 2016) and scattering calcu-

lations (e.g., Lu et al. 2016; SK19) and is based onmore realistic

ice crystal shapes. Thus, we incorporate this rdep formulation

into the microphysical model component of our framework

to better explore the variability of ice crystal structures that

are consistent with the radar observations.

To verify that this new rdep formulation is also consistent

with laboratory measurements, we perform time series simu-

lations of crystal f with this formulation and compare them

with the wind tunnel measurements of Fukuta and Takahashi

(1999). Figure 3 shows the a and c axes of dendritic crystals

grown at liquid saturation, 2158C, and as a function of time.

The crystals were modeled using the rdep proposed by Chen

and Lamb (1994) and the function proposed here. Because the

initial crystal size was not precisely known in the measurements,

a range of initial sizes (a 5 1 to 10 mm) were used. The results

show that both rdep formulations can reproduce the evolution

of the axis lengths. Note that the particle must reach 100 mm

across before the Chen and Lamb (1994) density function is

used, otherwise its f becomes too extreme. The function pro-

posed in this work produces amore realistic decrease in density

with time (Fig. 3, right panel), and one that also produces

realistic scattering behavior (see above), unlike the density

function of Chen and Lamb (1994).

c. Kinematic model

We incorporate the modifications to the microphysical

model for vapor growth described above into the Eulerian

two-dimensional (2D) kinematic framework (Szumowski

et al. 1998) used in prior work (Sulia et al. 2013; J17). This

framework has a prescribed flow field such that there are no

feedbacks between the microphysics and the dynamics. We can

thus more directly perturb the microphysical growth conditions

and better understand their impact on the radar variables. Also,

this approach allows us to more efficiently perform the large

numberof simulations required for robust samplingwithMCMC,

compared to more resource-intensive dynamical models.

The kinematic model uses a streamfunction formulation

for the wind field (e.g., Grabowski 1998). The horizontal

component of the streamfunction varies sinusoidally so that

two updraft/downdraft cells are present, whereas the vertical

component varies as a Gaussian. To focus only on sensitiv-

ities to the vertical velocity profile, we perturb the stream-

function amplitude (Cws
; related to the velocity magnitude),

the Gaussian standard deviation (Cds; corresponding to the

updraft depth), and the Gaussian centroid (CZ0
; corresponding

to the height of the maximum vertical velocity).

Unavoidably, there is representation error (e.g., Janjić and

Cohn 2006; Hodyss and Nichols 2015) associated with the fact

that the 2D model does not represent the true (3D, evolving)

dynamical processes captured in the radar observations of the

natural cloud system. We mitigate these errors by including

Cws
, Cds, and CZ0

in the set of unknown parameters. Because

all components of this expanded parameter vector are per-

turbed simultaneously, correlation in uncertainty between

kinematic and microphysical parameters can indicate where

errors associated with uncertainty in the kinematic framework

FIG. 1. Plot of deposition density (dashed lines) and effective

density (solid lines) for a crystal at sizes from a 5 0.01 to a 5 3.0

using the deposition density model developed herein (red) and the

deposition density model of Jensen and Harrington (2015), with

ac 5 0.1 mm and rdep ’ 250 kgm23 (blue). The crystal structure

quantities for the deposition density shown here are ac 5 0.1 mm,

fb 5 0.4, fi 5 0.5, and ft 5 0.3.
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impact the best-performing values of microphysical parameters.

By identifying any potential compensating errors, these results

will give insight into the degree to which modeling assump-

tions affect estimation of microphysical parameters.

An example of the 2D wind field used herein is shown in

Fig. 4. The initial T and moisture profiles are based on an ob-

served sounding at 1730 UTC from the case described below.

The model is then run out to a simulation time of 90 min with a

time step of 1 s. The horizontal and vertical grid spacings are 80

and 40 m, respectively, and the domain extends 3 km in the

vertical and 1.6 km in the horizontal. Advection is calculated

using the multidimensional positive definite advection transport

algorithm (MPDATA; Smolarkiewicz 1984; Smolarkiewicz and

Margolin 1998); this scheme captures the evolution of particle

properties on the Eulerian grid from the combined effects of

vapor growth, sedimentation, and transport from the wind field.

3. Experimental design

a. Case study—2 May 2013, Utqia _gvik, Alaska

On 2 May 2013, ice-phase precipitation from a stratiform,

mixed-phase cloud was observed at the Department of Energy

Atmospheric Radiation Measurement (ARM; Mather and

Voyles 2013) research site at Utqia _gvik (formerly known as

Barrow), along the North Slope of Alaska. This case is de-

scribed in detail by Oue et al. (2016). The precipitation was

observed by several ARM instruments at the site, including

the X-band Scanning Precipitation Radar (X-SAPR) and the

Ka-band ARM Zenith-Pointing Radar (KAZR). The X-SAPR

operates at 9.6 GHz with simultaneous transmission of hori-

zontally and vertically polarized radiation. During the 2 May

case, X-SAPR performed surveillance [plan position indicator

(PPI)] scans and hemispheric range–height indicator (HRHI)

scans, providing fields of equivalent radar reflectivity factor at

horizontal polarization (Z), mean Doppler velocity (MDV),

Doppler spectral width (sy), and the dual-polarization radar

variables of differential reflectivity (ZDR), differential phase

shift (Fdp), and copolar cross-correlation coefficient (rhv);

owing to the limited information content of (rhv for this case

and the relatively poor quality of the X-SAPR Fdp field (Oue

et al. 2016), we only use theZ andZDRmeasurements from this

radar. See Kumjian (2013a,b,c) for a review of the polarimetric

radar variables. The KAZR transmits microwave radiation at

35 GHz, and receives the co and cross-polar components of the

scattered signal. This provides measures of equivalent radar

FIG. 2. Plot of reff and f evolution (using the power-law relation described in the text) for

particles growing from 0.01 to 3mm (solid lines; the color indicates the corresponding value of

single-particleZDR simulated using the forwardmodel fromSK19). The thin line indicates the

particle growing with a deposition density from Jensen and Harrington (2015) with rdep ’
250 kgm23 and ac 5 0.1 mm. The thick line indicates the particle growing with the new

deposition density model developed herein, with ac 5 0.1 mm, fb 5 0.4, fi 5 0.5, and ft 5 0.3.

The dashed contours indicate values of ZDR as functions of log10(f
21) and reff from the

forward model and are plotted in increments of 1 dB.
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reflectivity factor Z, linear depolarization ratio (LDR), and

MDV (for zenith-pointing radars, MDV is the reflectivity-

weighted mean of the particles’ vertical motion). Owing to the

lack of sensitivity in LDR for KAZR (minimum detectable

value of 221 dB; Oue et al. 2015b) and the minimal expected

LDR values for planar crystals (e.g., Tang andAydin 1995), we

use only Z and MDV from this radar. Together, these

measurements provide bulk information about the ice particle

sizes, shapes, and fall speeds, important microphysical quan-

tities that are all represented within ISHMAEL.

Following Oue et al. (2016), the X-SAPR data are averaged

over a region bounded by the boxes in Fig. 5, whereas the

KAZRmeasurements are averaged in time (between 1545 and

1620UTC as indicated in Fig. 6); theX-SAPR averaging region

FIG. 4. Plot of (a) mean wind vectors and mean ice mass mixing ratio (shaded contours) and (b) simulated mean

temperature profiles (blue; observed sounding from 1730 UTC in black), with bars indicating the 1s ranges from

100 simulations using unique samples of the parameters drawn from the posterior MCMC distribution. The tem-

perature profiles correspond to vertical profiles at x 5 320 m.

FIG. 3. Particle a- and c-axis lengths as a function of time for dendrites grown in a wind tunnel at liquid saturation

and at2158C (black solid circles; Fukuta and Takahashi 1999). Simulated a- and c-axis lengths are shown with the

solid and dashed lines, respectively. The black curves use the deposition density from Chen and Lamb (1994)

whereas the red curves use the deposition densities from Fig. 1 above and an initial particle radius of 5 mm. The

black and red shaded regions show the range of solutions for initial particle radius from 1 to 10 mm. (left) The

effective particle density as a function of time for Chen and Lamb (1994) (black lines) and using our density

functions (red lines) with two initial radii shown. The parameters we use here for our deposition density function

are ac 5 0.01, fb 5 0.2, fi 5 0.2, and ft 5 0.2.
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is chosen to be .2 km from the radar to ensure that the ele-

vation angles are ,308. These data are binned in 40-m height

increments, with the mean and standard deviation of each ra-

dar variable calculated within each height bin to obtain the

vertical profiles. Thus, the averaging involves data from dif-

ferent sampling volumes at different times. Nevertheless, the

averaged Z (shown in Fig. 7) illustrates the consistency be-

tween the two sets of radar data, with differences , 5 dB at

heights . 1 km despite the large vertical gradients in Z

(.25 dB km21). From a forward modeling perspective, the

wavelength and incidence angle differences (X-SAPR: X band,

side incidence; KAZR: Ka band, vertical incidence) for the

vast majority of branched planar ice crystals produced by the

model result in minimal differences in Z (,0.5 dB) and thus

can be considered comparable (Fig. 8; subject to the caveat that

the averaging regions mentioned above are different). Given

our simplified kinematic modeling framework, the goal here

is not to reproduce this particular case, but rather to use

observations consistent with pure vapor depositional growth to

inform the uncertain microphysical model parameters in the

highly idealized framework as a proof of concept.

With respect to the average vertical profiles of the radar

variables,Z generally increases toward the ground, indicative

of increased particle sizes and/or concentrations (Fig. 7). The

growth is especially pronounced from;1.7 to;1.3 km AGL.

Z continues to increase until about 1 kmAGL, where it starts

to decrease toward the ground. The ZDR profile shows rather

large values (.6 dB) throughout this layer,2 indicating

highly nonspherical, horizontally oriented particles, with

relatively minimal changes in ZDR with height. Such high

ZDR values are atypical of midlatitude precipitation systems

FIG. 5. The 78-azimuth HRHI observations of (a) Z, (c) ZDR, and (e) the corresponding elevation angles

from the X-SAPR radar at the ARM NSA site at 1554 UTC 2 May 2013. The median profiles are for (b) Z,

(d) ZDR, and (f) elevation angle, where the values are binned within the observational domains indicated by

the black outlines in the HRHI panels at each height. The profile in (d) includes the median ZDR (solid line)

and the corrected median ZDR (dashed line) based on the median elevation angle at each height. Specifically,

the median ZDR is divided by the cosine squared of the median elevation angle at each height. The bounds

of the elevation angles at each height within the observational domains are shown plotted as the dashed

lines in (f).

2 Because of X-SAPR’s limited sensitivity, ZDR measurements

are not available above about 1500 m AGL. See Oue et al. (2016)

for details.
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(e.g., Schrom et al. 2015; Schrom and Kumjian 2016; Kumjian

and Lombardo 2017) and suggest pristine ice crystals with very

little ongoing aggregation or riming. Relatively low liquid water

paths (LWP) of;10–20 gm22 (derived from23.8- and 31.4-GHz

ARM microwave radiometer measurements; Gaustad et al.

2011) were also observed during this case (Oue et al. 2016),

providing additional evidence that growth by riming was

minimal. However, these LWP values are somewhat unre-

liable given that they are within the 5–30 gm22 range of

uncertainty of the LWP retrieval (Liljegren et al. 2001).

Additionally, some riming is possible within low-LWP envi-

ronments (e.g., Moisseev et al. 2017), increasing reff and

leading to a potential mischaracterization of these lightly

rimed particles as higher-density branched planar crystals.

FIG. 6. KAZR time–height observations of (a) Z and (b) MDV between 1530 and 1630 UTC at the ARM

NSA site on 2 May 2013. The dashed black outline indicates the averaging region for the mean profiles shown

in Fig. 7.

FIG. 7. KAZRobservations (red, with 1s errors), X-SAPRobservations (blue, with 1s errors) and forward-simulated observations (black)

drawn from posterior distribution of model solutions.
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KAZR MDV profiles show increasingly negative values (i.e.,

particle motion toward the radar) between20.4 and20.6m s21

in this layer, suggesting increased fall speeds as particles grow

by vapor diffusion (Fig. 7). Because the observations suggest

most vapor growth occurs above 1 km, we focus on this region

in our simulations.

b. MCMC parameter estimation

We use a MCMC-like algorithm, the adaptive Metropolis

sampler (Haario et al. 2001), constrained by the radar obser-

vations described above, to perform parameter estimation

within the kinematic model framework. This modeling frame-

work consists of the static kinematic flow field, the microphysical

model equations driven by the flow field and thermodynamic

environment, and the polarimetric radar forward model of SK19.

Observations are drawn from the horizontal column at x5 320 m

within the 2D kinematic field shown in Fig. 4. The choice of

location of this column introduces some uncertainty; this

location produces profiles closest to the observations, and

therefore represents an observationally justified best choice

given the idealized nature of the model framework. The obser-

vational uncertainties are assumed to be the sum of Gaussian

variances from instrument uncertainty and forward-simulator

uncertainties; the latter are described in SK19. Instrument un-

certaintiesmay be produced by noise or calibration errors, but in

this case we consider the primary source to be uncertainty as-

sociated with averaging in space (for the X-SAPR) or in time

(for the KAZR). The uncertainties are shown in Fig. 7 as the

standard deviation of variability in the averaging window. We

assume no correlation between sources of uncertainty.

The MCMC algorithm estimates the solution to Bayes’s theo-

rem, the posterior probability density function P(xjy, M)—the

probability of parameters x given observations y and model

M (van Lier-Walqui et al. 2020, and references therein). The

uncertain parameters included in the MCMC sampling are

those associated with the assumed branched planar crystal

structures (fb, fi, ft, and ac; defined in the appendix), the target

ice crystal concentration (Nice), a multiplicative factor on the

inherent growth ratio (CIGR), and the multiplicative factors

governing the kinematic model flow field (Cds, Cws
, and CZ0

).

In this way, the MCMC algorithm simultaneously estimates

parameters that directly impact the simulated radar variables

via perturbations of the vapor depositional growth parame-

terization and the kinematic field. Besides the constraint of-

fered by radar observations, we also include the restriction

that particle density not exceed 750 kgm23—parameter values

that produce particle density outside this range are given pos-

terior probability of zero. We use this threshold essentially

as an additional observational constraint based on observed

photographs of branched planar crystals from Oue et al.

(2016); only highly compact sector plates and solid-ice plates

are able to achieve these high effective densities for planar

crystals. Additionally, our MCMC results shown below indi-

cate rapidly decreasing probability densities for effective

densities 550 kgm23, indicating that this threshold has minimal

impact on the results.

We also account for an additional uncertainty in the char-

acteristic size used to determine the value of rdep during

growth. As for the other elements of the microphysical growth

processes, this characteristic size is necessary to incorporate

the new rdep formulation into the bulk model (e.g., Harrington

et al. 2013a), where the value of rdep at the characteristic size

is used in the growth equations for the entire size spectrum

(reff is therefore also fixed over the spectrum). In particular,

the characteristic size is the number-weighted mean size

divided by the size distribution shape factor (n 5 4; see

Harrington et al. 2013a). Therefore, we must scale the critical

sizes ac and amax such that this characteristic size corresponds

to a representative size for the rdep of the size spectra; naïvely
using the characteristic size with a fixed amax 5 mm will result

in nearly all solid-ice plates. Therefore, we scale ac and amax

by a heuristic factor 0.2 such that the density simulated by the

model more accurately reflects that of the natural branched

planar crystals that dominate the radar backscatter. To account

for the uncertainty in this scaling factor, we apply an additional

multiplicative adjustment factorCa to further scale both ac and

amax, and include it as an additional parameter to perturb

within the MCMC algorithm.

In reality, the crystal structure parameters fb, fi, ft, and ac
likely depend on T, si, and initial size, and thus may have

preferred values corresponding to the ambient in-cloud con-

ditions. However, a single fixed value of each is held constant

for each simulation (as selected by the MCMC sampling al-

gorithm). The particle growth depends on these parameters, as

well as the spatially varying environmental conditions, and

thus these parameters will produce unique spectra of planar

crystals with associated particle properties. Although some-

what unphysical, we apply this ‘‘naïve’’ approach to explore

how much information the radar may provide as constraint.

Because the growth pathway of the ice crystals exclusively

FIG. 8. Comparison of Z given 1m23 crystals growing from

a5 0.5 mm to a5 4.0 mm for X band at side incidence (solid cyan

line; corresponding to X-SAPR) and Ka band at vertical inci-

dence (dashed magenta line; corresponding to KAZR). The 2D

ice crystal structures used in the Amsterdam discrete dipole ap-

proximation (ADDA; Yurkin and Hoekstra 2011) calculations

are plotted in blue. An overlay of the histogram of number-

weighted mean a-axis lengths from the MCMC simulations is

plotted in red.
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involves nucleation aloft and growth with sedimentation

through a relatively narrow range of environmental condi-

tions (cf. Fig. 4), the sampled ice structure parameters can be

thought of as corresponding to the integrated Lagrangian

growth history of the particles. In that sense, the crystal structure

parameters correspond to an average growth history of the

particles over their trajectories, and should be so considered

in the interpretation of the results. Given that we consider only

Z, ZDR, and MDV herein, mixtures of branched planar crystals

with a variety of shape evolutions can be effectively represented

by a single representative shape evolution that corresponds to

the averaged Lagrangian growth history of the particles.

The prior distributions for parameters are chosen to be

uniform with wide bounds, reflecting the general lack of

available prior knowledge. For some of the parameters (ft, fi,

fb, and CZ0
), there are explicit physical bounds that define the

endpoints of the prior distributions, and we set the prior

distributions for these parameters to sample between these

endpoints. In other cases (CIGR, Cws
, Cds, Ca, ac, andNice), the

prior parameter ranges are chosen to be wide ranges over an

initial set of parameter values that produced relatively close

comparisons with the radar observations; this initial set of

parameter values was determined based on tests on a number

of individually run simulations. With respect to the prior

bounds on these parameters, unrealistic model simulations for

certain parameters provided additional information on the

parameter ranges. For example, selecting Cds above a certain

value can produce unrealistic vertical motion (relative to the

maximum value in the profile) at the surface. Additionally,

these parameters are chosen to be uncorrelated in the prior

distribution, with the MCMC algorithm itself producing the

posterior parameter PDF that can reveal such relations be-

tween parameters. The ranges of the parameters sampled in

the MCMC framework are given in Table 1. In total, we con-

sider 10 parameters in the MCMC algorithm.

Given that MCMC explicitly samples from the parameter

PDF and then updates this PDF, the danger of overfitting

these parameters to the observations is minimal. The radar

variables exhibit function dependency on height and are re-

lated to each other, owing to the ongoing microphysical

processes. These relations limit the potential degrees of free-

dom represented by the observations, reducing the change of

overfitting parameters to the observations. Empirical evidence

suggests that overfitting does not occur, where the resulting

parameter PDFs in the following section show nonzero proba-

bility densities over plausible ranges of the parameter values.

4. Results

a. Radar-profile simulations

As a first step in evaluating the parameter estimation

framework, we examine its ability to successfully reproduce

the observed radar fingerprints of vapor depositional growth

associated with this case. The simulated vertical profiles of Z,

ZDR, and MDV, derived from a sample of parameters drawn

from the MCMC posterior distribution, are shown in Fig. 7,

along with the corresponding observed profiles. Overall,

there is good agreement between the simulated and observed

fields in terms of magnitudes and qualitative trends, as the

modeled profiles generally lie within the error bounds of the

observations. The simulatedZDR profiles have values that are

between 5 and 7 dB, with most profiles having ZDR values

below the mean observed ZDR. The MDV profiles have values

generally greater than the observed mean MDV below 1300 m

AGL and have values generally less than the observed mean

MDV above 1400 m AGL. In addition, there is a relatively

large amount of variability in the Z and MDV gradients near

the top of the profiles at heights . 1500 m AGL. This altitude

may correspond to the rapid initial growth of planar crystals,

and therefore could be highly sensitive to the prescribed G and

updraft parameters that perturb the environmental si.

Owing to the sensitivity of the simulated MDV to the par-

ticle fall speed, the method we use for calculating the particle

fall speed (Mitchell 1996) may introduce additional structural

uncertainty into our results. In our simulations, the particle fall

speed is determined by simulated maximum dimension, aspect

ratio, and area ratio (i.e., effective density divided by particle

volume), where these particle properties are inputs to the

Mitchell (1996) fall speed parameterization. Given the uncer-

tainties in natural branched planar crystal fall speeds (e.g.,

Kajikawa 1972), it is likely that there are additional uncertainties

in the fall speed beyond those determined by the sampled ice

growth parameters. Additional perturbations on the simulated

velocity of 0.1–0.2m s21 [on the order of the variability from

Kajikawa (1972)] would increase the range of simulated MDV

profiles, with the more negative profiles likely to match the

observed profiles better between 1000 and 1200 m (Fig. 7).

TABLE 1. Description of the parameters and the ranges of their values (inclusive) used to perturb the model simulations.

Quantity Description Minimum value Maximum value Sampling scale

CIGR Inherent growth ratio scaling 0.2 6.0 Linear

ac Core a-axis side length 1 mm 200 mm Linear

fb Subbranch fractional area coverage 0.01 0.8 Linear

ft Tip width fraction 0.2 1.0 Linear

fi Inscribed hexagon fractional distance 0.1 1.0 Linear

Cws
Updraft velocity magnitude scaling 0.5 5.0 Linear

Cds Updraft depth scaling 0.5 4.0 Linear

Nice Target ice concentration 0.001 L21 1.78 L21 log10
CZ0

Updraft central height scaling 0.0 1.0 Linear

Ca Representative a-axis length scaling 0.2 1.0 Linear
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Another important test of these results is to evaluate the

physical validity of theMCMC-derived flow fields (determined by

the PDF of the updraft parameters). For example, Shupe et al.

(2008) examine vertical velocities associated with thin, single-

layer Arctic clouds in the fall transition season, and found the

vertical velocity mean amplitude was 0.66ms21, with a standard

deviation of 0.19ms21 for their study period. By comparison, the

vertical motion profiles within the updraft region of our simula-

tions have smaller values; a sample of 100 kinematic parameters

drawn from the posterior distribution of the MCMC framework

showsmaximumvertical velocities,0.2m s21, with valuesmostly

between 0.02 and 0.08m s21 (Fig. 9). There is limited availability

of KAZR data above the cloud base (;1.6 km), perhaps owing

to limited sensitivity or the thin nature of the cloud. As such,

reliable vertical motion estimates from the instrument are un-

available. However, the MDV data show almost exclusively

inbound hydrometeor vertical motion [toward the radar; in

contrast to larger inbound and outbound velocity magnitudes

shown by Shupe et al. (2008)], with the least negative MDV

values (; 20.2 to 20.1m s21) near cloud top. Given that ice

particles in this region of the cloud have the smallest sizes and

terminal fall speeds, the simulated vertical motion profiles in

Fig. 9 are likely of similarmagnitude as those occurring naturally

during this case. Right at and below cloud base, variations in

KAZR spectra (not shown) are several tenths of a m s21, sug-

gesting that stronger vertical motions are not present there.

b. Relations between MCMC-sampled
model parameters

To analyze the relations between the uncertain parameters

perturbed herein, we examine the posterior joint PDFs of the

parameters (shown in Fig. 10). To simplify the visualization of

this multidimensional parameter space, each panel shows

the joint two-dimensional marginal PDF between two of the

uncertain parameters. The diagonal of this ‘‘corner plot’’ rep-

resents the one-dimensional marginal distributions. Darker

shading represents a higher density of points sampled in that

region of the space, and thus greater probability that the true

parameter value is found there.

Several of themarginal PDFs show clear maxima in themost

probable parameter values for this case. In particular, CIGR, fb,

Nice, Cws
, Cds, and CZ0

show relatively narrow ranges in values

with maximum probability densities, suggesting the radar ob-

servations provide meaningful constraints on these uncertain

parameters (Fig. 10). Thus, we can derive some insight into the

validity of theoretical assumptions about branched planar

crystal growth from these most probable parameter values.

For example, the peak in CIGR is around 2.0, a higher G(T)
near 2158C than the value suggested by Chen and Lamb

(1994), but one that is closer to the higher values suggested by

Sei and Gonda (1989). Since the deposition coefficients vary in

time for faceted crystals, the ratio of the deposition coefficients

can cover a very large range (see Fig. 12a in Harrington et al.

2019), which includes the values of Sei and Gonda (1989) and

Chen and Lamb (1994).

Harrington et al. (2019) show that it is better to compare

G(T)f predicted by the Chen and Lamb (1994) model to lab-

oratory measured ratios of the deposition coefficient (ac/aa)

because measured faceted crystals tend to follow the growth

law dc/da 5 ac/aa, whereas the Chen and Lamb (1994) model

(upon which our model is based) follows the growth law

dc/da 5 G(T)f. Thus, it is more consistent to compare mea-

sured ac/aa to G(T)f calculated from the Chen and Lamb

(1994) model. This comparison is shown in Fig. 11 for deposi-

tion coefficient ratios extracted from wind tunnel measure-

ments of dendritic growth at constant temperature, and at

liquid saturation using best fits to theoretical calculations

(green shaded region). The crystals were grown for about

15 min, which is a similar time scale to the growth of the

crystals modeled here. The purple points show the values of

G(T)f from the parameter PDF. Ice particles grown in the

kinematic model simulations do so over a range of tempera-

tures, and so the values of G(T)f are not strictly associated

with a single temperature. To show the range of the parameter

PDF values and how it compares to the laboratory-extracted

values, G(T)f is randomly scattered with cloud temperature.

It is immediately clear from the figure that the parameter PDF

estimates of G(T)f fall almost completely within the range

of values extracted from laboratory measurements, between

0.003 and 0.05. The parameter PDF estimates are relatively flat

across temperature, owing to the temperatures ranging from

about 2128 to 2188C. The laboratory values (tabulated at in-

dividual temperatures) show a strong minimum at 2158C.
Nevertheless, these results increase the degree of confidence in

the parameter PDF values estimated via MCMC.

Similar to the comparison of the deposition coefficient

ratio, the peak in the fb (smaller values indicate thinner

and/or fewer subbranches) PDF is concentrated between

30% and 50%, suggesting a moderate density of crystal

subbranches (Fig. 10). In contrast, the marginal PDFs for the

ft, fi, ac, and Ca parameters (which describe the fractional tip

width, the inscribed hexagon length fraction, and the charac-

teristic size scaling factor) appear to have nearly equally likely

values across their full ranges, suggesting limited constraining

FIG. 9. Ensemble of simulated vertical velocity profiles using

100 samples from the posterior distribution determined from the

MCMC framework.
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information about these parameters from the radar observa-

tions. The Cds values are more strongly constrained and cen-

tered around 1.4, suggesting that our initial 2D circulations

were about 40% too narrow. Additionally, the most probable

values of Nice are around 0.04 L21. However, Nice shows a

strong functional relation with mean maximum dimension,

where higher values of Nice correspond to smaller maximum

dimension values (Fig. 12).

Despite the relatively uniformmarginal PDFs for the other

ice crystal structure parameters, samples of reff curves de-

rived from the MCMC posterior PDF show some consistent

behavior (Fig. 13). Generally speaking, these curves show

steep initial declines in reff for a. ac—though not as steep as

those with assumed constant rdep—that becomemore gradual

as a increases, resulting in minimum reff between 200 and

500 kgm23, with the median reff at a 5 3 mm of 330 kgm23.

This value is only modestly above that suggested by J17 and

Chen and Lamb (1994) near2158C, suggesting some potential

correspondence with laboratory measurements of reff for

larger particles. To visualize the range of crystal structures

corresponding to the MCMC-sampled parameters from this

event, crystals generated based on 100 samples from the

FIG. 10. Parameter posterior PDF for the default simulation, constrained byX-SAPRZ andZDR, andKAZRZ andMDV. The shading

represents relative frequencies within each joint PDF, normalized by the maximum relative frequency within the joint PDF. Four evenly

spaced contours of the normalized relative frequency are plotted in each joint PDF as a visualization aid.
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maximum a posteriori PDF are shown in Fig. 14. Though obvi-

ously artificial (e.g., we plot them all with four subbranches per

main branch and at a 5 3mm), the simulated shapes compare

favorably to the crystals shown in Oue et al. (2016).

Joint PDFs of the perturbed parameters (Fig. 10) reveal

several clear relationships. Most notably, there is a positive

correlation between CIGR and Nice. For smaller CIGR, the ice

particles grow more rapidly (as evident in the negative corre-

lation between CIGR and maximum dimension in Fig. 12) and

therefore a smaller number concentration is needed to produce

the same Z that falls within the observational uncertainty. Nice

also has a negative correlation to the updraft magnitude factor

Cws
, owing to the increased si associated with larger vertical

motions; these more favorable growth conditions produce

larger particles that in turn have reduced Nice to agree with

the Z observations (Fig. 10). The updraft depth factor Cds

also shows negative correlations with Cws
, as increases in the

magnitude of the flow field are balanced by decreases in the

circulation depth to preserve similar si above 1 km. The vertical

velocity profiles in Fig. 9 also show the MCMC-derived inverse

correlation between Cws
and Cds, where the largest vertical

motions occur within the sharpest peaks in vertical velocity with

respect to height. Similarly, the updraft centroid height factor

CZ0
is negatively correlated with Cws

, where a higher updraft

centroid generally increases the supersaturation in the upper

region of the cloud (.1 kmAGL); lower values ofCws
may then

offset these increases in supersaturation. Similar reasoning also

explains the negative correlation between Cds and CZ0
(Fig. 10).

In contrast, many of the parameters show minimal depen-

dence on the ice structure parameters ft, fi, ac, andCa (tip width

fraction, inscribing hexagon fraction, ice core size, and

characteristic size scaling factor, respectively), corresponding

to their more uniform marginal PDFs. One modest exception

is a slight negative correlation between fi and fb for values of

fi , 0.3. In this region, lower values of fi require higher values of

fb to maintain the same reff. As fi increases, fb has a larger in-

fluence on reff (especially because the mean particle size is #ai;

Fig. 8) and changes in fi result in minimal changes in effective

density. ac also shows a negative correlation to fb, as lower ac
values require higher fb values tomaintain a similar reff (and thus

ZDR within the range of observational variability). For similar

reasons, fb also shows a negative correlation to Ca (Fig. 10).

c. Relations between the MCMC parameters and the
radar variables

Figure 15 shows joint PDFs between the uncertain model

parameters and the profile-mean simulated radar variables

between 1.0 and 1.5 km. These represent the sensitivity of

radar variables to joint perturbation of parameters according

to their posterior probability (i.e., they do not represent one-

at-a-time sensitivities). We note cases where correlations

are evident, but do not comment on cases where no correla-

tion is obvious because relationships between parameters

and radar variables may be obscured by compensating mul-

tivariate parameter perturbations. Indeed, any parameters

that are well constrained by the observations must have some

controlling influence over their forward-simulated values.

The first column of Fig. 15 shows the relationships between

mean Z, mean ZDR, and mean MDV with CIGR. CIGR is neg-

atively correlated with both mean ZDR and mean MDV, the

former showing a stronger relation compared to the latter.

FIG. 11. Ratio of deposition coefficients for the c and a axes of

crystals extracted from wind tunnel measurements of ice crystal

growth at liquid saturation and constant temperature (green solid

curve) and the uncertainty range (green shade) from Harrington

et al. (2019). Purple points are G 3 f from the MCMC parameter

PDF. For clarity, only a subset of the points from the PDF are

shown and these are scattered randomly over the temperature

range of the observed cloud layer (2128 to 2188C).

FIG. 12. Joint posterior PDF of parameters and microphysical quantities: (top) aspect ratio, (middle) density, and (bottom) number-

weighted maximum diameter. The shading and contours are as described for Fig. 10.
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Greater values of CIGR represent larger G at a given T and,

thus, crystals with less accentuated aspect ratios (higherf) with

smaller ZDR and larger terminal fall speeds are produced.

However, these particles may grow slower than those with

lower CIGR, thereby somewhat offsetting the increases in ter-

minal fall speed with time.

There is a positive correlation between the subbranch cov-

erage fraction fb and mean ZDR (Fig. 15): larger fractional

coverage by subbranches means the simulated crystals have

greater reff and thus greaterZDR for a given shape (e.g., SK19).

Likewise, increased fb contributes to greater fall speeds and

thus more negative mean MDV, though this relation is some-

what muted given the influence of the kinematic flow param-

eters onMDV and variability inf from perturbations onCIGR.

The profile-mean radar variables also exhibit some depen-

dence on Nice (Fig. 15). The mean Z is larger for larger Nice;

larger Nice is also associated with smaller mean ZDR and more

negativemeanMDV(i.e., faster-falling particles). The increased

competition of the ice crystals for the same supply of vapor leads

to smaller and generally denser particles (Fig. 12). Because of

the strong positive correlation between Nice and CIGR (Fig. 10),

these particles also have higherf and therefore larger fall speeds

(as observed in Fukuta and Takahashi 1999) and smaller ZDR.

Previous work has shown that the vertical gradients of radar

variables also provide fingerprints of ongoing microphysical

processes (e.g., Yuter and Houze 1995; Fabry and Zawadzki

1995; Cifelli et al. 2002; Kumjian and Ryzhkov 2010, 2012;

Schneebeli et al. 2013; Ryzhkov et al. 2013; Kumjian and Prat

2014; Schrom and Kumjian 2016; Kumjian and Lombardo

2017; Dias Neto et al. 2019). Thus, we expect that the gradients

of the simulated radar variables should be related to some of the

particle-property model parameters. Indeed, Fig. 16 reveals

such relationships. For Fig. 16, positive gradients indicate

larger magnitudes toward the ground. Both Z and MDV

gradients have positive correlations with CIGR, Cws
, and Nice

(Fig. 16). The latter two favor increased total mass growth, and

thus increased gradients in these variables. However, larger

CIGR values are associated with slower mass growth and more

compact, higher-f particles; these faster-falling particles would

be positively correlated with gradients in MDV (e.g., Schrom

and Kumjian 2016), but not necessarily positively correlated

with gradients in Z. We suspect that the correlation with Z is

simply due to CIGR being highly correlated with Nice.

The ZDR gradients are mostly negative (i.e., ZDR decreases

toward the ground), with the most common values around

21 dBkm21 (Fig. 16). The joint PDFs show slight negative

correlations with CIGR and slight positive correlations with

subbranch coverage factor fb. Larger CIGR values suggest

higher-f particles and thus the decreasing reff accompanying

growth as the particles fall causes slightly larger decreases in

ZDR compared to particles with smaller f, where ZDR de-

creases less toward the ground. Larger fb values are associated

with smaller decreases in reff with growth, and therefore ZDR

decreases slightly or is nearly constant with growth, producing

the negative correlation between fb and the gradient in ZDR.

Finally, we examine the impact different sets of observations

used to guide the MCMC parameter estimation framework

have on the results. Figure 17 shows the marginal PDFs for

several of the uncertain parameters using all of the observa-

tions, using just the KAZR observations (i.e., Z and MDV),

and using just the X-SAPR observations (i.e., Z and ZDR).

Overall, simulations using all of the observations showed the

narrowest marginal PDFs, and therefore produce the highest

confidence parameter estimates. For example, the mode of the

CIGR PDF has maximum density values ;50% larger for the

full-observation results compared to the KAZR-only results;

also, low values of fb (i.e., very sparse crystal structures) are

found to be less probable upon inclusion of the X-SAPR ob-

servations. In some cases, the modes of the PDFs between the

three observational experiments differ substantially; forNice, the

X-SAPR-only maximum probability value is around an order

of magnitude less than the estimate from the KAZR-only and

full-observation experiments. Some of these differences may be

explained by differences in the averaging regions of KAZR

and X-SAPR. Generally, the KAZR-only experiment provides

parameter PDFs that are much closer to the full-observation

experiment than the X-SAPR-only experiment, suggesting that

for the parameters perturbed in this study, MDV and Z contain

most of the useful constraining information. One reason ZDR

may be less useful for this case is that the observed ZDR profiles

for this case are relatively constant with height. Therefore, the

sample space of microphysical and kinematic parameters that

produce the near constant value of ZDR is much larger com-

pared to the sample space that can produce the large gradients

observed in the Z and MDV profiles.

5. Summary and conclusions

Overall, the MCMC-sampling framework successfully gen-

erates PDFs of the perturbed microphysical and kinematic

parameters, while also producing simulated radar profiles

consistent with the observations. The derived parameter PDFs

show that the simplified model framework captures realistic

modes of microphysical variability within the Arctic cloud. For

example, these parameter PDFs produce simulations where

FIG. 13. Effective density curves for each of the 100 sampled

parameters from the MCMC-derived posterior distribution (black

lines) and the median effective density curve (red line).
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the target number concentration is correlated with both aspect

ratio and density. These correlations result from an increasing

number of ice particles competing for the ambient vapor supply,

decreasing the mean particle size; the inverse correlations be-

tween size and both aspect ratio and density then produce the

observed behavior. The relative simplicity of the relations be-

tween parameters suggests that using a more efficient method to

sample the parameter PDFsmay be justified for this framework.

These ambiguities in the particle properties also suggest

that additional radar variables (such as LDR, rhv, and Kdp)

FIG. 15. Joint posterior PDF of parameters and profile-mean radar quantities. The shading and contours are as described for Fig. 10.

FIG. 14. Crystals generated based on 100 parameters drawn from the MCMC-derived

parameter PDF. The colors indicate the fb value (the fractional area coverage of the sub

branches) for each sample.
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could help to further constrain the microphysical parameters

of vapor growth. In particular, additional independent constraints

on the number concentration are needed in order to more effec-

tively constrain the ice particle structure parameters. Owing to its

strong dependence on number concentration, Kdp may be useful

in this regard; changes in the shape parameter of the PSD can

have a dramatic impact on the number of small particles and

therefore Kdp may help constrain this parameter as well.

Of the ice crystal structure parameters we consider herein,

only the subbranch coverage fraction fb (and to a minor extent,

the ice core size ac) has a significant impact on the radar vari-

ables, and similarly has significant covariances with the mi-

crophysical parameters. Thus, a more simplified deposition

density (and corresponding effective density) function may be

suitable for microphysical modeling or remote sensing re-

trieval purposes. In particular, the median effective density

curve shown in Fig. 13 illustrates a promising candidate for

such a function. Only ac, amax, and a limiting effective density

ramax
5 reff(amax) could be used to define this function, where

the curvature of effective density corresponds to the median

effective density from the posterior-PDF-sampled parame-

ters. However, this reff curve decreases more gradually than

those of the fixed-rdep model and thus produces more realistic

ZDR behavior and corresponds to more realistic physical

structures.

The small variability in ZDR with growth, where both ef-

fective density and aspect ratio decrease, for the assumed

particle shapes causes a natural limitation in the information

content ofZDR for cases of branched planar crystal growth. For

example, the largest changes in ZDR occur during the initial

growth as a plate; the decrease in aspect ratio with constant

density greatly increases ZDR. As branched growth occurs, the

decrease in aspect ratio is offset somewhat by the decrease in

effective density, and ZDR is confined within a narrow range of

FIG. 16. As in Fig. 15, but for profile gradients of radar variables.

FIG. 17. Marginal PDFs of parameters for experiments using both KAZR and X-SAPR as constraints (gray), KAZR only as a constraint

(red), and X-SAPR only as a constraint (blue).
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values. Therefore, the ability of ZDR to constrain the effective

density evolution of these particles is somewhat limited. The

MCMC parameter estimation framework does highlight a spe-

cific range of subbranch coverage fraction (fb) values; however,

the relatively large standard deviation associated with the esti-

mate for this parameter illustrates the limited ability to constrain

density evolution. In contrast, the Z and MDV profiles are

stronger constraints on the density evolution of branched planar

crystals. This may, in part, be related to the greater sensitivity of

the KAZR compared with the X-SAPR, which allows it to ob-

serve at greater elevations in the cloud. We expect that ZDR

offers more information for other microphysical processes, in-

cluding aggregation (e.g., Schrom and Kumjian 2016).

Despite the relatively idealized nature of this study, the

maximum likelihood parameter values derived from MCMC

fall within the general range of values from laboratory mea-

surements and theoretical calculations derived from such

measurements. These favorable comparisons provide further

evidence that our Bayesian framework can provide useful

constraints on ice microphysical processes, though inherently

subject to averaging effects over a range of environmental

conditions. These averaging effects arise from the fact that

growth occurs along the trajectories of the particles through

different regions of the domain. Additionally, the simplified,

stationary flow field also provides a sort of averaging effect on

the derived parameters, given that the flow in natural clouds

exhibits, time-varying, finescale features such as generating

cells and turbulence. Even if our model could represent these

processes, there will always be discrepancies between simu-

lations and observations, given the potentially large vari-

ability in ice particle properties over short time scales and

small spatial scales. Therefore, any comparison between

simulated and observed radar variables requires considering

enough observations (and model-simulated observations) such

that comparisons between the statistical distributions of the nat-

ural and simulated processes can be considered meaningfully

different from each other to guide MCMC.

Given the need to better understand ice particle growth

over a large range of thermodynamic environments, our re-

sults suggest that vapor deposition at different temperatures

and/or ongoing riming and aggregation can also be better

constrained using a similar framework. Incorporating vapor

growth outside of the planar crystal regime, as well as for

more irregular ice particles, would require considering dif-

ferent structure parameters (such as degree of hollowing for

columns) during growth. Determining a method to realisti-

cally evolve the ice structure may prove more challenging

for irregular pristine ice crystals.

The increased complexity of aggregation and riming would

also require increasing the set of microphysical model and ice

particle shape parameters used in the parameter estimation

procedure. For riming, parameters governing the collec-

tion efficiency of supercooled liquid, as well as the shape

evolution of the particles would need to be included. Similar

parameters could be included to apply this framework to

aggregation. Additionally, the radar forward model would

need to be extended to accurately simulate the scattering

properties of aggregates and rimed particles. Several scattering

databases that include these particles already exist (e.g., Lu

et al. 2016; Kuo et al. 2016), and could be exploited to extend

the forward model. Given the increased complexity of these

processes, additional radar observables such as rhv, Kdp, LDR,

and dual-frequencymeasurements would be needed to effectively

constrain the more extensive parameter set. Increased in situ

observations may also help constrain detailed particle properties.
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APPENDIX

Size-Dependent Deposition Density Formulation

The main assumption used to adapt the SK19 crystal gen-

eration method for our size-dependent deposition density

model is that the discretely spaced subbranches from the syn-

thetic crystal shapes can be adequately represented by a con-

tinuous areal subbranch coverage fraction fb. A listing and

corresponding description for each of the quantities we use in

this deposition density formulation are given in Table A1.

Given the assumed sixfold symmetry of ice crystals, we can

simply consider rdep over one of the six equilateral triangular

sections composing the structure (as depicted in Fig. A1). SK19

define the crystal structure by considering three regions in each

of these six identical, triangular sections (Fig. A1) defined by

sizes ac, ai, and amax (depicted in Fig. A2):

1) Region 1 is within a solid-ice core (a # ac).

TABLE A1. Description of quantities used in the size-dependent

deposition density formulation.

Quantity Description

ac Core a-axis side length

amax Crystal maximum a-axis length

ai Crystal inscribed a-axis length

wmb Main branch width

wt Bounding star tip width

fb Subbranch fractional area coverage

ft Tip width fraction

fi Inscribed hexagon fractional distance

fmb Main branch fractional width

ri Density of solid ice

rdep Deposition density
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2) Region 2 is between the edge of the solid-ice core and an

inscribed hexagon (ac , a # ai). In this region, the main

branches of half-width wmb
A1 grow off of the core and

subbranches between the main branches provide area

coverage fraction fb. The inscribed hexagon length ai must

be between ac and amax, and thus we define the inscribed

hexagon length fraction fi 5 (ai 2 ac)/(amax 2 ac).

3) Region 3 is between the edge of the inscribed hexagon and

the maximum extent of the crystal (ai, a# amax). The main

branches in this region are consistent with region 2, and this

region also has the same fractional subbranch coverage as

region 2. However, the subbranch coverage area is limited

by a horizontally centered triangle with base at amax and tip at

(ai. The base of this triangular region has length amax22wt

(where wt is defined as the crystal tip width) and has height

amax2ai. We also define a fractional tip width ft 5 2wt/amax,

constrained to range in value from fmb3 (ac/amax) to 1 so that

wmb # wt # amax/2.

Because amax is unknown, we assume a value of 3 mm,

representing the higher end of branched planar crystal sizes.

However, this value can be scaled along with a to represent the

same structure at larger or smaller sizes.

From the assumption of planar crystal growth, the deposi-

tion density is

r
dep

(a)5 r
i
f
dep

(a) . (A1)

In the limit as the change in a-axis length goes to zero (i.e.,

infinitesimal growth), fdep becomes the ratio of the linear

coverage fraction alongside length a and a, giving
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