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Abstract. Evapotranspiration (ET) links the hydrological,
energy and carbon cycles on the land surface. Quantifying
ET and its spatio-temporal changes is also key to under-
standing climate extremes such as droughts, heatwaves and
flooding. Regional ET estimates require reliable observation-
based gridded ET datasets, and while many have been de-
veloped using physically based, empirically based and hy-
brid techniques, their efficacy, and particularly the efficacy of
their uncertainty estimates, is difficult to verify. In this work,
we extend the methodology used in Hobeichi et al. (2018)
to derive two new versions of the Derived Optimal Linear
Combination Evapotranspiration (DOLCE) product, with ob-
servationally constrained spatio-temporally varying uncer-
tainty estimates, higher spatial resolution, more constituent
products and extended temporal coverage (1980–2018). Af-
ter demonstrating the efficacy of these uncertainty estimates
with out-of-sample testing, we derive novel ET climatology
clusters for the land surface, based on the magnitude and
variability of ET at each location on land. The new clus-
ters include three wet and three dry regimes and provide an
approximation of Köppen–Geiger climate classes. The veri-
fied uncertainty estimates and extended time period then al-
low us to examine the robustness of historical trends spa-
tially and in each of these six ET climatology clusters. We
find that despite robust decreasing ET trends in some re-
gions these do not correlate with behavioural ET clusters.
Each cluster, and the majority of the Earth’s surface, shows
clear robust increases in ET over the recent historical period.
The new datasets DOLCE V2.1 and DOLCE V3 can be used
for benchmarking global ET estimates and for examining ET
trends respectively.

1 Introduction

Understanding the spatio-temporal variability of evapotran-
spiration (ET) is a critical part of understanding the pro-
cesses that lead to high impact weather phenomena, such as
droughts (Han et al., 2018; Quesada-Montano et al., 2019;
Sheffield et al., 2012; Teuling et al., 2013), heatwaves (Teul-
ing, 2018; Ukkola et al., 2018) and flooding (Dawdy et
al., 1972; Sharma et al., 2018). Several global gridded ET
datasets have been developed, using physical schemes with
different scopes (e.g. addressing key questions in ecology,
hydrology, or other disciplines) and complexity (see Fisher
and Koven, 2020) and empirical techniques including ma-
chine learning algorithms, typically incorporating a range of
remote sensing inputs (Alemohammad et al., 2017; Jung et
al., 2010, 2019). Recently, ET datasets derived with a hy-
brid approach have been recognised for their potential to
outperform single-source datasets in reducing bias against
tower-based eddy covariance ET measurements (Ershadi et
al., 2014; Feng et al., 2016; Hobeichi et al., 2018; Jiménez et
al., 2018; McCabe et al., 2016).

While most observational products are global (or near
global) in their spatial extent, and typically available with
a monthly time step, different products are constrained by
very different types of observations and vary significantly
in their treatment of uncertainty. As detailed below when
describing the datasets we use here, “physically based” ap-
proaches use equations that represent different physical,
chemical, and biological processes and incorporate satellite-
based atmospheric forcing and parameterisation of land sur-
face characteristics, while “empirical” approaches integrate
ground-based measurements of ET together with satellite
data and ground-based measurements of vegetation charac-
teristics and land surface parameters. These differences result
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in a diverse group of products and estimates, but it is their
approach to deriving uncertainty estimates that is arguably
more important.

Very few datasets provide uncertainty estimates associ-
ated with the ET flux; these include datasets described in
Bodesheim et al. (2018) and Jung et al. (2019). In Bodesheim
et al. (2018), monthly uncertainty estimates are computed
from the standard deviation of the half-hourly ET values that
were used to derive monthly ET averages. Jung et al. (2019)
provide an ensemble of global ET estimates; deviations from
the ensemble median are used to derive ET uncertainties.
In both cases, uncertainties do not reflect the actual de-
viation from the measured ET at site locations. Without
well-calibrated uncertainty estimates, we are unable to tell
whether an identified property of any given dataset, such as
a trend or a proportion of the surface energy or water budget,
is robust rather than a result of bias or stochastic uncertainty.

ET trends computed from different approaches (i.e. phys-
ical and empirical) show general agreement at the global
scale, and they indicate that ET has increased since the early
1980s (Miralles et al., 2014; Pan et al., 2020; Zhang et al.,
2016). However, different ET products exhibit considerable
disparities in regional and continental ET trends. For in-
stance, Miralles et al. (2014) detected upward ET trends in
GLEAM (Global Land Evaporation Amsterdam Model; Mi-
ralles et al., 2011a, b) in the northern latitudes caused by
vegetation greening. In water-limited regions, they found that
ET is characterised by a multidecadal variability that follows
ENSO (El Niño–Southern Oscillation) dynamics, mainly in
eastern and central Australia, southern Africa, and eastern
South America. In comparison, ET trends estimated from
the observation-driven Penman–Monteith–Leuning (PML;
Zhang et al., 2016) model show increasing ET since 1980
in the northern latitudes, arid regions in northern Africa, and
northern and eastern Amazon. On the other hand, PML ex-
hibits negative trends in southern South America and western
United States. More recently, Pan et al. (2020) found that ET
trends exhibited during 1982–2011 by a range of empirical
and physically based estimates disagree in the direction of
trend in the Amazon basin and many arid and semi-arid re-
gions. Without incorporating uncertainties in ET estimates in
the analysis of trends, it becomes difficult to assess the relia-
bility of the established trends.

The gridded ET product derivation technique implemented
by Hobeichi et al. (2018) offers the potential for robust out-
of-sample testing of its uncertainty estimates, as well as sev-
eral other advantages over other techniques. Like other merg-
ing approaches, it offers the potential to minimise the eccen-
tricities or biases of any one product, by averaging them (in
this case using weights). However, unlike several other merg-
ing techniques (Mueller et al., 2013; Paca et al., 2019; Rodell
et al., 2015; Stephens et al., 2012), it accounts for perfor-
mance differences between parent estimates using in situ data
as the observational constraint rather than assigning weights
based on the ability to match another gridded dataset that is

deemed more reliable or the ensemble mean of a selection
of datasets (Munier et al., 2014; Sahoo et al., 2011; Wan et
al., 2015; Zhang et al., 2018). The efficacy of using in situ
measurements for constraining much larger-scale gridded es-
timates has also been shown explicitly (Hobeichi et al., 2018,
2020c). Next, most available merging techniques do not ac-
count for dependence between parent estimates, where re-
dundant information in different parent products is likely to
bias the hybrid estimate (Abramowitz et al., 2019; Herger et
al., 2018). Finally, and perhaps most important for this work,
the technique calculates global spatially and temporally vary-
ing uncertainty estimates that are based on observations, in
that they are based on the discrepancy between the hybrid
ET estimate and in situ data. Aside from being more defen-
sible than simply taking the spread of the parent products
around their mean (e.g. Pan et al., 2012; Zhang et al., 2018),
this approach also allows for out-of-sample testing, by leav-
ing some sites out of the derivation of the hybrid product and
its uncertainty and then using them to test its accuracy.

Despite these advantages, out-of-sample testing of uncer-
tainty estimates was not explored by Hobeichi et al. (2018),
and the short temporal availability of the DOLCE product
(2000–2009) limited its application, particularly in examin-
ing historical trends. While different subsets of parent prod-
ucts were used over different regions to expand the spatial
coverage of DOLCE, the possibility of different product sub-
sets in different time periods to extend its temporal reach
was not explored. Additionally, since the development of
DOLCE, four of its six parent datasets (Jung et al., 2010;
Martens et al., 2016; Miralles et al., 2011a, b; Mu et al.,
2011; Zhang et al., 2016) have been improved, and several
new global ET datasets have been developed (Balsamo et al.,
2015; Bodesheim et al., 2018; Jung et al., 2019). Most of
these are available at a higher spatial resolution than the orig-
inal 0.5◦ in DOLCE and cover different subsets of the period
1980–2018, with at least two available every year during this
period (Table 1).

In this paper we amend these shortcomings and explore
some of the insights that the new versions of DOLCE offer,
in particular focusing on the temporal trends in ET in differ-
ent regions and the assessment of robustness of trends that
well-calibrated uncertainty estimates afford. Roughly in or-
der, we detail below (1) how we update the DOLCE product
with new parent datasets and extend its temporal coverage;
(2) how the improved products compare to their previous
version and other existing ET estimates from the literature;
(3) the efficacy of uncertainty estimates, in particular whether
or not they are overconfident; (4) an exploration of historical
trends in ET using the extended temporal coverage and how
the uncertainty estimates allow us to examine the robustness
of these trends; and (5) behavioural ET clusters that describe
ET-based climate regimes, as a means to understand the spa-
tial distribution of trends we find.
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Table 1. Spatial and temporal coverage and original resolution of the global ET datasets (at the time of analysis) used to develop DOLCE
V2.1 and DOLCE V3. DOLCE V2.1 was derived from 11 datasets and 14 temporal tiers. DOLCE V3 was derived from four datasets and
four temporal tiers, i.e. (1) 1980, (2) 1981–2002, (3) 2003–2016, and (4) 2017–2018.

Time BACI ERA5 FLUXCO FLUXCO GLEAM GLEAM MOD16 PML PLSH SEBS SRB-
period -Land M-MET M-RS 3.3A 3.3B GEWEX

DOLCE V2.1 V2.1 V2.1 V2.1 V2.1 V3 V2.1 V2.1 V2.1 V2.1 V2.1
version V3 V3 (1980 (GLEAMV3.5A

–2016) & B)

Tier Excluded Antarctica, Antarctica, Antarctica, Antarctica, Antarctica,
land Greenland, Greenland, Greenland, Greenland, Greenland,
domain northern northern northern northern

Africa Africa Africa Africa

Original 0.5◦ 0.1◦ 1◦
12

1◦
12 0.25◦ 0.25◦ 0.05◦ 0.5◦ 1◦

12 0.05◦ 0.1◦

resolution half hourly hourly monthly monthly monthly monthly monthly monthly monthly monthly 3-hourly

1 1980 • •

2 1981 • • • •

3 1982– • • • • •

1983

4 1984– • • • • • •

1999

5 2000 • • • • • • •

1, 2 & 3

6 2000 • • • • • • • •

(4–12)

7 2001– • • • • • • • • • •

2002

8 2003– • • • • • • • • • • •

2007

9 2008– • • • • • • • • • •

2012

10 2013 • • • • • • • • •

11 2014 • • • • • • • •

12 2015 • • • • • •

13 2016– • • • •

2017
(1–6)

14 2017 • • •

(7–12)
–2018

2 Data and methods

To derive two new versions of DOLCE, one suitable for
benchmarking the ET dataset and another for trends analy-
sis, we combine the 11 and 4 available global gridded ET
datasets respectively using the same merging technique as in
DOLCE V1. This technique derives a linear combination of
the participating ET datasets based on their ability to match
in situ observations while also accounting for their error de-
pendency. While we acknowledge the obvious spatial mis-
match between gridded and in situ data, we refer readers to
Hobeichi et al. (2018) where it was shown that in situ obser-
vations do contain useful information about grid-scale fluxes,

using out-of-sample testing in a similar framework to the one
we present here.

Our aim is to increase the time coverage and spatial res-
olution of DOLCE V1, as well as examine strategies to im-
prove the effectiveness of the weighting strategy. Below we
detail newly available global datasets that allow us to de-
rive DOLCE V2 and DOLCE V3 at 0.25◦ spatial resolution
and an improved collection of in situ constraining data. We
then briefly revisit the weighting and uncertainty estimation
approach before describing our tiering approach to extend-
ing the temporal reach of DOLCE V2 and DOLCE V3. Fi-
nally, we examine alternative clustering and bias-correction
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approaches to improve the out-of-sample performance of the
weighting technique.

Throughout the paper, we use the two terms evapotran-
spiration (ET) and latent heat (LE) interchangeably, and the
unit watts per square metre (W m−2) for heat fluxes and mil-
limetres per year (mm yr−1) for the water flux equivalent. For
reference, 1 W m−2

= 12.86 mm yr−1. As above, we refer to
the product from Hobeichi et al. (2018) as DOLCE V1 and
the new products we are deriving as DOLCE V2 or DOLCE
V2.1 and DOLCE V3.

2.1 Data

2.1.1 Global ET datasets

DOLCE V1 was derived from six global ET datasets:
MPIBGC (Jung et al., 2010), GLEAM v2a, GLEAM v2b
(Miralles et al., 2011a, b), GLEAM v3a (Martens et al.,
2016, 2017), MOD16 (Mu et al., 2011) and PML (Zhang
et al., 2016). In DOLCE V2, we keep both MOD16 and
PML datasets, substitute the GLEAM products with their im-
proved versions GLEAM3.3A and GLEAM3.3B (Martens et
al., 2016, 2017), and replace MPIBGC with the newly de-
veloped empirical ET datasets from the Max Planck Insti-
tute for Biogeochemistry: BACI (Bodesheim et al., 2018)
and two ET estimates from the FLUXCOM project (Jung
et al., 2019). Additionally, we incorporate a recently pub-
lished dataset (ERA5-Land; Muñoz Sabater, 2019) and three
newly available ET datasets: PLSH (Zhang et al., 2015),
SEBS (Chen et al., 2019; Su, 2002) and SRB-GEWEX
(Vinukollu et al., 2011). In comparison, DOLCE V3 was de-
rived from four global ET datasets. These are ERA5-Land,
an ET dataset from the FLUXCOM project, and the two lat-
est versions of the GLEAM products, GLEAM V3.5A and
GLEAM V3.5B. We provide a brief description of these
datasets below, with URLs and download dates shown in Ta-
ble S2.

Biosphere Atmosphere Change Index (BACI; Bodesheim
et al., 2018) is derived by upscaling diurnal cycles of ET and
other land–atmosphere fluxes from a large set of FLUXNET
sites based on a random forest regression framework. It uses
seasonal vegetation variables, indices from Moderate Res-
olution Imaging Spectroradiometer (MODIS) satellites, and
meteorological data either measured at the flux tower sites or
retrieved from the ERA-Interim data.

ERA5-Land (Muñoz Sabater, 2019) is a global land sur-
face reanalysis dataset that has been developed by rerunning
the land component of the ECMWF ERA5 climate reanal-
ysis with a series of improvements (mainly higher temporal
frequency and spatial resolution) that makes it more reliable
for land applications. ERA5-Land is produced under a sin-
gle simulation that uses adjusted atmospheric inputs from
ERA5 atmospheric variables without being coupled to the
atmospheric module of ERA5.

FLUXCOM (Jung et al., 2019) is an empirical upscal-
ing of observations from 224 flux tower sites using machine
learning methods. The full FLUXCOM product includes 63
global ET datasets that have been produced using two differ-
ent setups: a remote sensing (RS) setup and a remote sens-
ing plus meteorological (MET) setup. The development of
the global datasets incorporates nine machine learning tech-
niques, four global meteorological datasets (used only with
the MET setup), three correction methods for energy imbal-
ance at the flux tower sites and MODIS remote sensing in-
put. In DOLCE V2, we include one dataset from each setup,
which we refer to as FLUXCOM-RS (from the RS setup) and
FLUXCOM-MET (from the MET setup). To choose the two
datasets, we analysed the pair-wise error correlations of all
the products against in situ flux tower data and selected the
two that had the lowest pair-wise error correlation (and so
were deemed least dependent). In DOLCE V3, we include a
dataset from the MET setup only.

Process-based Land Surface Evapotranspiration/Heat
Fluxes algorithm (PLSH; Zhang et al., 2015) terrestrial ET
is derived using an improved Normalized Difference Vegeta-
tion Index (NDVI)-based Penman–Monteith algorithm orig-
inally developed in Zhang et al. (2010). ET is regulated
by a set of geophysical data from GIMMS and Vegetation
Index and Phenology along with radiative data from Cli-
mate Research Programme/Global Energy and Water Ex-
changes (WCRP/GEWEX) Surface Radiation Budget (SRB)
and CERES along with other meteorological observation
data from the NCEP/DOE AMIP-II Reanalysis (NCEP2;
Kanamitsu et al., 2002).

In the Surface Energy Balance System (SEBS; Chen et
al., 2019; Su, 2002), the ET estimates are produced with the
revised Surface Energy Balance System (SEBS) algorithm
in Chen et al. (2013, 2019). It uses meteorological observa-
tions, ground heat flux, net radiation and canopy measure-
ments collected from flux tower sites, as well as NDVI and
emissivity data from MODIS.

In Surface Radiation Budget (SRB)-GEWEX (Vinukollu
et al., 2011), ET is estimated based on the Penman–Monteith
equation. Input datasets include remote sensing data from
Advanced Very High Resolution Radiometer (AVHRR) and
MODIS, meteorological data derived from the Variable Infil-
tration Capacity (VIC; Liang et al., 1994) land surface model
forced by Princeton Global Forcing (PGF), and radiative
data from the NASA Global Energy and Water Exchanges
(GEWEX) Surface Radiation Budget Project (Stackhouse et
al., 2011).

It is clear that different parent datasets share forcing,
parameterisations, and physical and empirical assumptions.
Therefore, they do not constitute entirely independent esti-
mates. Furthermore, their error correlation (when compared
with data from 254 sites – details on these below), which
can be used as a measure of their dependence (Bishop and
Abramowitz, 2013), is high (Fig. S2, correlation>0.5), rein-
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forcing the potential for benefit using a weighting approach
that can account for this redundancy.

Part of the high correlation is of course due to spatial het-
erogeneity and the scale mismatch between in situ and grid-
ded datasets since individual site locations within a grid cell
are likely biased with respect to the (unknown) true grid-
cell-averaged flux. While it might appear that a weighting
approach that accounts for error correlations between parent
datasets might be in danger of overfitting to error correla-
tion resulting from spatial heterogeneity, we have two mech-
anisms that ensure this is not a concern for our final prod-
uct. First, weights for each product are constructed over very
large spatio-temporal domains, i.e. more than 13 000 space-
time records as described below, so the (assumed stochastic)
biases of individual sites relative to grid cell values are un-
likely to influence weights over a large sample. In fact, rep-
resentativeness of point-scale measurement for the grid scale
does exist across all the flux tower sites as a whole; this has
been verified by Hobeichi et al. (2018). Second, and more
categorical, all results here are presented with out-of-sample
testing, so any overfitting will degrade rather than improve
the results we present. More detail on this is presented be-
low.

Given that most of the parent datasets provide ET informa-
tion at a 0.25◦ or finer spatial resolution (Table 1), it is pos-
sible to enhance the resolution of DOLCE from 0.5 to 0.25◦.
All the parent datasets are resampled from their original spa-
tial resolution to a common 0.25◦ grid using the nearest-
neighbour resampling method and aggregated to monthly
temporal scale before implementing the weighting technique.

2.1.2 Flux tower data

We use flux tower observations from a range of net-
works including Ameriflux (https://ameriflux.lbl.gov/, last
access: 1 October 2020), the Atmospheric Radiation Mea-
surement (ARM; https://www.arm.gov/, last access: 1 Octo-
ber 2020), AsiaFlux (https://www.asiaflux.net/, last access:
1 October 2020), European Fluxes Database (http://www.
europe-fluxdata.eu/, last access: 1 October 2020), Fluxnet
2015 (https://fluxnet.org/data/fluxnet2015-dataset/, last ac-
cess: 1 October 2020), LaThuile Free Fair Use (https://
fluxnet.fluxdata.org, last access: 1 October 2020), Oak Ridge
data repository (https://daac.ornl.gov/, last access: 1 Octo-
ber 2020), OzFlux (http://www.ozflux.org.au/, last access:
1 October 2020) and data acquired through communication
with individual site principal investigators (PI). Particular ef-
forts were made to establish connections with PIs in regions
where ET observations are scarce, including all areas out-
side North America, Europe and Australia, particularly the
MENA (Middle East and North Africa ) region, Siberia, cen-
tral Africa and the Amazon basin. Our efforts and commu-
nications with many PIs unfortunately failed to incorporate
flux data from some of these regions (excepting those that
are already available from the cited networks). Before the

quality control process detailed below, we had obtained data
from 366 flux tower sites.

The raw data consist of a composite of half-hourly, daily
and monthly records. We compute daily averages from half-
hourly records for days when at least 80 % of half-hourly
LE records are available. Subsequently, we compute monthly
averages from daily records for months when at least 80 % of
daily LE records are available. In DOLCE V1 we applied a
less strict quality control on the observational data in which
up to 50 % of gap filling was allowed. The reason was that
DOLCE V1 incorporated much fewer observational data –
sourced from Fluxnet 2015 and LaThuile Free Fair use only.
In order to retain enough observational data to constrain the
weighting, it was necessary to make a trade-off between the
quality and the quantity of the data.

We also apply energy balance corrections to the monthly
LE at all sites where monthly averages of the other variables
of the surface energy budget – net radiation (Rn), ground
heat flux (G) and sensible heat flux (H) – are available with
the same high quality (quality flag>80 %). Corrections are
carried out independently for every monthly record. Where
any of the other components of the energy budgets are ab-
sent, latent heat measurements are used without any correc-
tions. The energy balance correction is applied as a Bowen
ratio (BR)-based correction that distributes the energy bud-
get residuals among H and LE in such a way that their ratio
is conserved. This is done under pre-defined constraints that
disallow large changes to be applied to LE. As a result of
this, we accept the BR correction and use the corrected LE
(LEcor) values if the original monthly LE and LEcor satisfy

{
LEcor

LE ε
[

1
2 − 2

]
, where LE≤ 30Wm−2

;

LEcor−LE≤ 20Wm−2, where LE≥ 30Wm−2.

In DOLCE V1, we did not set a threshold for LE adjustments,
which resulted in LE being changed drastically in a few sites
to offset errors in the other energy balance components. If the
BR correction does not meet the above criterion, we reject the
correction and try using a residual correction, which simply
calculates LE as the residual term in the energy balance equa-
tion; i.e. LEcor = Rn−H −G. Similarly, we reject the resid-
ual correction if the relation between LE and LEcor above is
not satisfied. In this case, we use the original monthly LE val-
ues without correction. A simplified flow chart of these steps
is displayed in Fig. S3 in the Supplement. A study by Paca
et al. (2019) examined the changes to flux tower LE by three
means of correction and found that these on average differ
by around 20 W m−2 from one another. On this basis, we ex-
pect that, typically, the correction of flux tower LE should
not exceed 20 W m−2, unless errors in other components of
the budgets are propagating in the corrected ET. The rule for
correcting small fluxes and the condition in which each rule
is applied (i.e. LE= 30 W m−2) are in part subjective and in
another part based on a case-by-case assessment of changes
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induced on ET by the correction techniques, and they achieve
a reasonable trade-off between data quality and availability.

In a further pre-processing step, if a site is located in close
proximity to other sites such that they all sit on the same
0.25◦ grid cell, we use observational data from the site that is
more representative of the underlying grid cell. Selecting the
most representative site among these sites involves (1) iden-
tifying the biome cover at each site and (2) computing the
fraction of the grid area covered by each biome; the most
representative site is the one whose biome is more abundant
in the underlying grid cell (i.e. scores the highest fraction of
the total area). If all sites are equally representative of the
underlying grid cell, we consider them as one site and we
combine monthly LE from the sites by taking the average.
We use the high-resolution 300 m land cover maps from the
European Space Agency (ESA; http://www.esa.int/, last ac-
cess: 1 October 2020) downloaded from https://cds.climate.
copernicus.eu/ (last access: 1 October 2020) to determine the
biome types of neighbouring sites and the corresponding grid
cells. This step has ensured that we are not matching a grid
cell with inappropriate observational data. All the excluded
sites are in Europe and North America. This filtering along
with the quality control measures described earlier reduced
the number of employed sites in this study from 366 sites to
260 sites (Fig. S1). Furthermore, we exclude six sites from
the weighting, which were located on flooded land area, wet-
lands or intensively irrigated land. As a result of this, the con-
straining observational dataset used to derive DOLCE V2 in-
cludes 254 sites with a total of 13 641 monthly records.

2.2 Methods

2.2.1 Weighting approach

The weighting technique is the same as that used in
DOLCE V1 and was originally presented by Bishop and
Abramowitz (2013) and implemented for merging observa-
tional estimates by Hobeichi et al. (2018, 2019, 2020a). It
consists of building a linear combination, µ, of the parent
datasets that minimises

∑J
j=1(µ

j
− yj )2, where j ∈ [1, J ]

represents the monthly time–site records, yj is the observed
ET at the j th time–site record. The linear combination µj =∑K
k=1wkx

j
k is subject to the constraint that

∑K
k=1wk = 1,

where k ∈ [1, K] represents the parent datasets, and xjk is
the value of the kth bias-corrected parent dataset (i.e. af-
ter subtracting its mean bias relative to the all-site obser-
vational dataset) corresponding to the j th time–site record.
The analytical solution to this problem accounts for both
the performance differences between the parent datasets and
their error covariance (Fig. S2), which is a proxy for de-
pendence. Further details on the merging technique can be
found in Abramowitz and Bishop (2015) and Bishop and
Abramowitz (2013). The weighting approach is used to com-
bine the global parent datasets separately on different spatio-

temporal subsets of the entire period and globe, using a tiered
approach detailed in Sect. 2.2.3.

2.2.2 Computing uncertainty in ET

The ensemble dependence transformation process developed
by Bishop and Abramowitz (2013) is used to calculate the
spatio-temporal uncertainty of DOLCE V2 and DOLCE V3.
The process transforms the global parent datasets to a new
ensemble so that the variance of the transformed ensemble
about the derived hybrid ET estimate, µ, is constrained to be
equal to the error variance of µ with respect to the flux tower
data, averaged over time and space (i.e. across all J records).
We use the spread

√

σ 2 of the transformed ensemble as the
spatially and temporally varying estimate of uncertainty stan-
dard deviation, which we will refer to as “uncertainty”. We
refer the reader to Bishop and Abramowitz (2013) for the
derivation of this approach and Hobeichi et al. (2018) for its
implementation in this context. The spread

√

σ 2 of the trans-
formed ensemble accurately reflects the uncertainty of µ in
those grid cells where flux tower observations are available.
This process ensures that the computed uncertainty provides
a better uncertainty estimate of the hybrid ET than simply
using the spread of the parent datasets.

One additional advantage of defining uncertainty in this
way is that it should give an accurate upper bound estimate
of the likely discrepancy between the product and unseen ET
measurements at a range of spatial scales. That is, since it
is based on the discrepancy of the final hybrid product and
point-based flux tower estimates, which are essentially at
the extremes of spatial discrepancy, the discrepancy between
DOLCE and actual ET at any spatial scale greater than that
of a tower footprint and smaller than that of DOLCE should
be less than this uncertainty estimate (noting, however, that
this is the estimated standard deviation of uncertainty rather
than a hard upper limit). In Sect. 2.2.5 below, we detail the
out-of-sample testing of this uncertainty estimate at the point
scale.

2.2.3 Tiering of dataset subsets in time and space to
maximise coverage

To derive DOLCE V1 over the global land, we applied spatial
tiering (using different subsets of parent products in different
regions to maximise spatial coverage). We now expand this
approach to include temporal tiering to improve the tempo-
ral reach of DOLCE. Collectively, the incorporated parent
datasets have a temporal cover over 1980–2018 but only a
short common overlap during 2003–2007 in DOLCE V2 and
during 2003–2016 in DOLCE V3, and their spatial intersec-
tion does not cover the global land. Therefore, to achieve a
global land coverage from 1980 through 2018 without ex-
cluding any of their parent products, it was necessary to build
DOLCE V2 and DOLCE V3 from different subsets of par-
ent datasets in time periods and land regions depending on
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the availability of the parent datasets as shown in Table 1.
To this end, we consider 14 and 4 distinct temporal tiers in
DOLCE V2 and DOLCE V3 respectively. For example, in
DOLCE V2, tier 9 covers 2008–2012 and incorporates all
datasets except SRB-GEWEX. Tier 1 incorporates the least
parent datasets, for the year 1980 (i.e. FLUXCOM-MET and
GLEAM3.3A), while tier 8 uses all the parent datasets and
covers 2003–2007. Furthermore, within each temporal tier,
we consider three spatial sub-tiers, with each spatial sub-
tier covering a part of the land. These consist of (a) all land
except Antarctica, Greenland and northern Africa; (b) only
Antarctica and Greenland; and (c) only northern Africa. A
similar spatial tiering approach was also applied in DOLCE
V1. Other spatial tiers, each consisting of a small number of
grid cells, were also considered where necessary to ensure
that no grid cell in DOLCE V2 or DOLCE V3 is missing ET
data if a single parent is missing ET data for that grid cell.
As a result of the tiering approach, weighting is computed
separately using a different subset of parent datasets and site
data in each tier, resulting in distinct spatio-temporal sub-
sets of the entire period. Collectively, the hybrid estimates
developed throughout the temporal tiers and their spatial
sub-tiers form DOLCE V2 and DOLCE V3 over the global
land throughout 1980–2018. The reduced number of tempo-
ral tiers in DOLCE V3 is to ensure that no temporal disconti-
nuities occur throughout the covered period, which otherwise
would have reduced the suitability of DOLCE V3 for trend
analysis. In comparison, the incorporation of a larger ensem-
ble of parent products in DOLCE V2 is to derive an optimal
ET product that minimises discrepancy with in situ observa-
tions.

2.2.4 Weighting groups

Previous studies have found that the performance of a global
product can vary with different climatic circumstances, sug-
gesting that separating the weighting into separate regions
or other groupings might well improve the results of the
weighting overall (Ershadi et al., 2014; Hobeichi et al., 2018;
Michel et al., 2016). Grouped weighting simply involves di-
viding the time and/or space covered by a particular tier
into different subsets or groups (e.g. with different climatic
conditions) and then applying the weighting technique sep-
arately for each group (within a single tier). We expect that
grouped weighting has the potential to improve weighting
by accounting for the variation in performance of the par-
ent datasets over different climate or land conditions and can
hopefully improve biases detected in DOLCE V1. Hobeichi
et al. (2018) tried to group flux tower sites based on their land
cover type and computed weights for each land cover type.
However, this approach did not improve the results, whether
grouping by climate zone or aridity index, with the main rea-
son being attributed to the small number of sites in many
groups. Despite the availability of 100 additional sites to con-
strain the weighting here compared to Hobeichi et al. (2018),

the ratio of the observational data to the number of parents
has not improved across several climate or land cover types
for DOLCE V2. We therefore investigate new approaches to
grouped weighting that allow for sufficiently low group num-
bers to keep a reasonable sample size in each of them, includ-
ing the following:

– Grouping by latitudinal zone. This is a simplification
of grouping by climate type in which climates are ag-
gregated into three latitudinal zones: (i) high latitudes
(±60◦ poleward), (ii) mid-latitudes (±60◦ towards the
subtropics±40◦), and (iii) tropics and subtropics (be-
tween −40 and 40◦). In each zone we apply a separate
weighting using the corresponding group of sites.

– Grouping by continents. Sites are naturally separated
by continental boundaries, and we might suspect that a
particular ET product performs differently across con-
tinents. For instance, precipitation is involved in the
derivation of many of the parent datasets and has been
found to have different fidelity over different continents
(Hobeichi et al., 2020b).

– Grouping by hemisphere. Pan et al. (2020) found that
ET estimates agree more in the Northern Hemisphere
than in the Southern Hemisphere. Therefore, perform-
ing separate weighting in each hemisphere could be bet-
ter than weighting across all global land.

– Grouping by seasons. Several studies have shown that
the skill of ET datasets varies by seasons (Jiménez et
al., 2018; Long et al., 2014; Mueller et al., 2011). To
capture these differences, we implement grouping by
seasons and grouping by months (detailed below). We
consider two combined seasons i.e. summer–autumn
and winter–spring. In the summer–autumn season, we
constrain the weighting with (1) monthly observations
from sites located in the Northern Hemisphere during
the period June–November and (2) monthly observa-
tions from sites located in the Southern Hemisphere dur-
ing the period December–May. The remaining observa-
tional data are used to constrain the weighting during
the winter–spring combined season.

– Grouping by months. This is similar to grouping by sea-
sons, the only difference is that the two groups are June–
November and December–May, without accounting for
the different seasonal phase between hemispheres.

– Grouping by ET regime and months. Land was classified
into three distinct, broad ET regimes (Fig. S4) according
to two aspects of ET: mean annual total ET and within-
year relative variability throughout 1980–2018, derived
from GLEAM V3.5A, and using K-means unsuper-
vised classification (MacQueen, 1967). We explain the
classification method further in Sect. 3.5.2. Different
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Figure 1. (a) Latitudinal means of DOLCE V2 and its parent datasets computed over a common period 2003–2007 and a common spatial
mask. (b) Latitudinal means of DOLCE V3 and its parent datasets computed over a common period 2003–2016 and common spatial mask.
The grey ribbon represents the values of DOLCE± uncertainty. DOLCE V1 and DOLCE V2 are included in (a) and (b) respectively for
comparison. FLUXCOM-METa and FLUXCOM-METb are two different datasets from the FLUXCOM-MET setup.

sets of weights were computed at each ET regime dur-
ing June–November and December–May. Implement-
ing weighting this way ensured that we account for per-
formance differences across different physical aspects
of the land and seasons. Despite the fact that observa-
tional data were divided into six distinct groups, the ob-
servational data available in each group were still ap-
propriate to merge the four parent datasets of DOLCE
V3. However, we found this grouped weighting strategy
to be not appropriate for merging 11 parent datasets of
DOLCE V2.

As an alternative to the grouping strategies, we also inves-
tigate if deriving a spatially varying bias correction within
each tier could further improve the weighting. We describe
the examined bias-correction approaches and their effective-
ness in the Supplement.

2.2.5 Out-of-sample testing approach

To test the effectiveness of different weighting groups or
bias-correction approaches, as well as assess which strat-
egy offers the best performance, we use out-of-sample tests.

To do this, we first divide the flux tower sites between the
in-sample and out-of-sample groups by randomly selecting
25 % of the sites as out of sample. The remaining sites form
the in-sample training set are used to compute bias-correction
terms and weights for the parent datasets in each tier us-
ing the weighting technique without weighting groups (as
adopted in DOLCE V1) and with each of the groups and
bias-correction strategies detailed in Sects. 2.2.5 and S4 in
the Supplement. In each case, these bias-correction terms and
weights are then applied to the parent datasets and compared
to the out-of-sample sites to test efficacy of the clustering or
bias-correction approach employed. The process is repeated
for each grouping or bias-correction strategy to derive several
hybrid ET datasets for each sample group of sites.

For each strategy, the test was repeated 1000 times with
a different random selection of sites being out of sample.
The performance of each hybrid ET estimate was evalu-
ated across five statistical metrics. These were root mean
squared error (RMSE), absolute standard deviation differ-
ence (|σdataset− σobservation|), correlation, mean absolute de-
viation (i.e. mean(|dataset−observation|)) and median abso-
lute deviation (i.e. median(|dataset−observation|)). DOLCE
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Figure 2. Spatial distribution of differences in ET climatology between DOLCE V2 and each of its parent datasets and DOLCE V1. Different
spatio-temporal masks are applied for each comparison based on the spatio-temporal coverage of DOLCE V2 and the other datasets.

V1 has not been included in this test as its coarser spatial
resolution (i.e. 0.5◦) excludes many coastal sites and so sig-
nificantly reduces the observational data we could use in
this analysis. The out-of-sample test is carried out over the
common period of availability of all the parent datasets, i.e.
2003–2007 and 2003–2016, to enable comparison of the out-
of-sample performance of each approach with all of the 11
and 4 parent datasets of DOLCE V2 and DOLCE V3 respec-
tively.

We perform another out-of-sample experiment to test if
the uncertainty estimate derived by the successful grouping
and/or bias-correction strategy performs well out of sample.
In this test, we first select a site S, but instead of constraining
the weighting using observed ET from this site, we compute
the weights and bias-correction terms of the parent datasets
by using all the sites except S (i.e. just one site is out of sam-
ple). We then calculate the mean squared error (MSE) of the
derived hybrid ET against observations from all the sites ex-
cept S. We denote this value by uncertaintyin-sample, since
it represents the uncertainty estimate computed using the
same observational dataset that we used to train the weight-

ing. We also calculate the MSE of the hybrid ET against
the out-of-sample observations from S, and we denote this
as uncertaintyout-sample, since we perform the comparison
against ET observations that have not been used to train the
weighting. We repeat this test for all the sites, and each time
we calculate the ratio

uncertaintyin-sample
uncertaintyout-sample

. In an ideal case, this
ratio should equal to unity.

3 Results and discussion

3.1 Out-of-sample performance of DOLCE V2 and
DOLCE V3

We derive DOLCE V2.1 (Hobeichi et al., 2020b) from
11 parent datasets by applying a grouped weighting by
months. As detailed in the Supplement (Sect. S5), this ap-
proach achieves slightly better out-of-sample performance
than the other grouped weighting approaches in estimating
ET (Fig. S6) and in deriving more robust uncertainty es-
timates (Fig. S7). We recall that in grouped weighting by
months, the observational and gridded ET data are split into
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two groups: one covering the period June–November and the
other covering December–May. Weighting and bias correc-
tion is then implemented in each group separately for each
tier to create the subsets from which the hybrid ET product
is derived.

We derive DOLCE V3 (Hobeichi et al., 2021) from four
parent datasets by applying a grouped weighting by ET
regimes and months. Both DOLCE V3 and DOLCE V2.1
outperform their parent datasets in the out-of-sample tests
across all performance metrics (Figs. S6 and S8). DOLCE
V2.1 performs better than DOLCE V3 across all perfor-
mance metrics except standard deviation difference as illus-
trated in Fig. S8. The overall better performance of DOLCE
V2.1 is expected given that more ET estimates contribute to
the weighting. On the other hand, DOLCE V2.1 has proven
worse performance than DOLCE V3 in capturing variation
in ET observations since variability in ET should have de-
creased when the variations in individual products are not
temporally coincident.

3.2 Comparison of DOLCE V2 and DOLCE V3 with
their parent datasets

Figure 1 displays the latitudinal means of each of DOLCE
V2 and DOLCE V3 and their parent datasets computed over
a common spatial mask and common periods of 2003–2007
and 2003–2016 in the case of DOLCE V2 and DOLCE V3
respectively. The grey ribbon represents the uncertainty of
DOLCE V2 and DOLCE V3 in Fig. 1a and b respectively,
defined by the ± uncertainty standard deviation interval.
The uncertainty standard deviation of the two DOLCE prod-
ucts mostly contain the latitudinal variations of their parent
datasets with the exception of FLUXCOM-RS, which ex-
hibits larger ET over the tropics and subtropics of the South-
ern Hemisphere relative to DOLCE V2 (Fig. 1b). This con-
tainment should not be surprising since uncertainty estimates
should be robust for point-scale estimates. Figure 1a shows
that DOLCE V1 exhibits a slightly lower ET than DOLCE
V2 in the tropics and subtropics. DOLCE V2 appears in the
lower end of the range of the other datasets from 60◦ pole-
ward. All the datasets exhibit considerable disparities over
the mid-latitudes south of −50◦, where the contribution of
the terrestrial ET comes mostly from the lower Andes. The
difference between DOLCE V2 and DOLCE V3 is small-
est over the mid-latitudes of the Northern Hemisphere where
most of the flux tower sites are located and is largest over
the tropics where very few observations are available. Also,
both the number and the spread of parent datasets are larger
in DOLCE V2, which explains its larger uncertainty com-
pared to DOLCE V3. The parent datasets of DOLCE V3 are
in general in the upper range of ET across all the different
participating products, which also explains why DOLCE V3
exhibits larger ET than DOLCE V2 throughout the land and
mostly over the tropics.

Figure 2 shows the spatial distribution of differences in
the ET mean between DOLCE V2 and each of its parent
datasets. We apply different spatio-temporal masks for each
comparison based on parent dataset coverage (Table 1). We
also compute the climatological difference of DOLCE V2
with its predecessor DOLCE V1 over 2000–2009. A similar
plot showing the spatial distribution of differences in the ET
mean between DOLCE V3 and each of its parent datasets is
provided in Fig. S9. Figure S9 shows that DOLCE V3 ex-
hibits higher ET than DOLCE V2.1 and DOLCE V1 over
most of the land, particularly over the tropics and the high
latitudes. On the other hand, the climatological difference
between DOLCE V3 and its parent datasets show different
spatial patterns, and the least climatological difference is be-
tween DOLCE V3 and GLEAM V3.5B.

Over the temperate regions of the Northern Hemisphere,
DOLCE V2 exhibits lower mean ET than all its parents ex-
cept SEBS. We have computed the mean bias of all these
datasets relative to the observational data available from sites
located in these temperate latitudes. DOLCE V2 has a neg-
ligible bias of 0.2 W m−2 relative to the observational data.
This bias results from a positive bias of 0.4 W m−2 during
June–November and a negative bias of −0.2 W m−2 during
December–May. All the parent datasets except SEBS ex-
hibit a positive bias that ranges between 2.7 and 11.4 W m−2,
and SEBS has a negative mean bias of −3.4 W m−2 that
varies between −0.2 W m−2 during December–May and
−6.3 W m−2 during June–November. We note that the bias
relative to the in situ observational datasets is only indicative
of the performance of the gridded datasets at the sites and
does not necessarily represent the actual mean bias over these
regions. The discrepancy between DOLCE V2 and DOLCE
V1 is relatively small across all land.

Large differences between DOLCE V2 and FLUXCOM-
RS are seen over the Congo and the Amazon basins, south-
ern Africa, and the Brazilian highlands. The mean climato-
logical bias of FLUXCOM-RS relative to observational data
from these regions is 30 W m−2. This large bias likely results
from the lack of sufficient data available to train the machine
learning algorithm over climatically distinct biomes, which
made ET prediction less constrained. This bias did not ap-
pear in FLUXCOM-MET, possibly because ET prediction
is based on a larger set of predictor variables. DOLCE V2
exhibits a relatively small bias ranging between 2.6 W m−2

during June–November and 6.4 W m−2 during December–
May. In comparison, DOLCE V3 exhibits no significant bias
during June–November and a bias of 12.2 W m−2 during
December–May, which is similar to the bias in GLEAM
V3.5B over these latitudes and seasons and is less than the
bias in the remaining parent datasets (i.e. GLEAM V3.5A,
FLUXCOM-MET and ERA5.

In general, there are apparent disparities in the patterns of
climatological differences in the tropics across all the maps.
This results from the fact that global ET datasets exhibit large
differences over the tropics, which has been highlighted pre-
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Table 2. Mean annual ET aggregates in millimetres per year
(mm yr−1) across 20 river basins calculated for DOLCE V2,
DOLCE V3 and CDR-ET (Table 4 of Zhang et al., 2018) over
a common period 1984–2010. CDR-ET is derived by merging 10
available ET datasets into a hybrid ET which then receives correc-
tions, so the surface water budget established by derived hybrid es-
timates of the other hydrological variables is closed.

Basin CDR-ET DOLCE V2 DOLCE V3
1984–2010 1984–2010 1984–2010

Amazon 1153 1167 1314
Amur 295 309 421
Columbia 331 340 436
Congo 1045 1084 1160
Danube 503 451 550
Indigirka 138 107 231
Indus 277 323 365
Kolyma 167 132 243
Lena 245 185 283
Mackenzie 241 214 333
Mississippi 577 513 555
Murray-Darling 411 419 445
Niger 401 456 427
Northern Dvina 324 232 376
Ob 323 245 357
Olenek 174 108 237
Paraná 892 854 856
Pechora 244 166 276
Yenisei 265 216 325
Yukon 175 158 261

Figure 3. Taylor diagram displaying two performance metrics, i.e.
correlation and standard deviation of DOLCE V2 relative to nor-
malised observational data presented by a hollow point (reference
point) at one unit on the x axis. Pink points represent performance
statistics scored at sites located on wetlands, flooded plain or inten-
sively irrigated areas.

viously (Paca et al., 2019; Pan et al., 2020), particularly over
the Amazon basin.

3.3 Comparison of basin and continental ET with
existing literature

We now compare DOLCE V2 and DOLCE V3 with annual
mean ET aggregates over a range of river basins documented
in a recent study (Table 4 of Zhang et al., 2018). ET in that
study – which we’ll refer to as CDR-ET – is derived by merg-
ing 10 available ET datasets into a hybrid ET which then re-
ceives corrections, so the surface water budget – established
by derived hybrid estimates of the other hydrological vari-
ables – is closed. Table 2 displays the mean annual ET ag-
gregates in millimetres per year (mm yr−1) across 20 river
basins calculated for DOLCE V2, DOLCE V3 and CDR-ET
over the common period 1984–2010. Our results show that
there is an overall agreement between DOLCE V2 and CDR-
ET across all the non-Siberian rivers where the difference in
ET estimates is mostly around 10 %. The agreement wors-
ens over the Arctic basins Indigirka, Kolyma, Lena, North-
ern Dvina, Yenisei and particularly over Olenek and Pechora
where the differences in ET estimates exceed 20 %. Previous
studies have reported large uncertainties in the water fluxes
over the Siberian basins (Lorenz et al., 2015), most likely due
to the absence of a proper representation of snow and per-
mafrost dynamics (Candogan Yossef et al., 2012). Interest-
ingly, over the North American Arctic basins Mackenzie and
Yukon, DOLCE V2 and CDR-ET exhibit much smaller rel-
ative differences than at their Siberian counterparts. DOLCE
V3 exhibits higher ET than DOLCE V2 and CDR-ET across
the majority of the river basins, particularly over the Arctic
basins. DOLCE V3 is within the range of its recently devel-
oped parent datasets which exhibit higher ET than the older-
generation products such as SRB-GEWEX and SEBS incor-
porated in DOLCE V2.

We also compare DOLCE V2 and DOLCE V3 with conti-
nental annual means of ET shown by L’Ecuyer et al. (2015).
In their study, they derive a hybrid ET by merging three
global datasets. Then, they adjust the hybrid ET and its as-
sociated uncertainty by enforcing the physical constraints of
the surface and atmospheric water and energy budgets us-
ing a data assimilation technique (DAT). Our results show
that DOLCE V2 has smaller ET with larger associated uncer-
tainties compared to those derived in L’Ecuyer et al. (2015)
(Table 3). The range of their ET estimate overlaps with the
range of DOLCE V2 and DOLCE V3 throughout all con-
tinents. In L’Ecuyer et al. (2015), the uncertainty estimates
are originally taken from the literature and are deemed con-
stant across time and space and then these are reduced by the
DAT. The uncertainty estimate of DOLCE, however, is firmly
grounded in the discrepancy between the gridded DOLCE
product and in situ tower data. The variance of this discrep-
ancy is used to recalibrate the variance of the parent datasets,
which are then used to estimate uncertainty, allowing for a
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Table 3. Annual continental averages of ET (W m−2) and its standard deviation uncertainty calculated for DOLCE V2, DOLCE V3 and
that developed in L’Ecuyer et al. (2015) over a common period 2000–2009. In L’Ecuyer et al. (2015), ET is derived by merging three global
datasets and then adjusted by enforcing the physical constraints of the surface and atmospheric water and energy budgets.

Continent ET± uncertainty ET± uncertainty ET± uncertainty
(L’Ecuyer et al., 2015) DOLCE V2 DOLCE V3

Africa 45± 3 40± 17 39± 13
Australia 27± 3 28± 16 28± 13
Eurasia 33± 3 30± 13 34± 13
North America 33± 6 28± 12 32± 12
South America 77± 4 73± 23 76± 19

Figure 4. Spatial pattern of ET climate trends in DOLCE V3 over 1980–2018 derived using Mann–Kendall and Sen’s slope methods. Grid
cells in white correspond to unreliable ET trends either because (i) the confidence interval of the slope encompasses a mix of negative and
positive values or (ii) trend slopes computed for multiple, different random samples of ET within the interval ET± uncertainty do not agree
in sign.

spatio-temporally varying uncertainty estimate that is both
consistent with the discrepancy between DOLCE and sur-
face observations while at the same time being spatially and
temporally complete. This process is detailed by Hobeichi et
al. (2018).

Finally, we compare DOLCE V2 with the ET component
of Conserving Land Atmosphere Synthesis Suite (CLASS;
Hobeichi, 2019; Hobeichi et al., 2020a), which we denote
as CLASS-ET. The CLASS dataset comprises coherent es-
timates of the surface water and energy budgets at the grid-
ded monthly scale. CLASS-ET has been derived by adjust-
ing DOLCE V1 by enforcing the simultaneous closure of the
surface water and energy budgets using the same DAT as in
L’Ecuyer et al. (2015) and can be therefore considered an
improved version of DOLCE V1. Table S3 displays the con-
tinental area-weighted averages of DOLCE V2, DOLCE V1

and CLASS-ET and the mean differences DOLCE V2 minus
DOLCE V1 and DOLCE V2 minus CLASS computed over
a common time period 2003–2009 and using a common spa-
tial mask. We find that, in general, DOLCE-V2 is closer to
CLASS-ET (i.e. the improved version of DOLCE V1) than
DOLCE V1.

3.4 Performance of DOLCE V2 at flux sites

We now compare DOLCE V2 with ET measured at the
260 sites used in this study (Table S1). We display two per-
formance metrics – correlation and standard deviation – on
a Taylor diagram (Fig. 3). All data have been normalised
before computing the statistical metrics so that the observa-
tional data at each site have a mean of 0 and a standard devi-
ation of 1. Each coloured point summarises the performance
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Figure 5. Annual average line plots of the area-weighted mean of continental ET exhibited by DOLCE V3. The vertical dashed lines mark
the beginning of a new tier in 1981, 2003 and 2017.

Figure 6. Classification of the land into six distinct dry and wet ET regimes using K-means unsupervised classification based on DOLCE
V3 annual ET mean and within-year relative variability both computed for 1980–2018. The six ET regimes are labelled from driest to
wettest as very low ET with high variability (V.L.ET, H.variability), (ii) low ET with high variability (L.ET, H.variability), (iii) mild low ET
with medium variability (M.L.ET, M.variability), (iv) mild high ET with medium variability (M.H.ET, M.variability), (v) high ET with low
variability (H.ET, L.variability) and (vi) very high ET with low variability (V.H.ET, L.variability).

statistics of DOLCE V2 at a single site. The observational
data are represented by a single “reference” point, i.e. the
hollow point at 1 on the horizontal axis. The plot in Fig. 3
shows that most of the coloured points lie close to the ref-
erence point, indicating that DOLCE V2 is highly correlated
with most of the observational data. Overall, Fig. 3 shows
good agreement with the observational datasets. Poor perfor-
mance is seen over a small number of sites. These are rep-
resented by points located outside the Taylor diagram area.
Most of these sites have less than 1 year of monthly records
with several gaps, perhaps raising questions about observa-
tional quality.

In a further analysis, we investigate whether the perfor-
mance of DOLCE V2 is reduced over a particular land cover
type. For this purpose, we repeat Fig. 3, but this time we

colour-code the statistics points by the land cover type of
the sites they represent as shown in Fig. S10. The new
plot does not reveal clear links between the performance of
DOLCE V2 and the biome types of the sites. Similarly, we
could not find performance links with the degree of represen-
tativeness of the site to the underlying grid cell. This is shown
in Fig. S11 where colours represent the degree of agreement
between the land cover type at the footprint of the tower site
and the dominant land cover of the grid cell containing the
site. As shown in Fig. S11, we carry out this analysis on
the basis of three levels of agreement. These include blue
points, representing sites whose land types match the dom-
inant land types of the underlying grid cells; green points,
representing sites whose land types cover more than 25 %
of the underlying grid cells without being the dominant land
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cover at these grid cells; and pink points, representing sites
whose land types cover less than 25 % of the underlying grid
cells.

3.5 Changes in ET since 1980

3.5.1 Annual ET trends over the global land

We use DOLCE V3 to produce a long-term (1980–2018)
map of trends in annual ET totals (Fig. 4) as proposed by
Mann–Kendall (Kendall, 1948; Mann, 1945) using Sen’s
slope method (Sen, 1968). We use the uncertainty estimates
associated with the ET fields and the confidence interval of
the slope as two confidence measures to filter out spurious
trends. These confidence measures consider trend behaviours
as reliable only if (i) the confidence interval of the slope does
not encompasses a mix of negative and positive values and
(ii) trend slopes computed for multiple different random sam-
ples of ET within the interval ET± uncertainty standard de-
viation agree in sign at least 90 % of the time.

Unreliable trends occur in regions where ET uncertainty
is relatively high, such as in northern Africa and the Sahel,
and in the high latitudes where ET observations are sparse
or do not exist. Inconsistent trend behaviour (confidence in-
terval (CI) includes positive and negative values) is found in
regions that experienced long phases of droughts and non-
droughts during 1980–2018, mainly in Australia, or a suc-
cession of drought and wet events, mainly in southern United
States and the Amazon basin (Marengo et al., 2018). As a re-
sult of this, a general long trend in ET is not identified in
these regions. Miralles et al. (2014) report that these changes
in ET over these regions reflect an El-Niño–La-Niña cycle.
Similarly, we have not detected clear long trends in southern
South America and eastern and southern Africa. This par-
tially agrees with the study of Pan et al. (2020) where their
Fig. 8 shows no ET trend in eastern Africa, and no agreement
on the sign of trend between the participating datasets has
been found in southern South America. Figure 4 indicates
that ET has increased over most of the northern latitudes
which has been highlighted in many studies (e.g. Miralles et
al., 2014; Pan et al., 2020; Zhang et al., 2016), and declined
in western United States, central Africa and South America.
Unfortunately, given the absence of adequate in situ observa-
tions that cover a long enough period to establish trends anal-
ysis, it is difficult to validate the identified trends directly.

In further analysis, we verify that the spatio-temporal tier-
ing adopted in DOLCE V3 has not resulted in temporal dis-
continuities. Figure 5 illustrates the annual average line plot
of the area-weighted mean of continental ET exhibited by
DOLCE V3. The vertical dashed lines mark the beginning of
a new tier, i.e. in 1981, 2003 and 2017. While the line plot
does show some marked changes, these do not coincide with
changes in tiers and rather coincide with extreme events and
are specific to the continents where these events occurred.
For instance, in Australia, ET shows high mean annual total

in three very wet years (2000, 2010 and 2011) and low levels
throughout 2001–2009 during the millennium drought. Ad-
ditionally, the decline in ET since 2017 is caused by severe
droughts that developed across most of Australia.

3.5.2 ET regimes

To understand changes in ET across wet and dry regions, we
classify land into six distinct dry and wet ET regimes accord-
ing to two aspects of ET: annual averages and within-year
relative variability derived from DOLCE V3. We apply K-
means clustering (MacQueen, 1967) – an unsupervised ma-
chine learning algorithm known for its outstanding efficiency
in clustering data – by implementing the K-Means function
and the least squares quantisation method (Lloyd, 1982) us-
ing R software. K-Means identifies K centroids (i.e. imag-
inary values representing the centre of the clusters) and as-
signs each data point to the cluster of the nearest centroid
using – in this paper – the least squares quantisation method.
For each grid cell, we compute (1) the average of the annual
total ET across 39 years (1980–2018) and (2) within-year
relative variability climatology by temporally averaging the
relative standard deviation of monthly ET calculated over a
year and across all years. These have been used as input fea-
tures for the unsupervised classification. After trial and error,
we found that the global land can be adequately classified
into six distinct regimes that include three dry and three wet
regimes. According to centroids values (Table S4), we label
the six regimes from driest to wettest, and we list the pro-
portion of the land covered by each regime: (i) very low ET
with high variability (16 %), (ii) low ET with high variabil-
ity (34 %), (iii) mild low ET with medium variability (22 %),
(iv) mild high ET with medium variability (13 %), (v) high
ET with low variability (8 %) and (vi) very high ET with low
variability (7 %). Figure 6 displays the spatial distribution of
the six ET regimes.

We compare the derived ET regimes map with the mod-
ified Köppen climate (KC) classification map by Chen and
Chen (2013). We find that each KC class overlaps with only
one ET regime with only two exceptions (Table 4): (i) land
characterised by a “Dry Steppe Hot arid” (coded BSh in KC)
climate belongs to the “Mild low ET with medium variability
regime”, but in two regions, the Indian Deccan plateau and
Argentinean Gran Chaco low forests, where the climate is
BSh, the ET regime is “Mild high ET with medium variabil-
ity”; (ii) Regions with a “Mild temperate Fully humid Hot
summer” climate (coded Cfa in KC) overlap with the “Mild
high ET with medium variability” regime in coastal regions
and to the “Very high ET with low variability” regime in in-
land regions. These two KC classes (i.e. BSh and Cfa) are
shown in bold in Table 4. Overall, ET regimes defined in this
paper provide an efficient way to aggregate the KC classes
into less varied classes. This is not surprising knowing that
KC classes are developed based on the empirical relationship
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Figure 7. Trends in mean annual ET total computed for the dry and wet ET regimes during 1980–2018. Slopes and confidence intervals are
computed using Mann–Kendall and Sen’s slope methods. The spatial distribution of the ET regimes is illustrated in Fig. 6.

Table 4. Correspondence between ET regimes derived here and Köppen climate classes derived in Chen and Chen (2013). Text in bold font
indicates that the Köppen climate is associated with more than one ET regime.

ET regimes Köppen climate classes (Chen and Chen, 2013)

Very low ET with
high variability

Polar (Tundra/Frost)
Dry Desert (Hot/Cold) arid

Low ET with high
variability

Snow Fully humid Cold summer/Cool summer
Snow Dry summer Cool summer
Snow Dry winter Cold summer
Dry Steppe Cold arid
Dry Desert Hot arid/Cold arid
Mild temperate Dry summer Cool summer
Mild temperate Dry summer Warm summer

Mild low ET with
medium variability

Snow Fully humid (Hot/Warm summer)
Snow Dry winter (Hot/Warm/Summer)
Dry Steppe Hot arid
Mild temperate Dry summer Hot summer
Mild temperate Fully humid Warm summer

Mild high ET with
medium variability

Dry Steppe Hot arid (observed only in the Indian
Deccan plateau and Argentinean Gran Chaco low forests)
Mild temperate Fully humid Hot summer (observed in inland regions)
Mild temperate Dry winter (Hot/Warm summer)
Tropical Dry summer

High ET with low
variability

Mild temperate Fully humid Hot summer/Warm summer
(observed in coastal regions)
Tropical Dry winter

Very high ET with
low variability

Tropical Fully humid
Topical Monsoon
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Table 5. Trends in yearly ET total (mm yr−1) spatially averaged across each ET regime calculated for DOLCE V3 and five participating
parent datasets available during 1982–2012. The text shows slopes of the trend line and their confidence intervals calculated at the 95 %
confidence level; bold text indicates that the trend is reliable since the confidence interval is strictly positive or negative.

Dataset and V.L.ET, L.ET, M.L.ET, M.H.ET, H.ET, V.H.ET,
time span H.variability H.variability M.variability M.variability L.variability L.variability

DOLCE V3 −0.04 [−0.23, 0.16] 0.26 [−0.11, 0.63] 0.44 [0.1, 0.76] 0.56 [0.2, 0.87] 0.07 [−0.27, 0.4] 0.34 [−0.1, 0.9]

ERA5-Land −0.18 [−0.36, 0.04] 0.02 [−0.42, 0.47] 0.14 [−0.38, 0.6] –0.65 [–1.14, –0.22] –0.89 [–1.28, –0.51] 0.11 [−0.2, 0.5]

FLUXCOM –0.02 [–0.04, 0] 0.04 [−0.11, 0.23] 0.05 [−0.07, 0.2] −0.11 [−0.27, 0.04] −0.003 [−0.18, 0.17] 0.25 [−0.04, 0.57]
-MET

GLEAM −0.08 [−0.28, 0.16] 0.35 [−0.04, 0.76] 0.59 [0.34, 0.95] 0.43 [0.1, 0.77] 0.05 [−0.33, 0.44] 0.62 [0.12, 1.31]
3.5A

PML −0.1 [−0.28, 0.15] 0.42 [0.11, 0.75] 1 [0.64, 1.45] 0.21 [−0.19, 0.64] 0.28 [−0.38, 0.81] −0.32 [−1.24, 0.62]

PLSH 0.17 [0.1, 0.24] 0.39 [0.16, 0.66] 1.3 [0.8, 1.77] 1.41 [0.85, 1.89] 1.53 [0.75, 2.17] 0.82 [0.36, 1.35]

between climate and vegetation and that ET links the water,
energy (climate) and carbon (vegetation) budgets.

3.5.3 Global annual trends across the ET regimes

We now explore annual trends in mean ET exhibited in each
ET regime during 1980–2018. First, we calculate the annual
ET total climatology and ET relative variability climatol-
ogy spatially averaged across each regime separately; then
we compute the trends in yearly ET as above (i.e. using
Mann–Kendall and Sen’s slope methods). Figure 7 illustrates
trend results for the dry regimes (V.L.ET, H.variability, L.ET,
H.variability and M.L.ET, M.Variability) and the wet regimes
(M.H.ET, M.variability, H.ET, L.variability and V.H.ET,
L.variability). Across all regimes except the wettest one,
trends in yearly ET total are upward as indicated by the
positive signs of both the slopes and their complete confi-
dence intervals. The strongest trends occur in the “M.H.ET,
M.variability” regime at a rate 0.6 mm yr−1, while the slow-
est trend occurs in the “V.L.ET H.variability” regime where
ET is in general low. In the wettest ET regime “V.H. ET,
L.variability”, while the slope of the trend is positive, its
confidence interval contains mixed positive and negative val-
ues. This suggest that the tendency for increasing ET in the
wettest ET regime is not robust. Our results indicate that de-
creasing ET trends observed in some regions oppose the con-
sistent positive trends across the majority of ET clusters.

We repeat the same analysis for all the participating par-
ent datasets that span at least 30 years. Sen’s slope of the
trends over the period 1982–2012 and their confidence inter-
val (computed at the 95 % confidence level) are presented
in Table 5. As noted earlier, trend behaviours are deemed
inconclusive when the CI encompasses negative and posi-
tive values. These are presented with regular (as opposed
to bold) typeface and are exhibited by FLUXCOM-MET
in all regimes except the driest. In contrast, PLSH shows
reliable upward trends in all regimes. ERA5-Land shows
downward trends in the “M.H.ET, M.variability” and “H.ET,

L.variability” regimes. Both GLEAM 3.5A and DOLCE V3
show reliable upward ET trends in the two middle regimes.
Differences exist in the magnitude of trends across the ma-
jority of the products and the regimes. In DOLCE V3, the
strongest trend occurs in the “M.H.ET, M.variability” regime
at a rate of 0.56 mm yr−1. Finally, the slopes of DOLCE V3
trends are within the range of slopes of trends in available ET
products.

There are of course some notable limitations to the ap-
proach we have taken here, some of which were previously
discussed in Hobeichi et al. (2018). First, the weighting ap-
proach adopted here relies heavily on flux tower observa-
tions, which can suffer from a range of technical issues
(Burba and Anderson, 2010; Fratini et al., 2019), as well
as temporal gaps during particular weather conditions such
as extremes (Van Der Horst et al., 2019), which can affect
our results. Next, unresolved land surface processes in the
parent datasets due, for example, to the absence of a proper
representation of snow and permafrost dynamics or the het-
erogeneity of the land surface are likely to lead to uncertain
ET estimation in DOLCE V2 and DOLCE V3, since each of
these is only a combination of its parent datasets. This ap-
plies particularly in regions where observations are scarce or
do not exist.

4 Conclusions

This work presents two new hybrid ET datasets DOLCE
V2.1 and DOLCE V3. The new datasets are the result of
several key improvements over their predecessor, incorporat-
ing more parent products in DOLCE V2.1, more in situ data,
testing a range of alternative implementations of its weight-
ing and bias-correction approach, increased spatial resolu-
tion, and covering a longer time period. The incorporation
of a large ensemble of parent datasets in DOLCE V2.1 al-
lowed us to derive a more optimal ET product that can be
used to benchmark global ET estimates. In comparison, the
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reduced number of parent datasets in DOLCE V3 minimised
temporal tiering and ensured that no temporal discontinuities
occur throughout the covered period. This allowed us to ex-
amine historical trends in ET and their robustness to obser-
vational uncertainty. Despite the observationally constrained
approach to defining uncertainty, we found robust ET trends
across most areas of the land surface – enough to present a
clear signal in most of the ET climate regimes we examined.
These trends indicate a global increase in land-derived ET
between 1980 and 2018. This contrasts with other gridded
ET products that did not incorporate the same degree of ob-
servational constraint in either their mean field or uncertainty
estimates, and demonstrates the usefulness of this long-term
hybrid ET dataset.
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data catalogue at https://doi.org/10.25914/5f1664837ef06.

The DOLCE V3 dataset (Hobeichi et al., 2021) is publicly avail-
able in NetCDF-4 format and can be freely downloaded from the
NCI data catalogue at https://doi.org/10.25914/606e9120c5ebe.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-3855-2021-supplement.

Author contributions. The ideas for this study originated in dis-
cussions with all authors. SH developed the new versions of the
DOLCE dataset, performed the analyses, and mainly wrote the pa-
per with input from GA. GA provided support with the collection
of the in situ dataset. GA and JPE reviewed and edited the paper
before submission.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors acknowledge the support of the
Australian Research Council Centre of Excellence for Climate Ex-
tremes (CE170100023). This research was undertaken with the as-
sistance of resources and services from the National Computa-
tional Infrastructure (NCI), which is supported by the Australian
Government. We thank Franklin (Pete) Robertson (NASA Marshall
Space Flight Center) for his valuable contribution to DOLCE V3.
This work used eddy covariance data acquired and shared by
the FLUXNET community, including these networks: AmeriFlux,
AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, Car-
boMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux,

LBA, NECC, OzFlux-TERN, TCOS-Siberia and USCCC. The
FLUXNET eddy covariance data processing and harmonisation
were carried out by the ICOS Ecosystem Thematic Center, Amer-
iFlux Management Project and Fluxdata project of FLUXNET,
with the support of Carbon Dioxide Information Analysis Center
(CDIAC) and the OzFlux, ChinaFlux and AsiaFlux offices. Data
were also obtained from the Atmospheric Radiation Measurement
(ARM) Program sponsored by the U.S. Department of Energy, Of-
fice of Science, Office of Biological and Environmental Research,
Climate and Environmental Sciences Division. This work used data
sourced from the Terrestrial Ecosystem Research Network (TERN)
infrastructure, which is an Australian Government National Collab-
orative Research Infrastructure Strategy (NCRIS)-enabled project;
the Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL DAAC); and the Land Cover project of the ESA
Climate Change Initiative. We would like to thank all the princi-
pal investigators that authorised us to download site data from the
European Fluxes Database and all the research institutes that made
publicly available and/or hosted the gridded ET datasets used in this
study.

Financial support. This research has been supported by the Aus-
tralian Research Council Centre of Excellence for Climate Ex-
tremes (CE170100023).

Review statement. This paper was edited by Ryan Teuling and re-
viewed by Jasper Denissen and one anonymous referee.

References

Abramowitz, G. and Bishop, C. H.: Climate model dependence and
the ensemble dependence transformation of CMIP projections,
J. Climate, 28, 2332–2348, https://doi.org/10.1175/JCLI-D-14-
00364.1, 2015.

Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti,
R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD
Reviews: Model dependence in multi-model climate ensem-
bles: weighting, sub-selection and out-of-sample testing, Earth
Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-
2019, 2019.

Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F.,
Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gen-
tine, P.: Water, Energy, and Carbon with Artificial Neural Net-
works (WECANN): a statistically based estimate of global
surface turbulent fluxes and gross primary productivity us-
ing solar-induced fluorescence, Biogeosciences, 14, 4101–4124,
https://doi.org/10.5194/bg-14-4101-2017, 2017.

Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E.,
Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappen-
berger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-
Interim/Land: a global land surface reanalysis data set, Hydrol.
Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-
389-2015, 2015.

Bishop, C. H. and Abramowitz, G.: Climate model dependence
and the replicate Earth paradigm, Clim. Dynam, 41, 885–900,
https://doi.org/10.1007/s00382-012-1610-y, 2013.

https://doi.org/10.5194/hess-25-3855-2021 Hydrol. Earth Syst. Sci., 25, 3855–3874, 2021

https://doi.org/10.25914/5f1664837ef06
https://doi.org/10.25914/606e9120c5ebe
https://doi.org/10.5194/hess-25-3855-2021-supplement
https://doi.org/10.1175/JCLI-D-14-00364.1
https://doi.org/10.1175/JCLI-D-14-00364.1
https://doi.org/10.5194/esd-10-91-2019
https://doi.org/10.5194/esd-10-91-2019
https://doi.org/10.5194/bg-14-4101-2017
https://doi.org/10.5194/hess-19-389-2015
https://doi.org/10.5194/hess-19-389-2015
https://doi.org/10.1007/s00382-012-1610-y


3872 S. Hobeichi et al.: Robust historical evapotranspiration trends across climate regimes

Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D., and Reichstein,
M.: Upscaled diurnal cycles of land–atmosphere fluxes: a new
global half-hourly data product, Earth Syst. Sci. Data, 10, 1327–
1365, https://doi.org/10.5194/essd-10-1327-2018, 2018.

Burba, G. and Anderson, D. A.: brief practical guide to eddy covari-
ance flux measurements: principles and workflow examples for
scientific and industrial applications, Li-Cor Biosciences, Lin-
coln, Nebraska 68504, USA, 2010.

Candogan Yossef, N., van Beek, L. P. H., Kwadijk, J. C. J., and
Bierkens, M. F. P.: Assessment of the potential forecasting skill
of a global hydrological model in reproducing the occurrence of
monthly flow extremes, Hydrol. Earth Syst. Sci., 16, 4233–4246,
https://doi.org/10.5194/hess-16-4233-2012, 2012.

Chen, D. and Chen, H. W.: Using the Köppen classification to quan-
tify climate variation and change: An example for 1901–2010,
Environ. Dev., 6, 69–79, 2013.

Chen, X., Su, Z., Ma, Y., Yang, K., Wen, J., and Zhang,
Y.: An improvement of roughness height parameterization of
the Surface Energy Balance System (SEBS) over the Ti-
betan plateau, J. Appl. Meteorol. Climatol., 52, 607–622,
https://doi.org/10.1175/JAMC-D-12-056.1, 2013.

Chen, X., Massman, W. J., and Su, Z.: A column canopy-air turbu-
lent diffusion method for different canopy structures, J. Geophys.
Res.-Atmos., 124, 488–506, 2019.

Dawdy, D. R., Lichty, R. W., and Bergmann, J. M.: A rainfall-
runoff simulation model for estimation of flood peaks for small
drainage basins, US Government Printing Office, Washington,
USA, 1972.

Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., and
Wood, E. F.: Multi-site evaluation of terrestrial evaporation mod-
els using FLUXNET data, Agric. For. Meteorol., 187, 46–61,
https://doi.org/10.1016/j.agrformet.2013.11.008, 2014.

Feng, F., Li, X., Yao, Y., Liang, S., Chen, J., Zhao, X., Jia,
K., Pintér, K., and McCaughey, J. H.: An Empirical Or-
thogonal Function-Based Algorithm for Estimating Terres-
trial Latent Heat Flux from Eddy Covariance, Meteorolog-
ical and Satellite Observations, PLoS One, 11, e0160150,
https://doi.org/10.1371/journal.pone.0160150, 2016.

Fisher, R. A. and Koven, C. D.: Perspectives on the future of
Land Surface Models and the challenges of representing com-
plex terrestrial systems, J. Adv. Model. Earth Syst., 12, 1–24,
https://doi.org/10.1029/2018ms001453, 2020.

Fratini, G., Sabbatini, S., Ediger, K., Riensche, B., Burba, G., Nicol-
ini, G., Vitale, D. and Papale, D.: Characterization of Eddy Co-
variance flux errors due to data synchronization issues during
data acquisition, Geophys. Res. Abstr, 21, EGU General Assem-
bly 2019, 2019.

Han, D., Wang, G., Liu, T., Xue, B.-L., Kuczera, G., and Xu, X.:
Hydroclimatic response of evapotranspiration partitioning to pro-
longed droughts in semiarid grassland, J. Hydrol., 563, 766–777,
2018.

Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K.,
and Sanderson, B. M.: Selecting a climate model subset to opti-
mise key ensemble properties, Earth Syst. Dynam., 9, 135–151,
https://doi.org/10.5194/esd-9-135-2018, 2018.

Hobeichi, S.: Conserving Land-Atmosphere Synthesis Suite
(CLASS) v 1.1, https://doi.org/10.25914/5c872258dc183, 2019.

Hobeichi, S., Abramowitz, G., Evans, J., and Ukkola, A.: Derived
Optimal Linear Combination Evapotranspiration (DOLCE): a

global gridded synthesis ET estimate, Hydrol. Earth Syst.
Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018,
2018.

Hobeichi, S., Abramowitz, G., Evans, J., and Beck, H. E.: Lin-
ear Optimal Runoff Aggregate (LORA): a global gridded syn-
thesis runoff product, Hydrol. Earth Syst. Sci., 23, 851–870,
https://doi.org/10.5194/hess-23-851-2019, 2019.

Hobeichi, S., Abramowitz, G., and Evans, J. P.: Conserving Land
– Atmosphere Synthesis Suite (CLASS ), J. Climate, 33, 1821–
1844, https://doi.org/10.1175/JCLI-D-19-0036.1, 2020a.

Hobeichi, S., Abramowitz, G., and Evans, J. P.: De-
rived Optimal Linear Combination Evapotranspiration –
DOLCE v2.1. NCI National Research Data Collection,
https://doi.org/10.25914/5f1664837ef06, 2020b.

Hobeichi, S., Abramowitz, G., Contractor, S., and Evans, J.:
Evaluating precipitation datasets using surface water and
energy budget closure, J. Hydrometeorol., 21, 989–1009,
https://doi.org/10.1175/jhm-d-19-0255.1, 2020c.

Hobeichi, S., Abramowitz, G., and Evans, J. P.: De-
rived Optimal Linear Combination Evapotranspiration –
DOLCE v3.0. NCI National Research Data Collection,
https://doi.org/10.25914/606e9120c5ebe, 2021.

Jiménez, C., Martens, B., Miralles, D. M., Fisher, J. B., Beck,
H. E., and Fernández-Prieto, D.: Exploring the merging of the
global land evaporation WACMOS-ET products based on local
tower measurements, Hydrol. Earth Syst. Sci., 22, 4513–4533,
https://doi.org/10.5194/hess-22-4513-2018, 2018.

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield,
J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., De
Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle,
D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Mon-
tagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D.,
Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E.,
Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., and
Zhang, K.: Recent decline in the global land evapotranspira-
tion trend due to limited moisture supply, Nature, 467, 951–954,
https://doi.org/10.1038/nature09396, 2010.

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Gustau-Camps-
Valls, Papale, D., Schwalm, C., Tramontana, G., and Reichstein,
M.: The FLUXCOM ensemble of global land-atmosphere energy
fluxes, Sci. Data, 6, 1–14, https://doi.org/10.1038/s41597-019-
0076-8, 2019.

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo,
J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-
II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1644,
https://doi.org/10.1175/BAMS-83-11-1631, 2002.

Kendall, M. G.: Rank correlation methods, Griffin, Oxford, Eng-
land, 1948.

L’Ecuyer, T. S., Beaudoing, H. K., Rodell, M., Olson, W., Lin,
B., Kato, S., Clayson, C. A., Wood, E., Sheffield, J., Adler, R.,
Huffman, G., Bosilovich, M., Gu, G., Robertson, F., Houser,
P. R., Chambers, D., Famiglietti, J. S., Fetzer, E., Liu, W.
T., Gao, X., Schlosser, C. A., Clark, E., Lettenmaier, D. P.,
and Hilburn, K.: The observed state of the energy budget
in the early twenty-first century, J. Climate, 28, 8319–8346,
https://doi.org/10.1175/JCLI-D-14-00556.1, 2015.

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A sim-
ple hydrologically based model of land surface water and energy

Hydrol. Earth Syst. Sci., 25, 3855–3874, 2021 https://doi.org/10.5194/hess-25-3855-2021

https://doi.org/10.5194/essd-10-1327-2018
https://doi.org/10.5194/hess-16-4233-2012
https://doi.org/10.1175/JAMC-D-12-056.1
https://doi.org/10.1016/j.agrformet.2013.11.008
https://doi.org/10.1371/journal.pone.0160150
https://doi.org/10.1029/2018ms001453
https://doi.org/10.5194/esd-9-135-2018
https://doi.org/10.25914/5c872258dc183
https://doi.org/10.5194/hess-22-1317-2018
https://doi.org/10.5194/hess-23-851-2019
https://doi.org/10.1175/JCLI-D-19-0036.1
https://doi.org/10.25914/5f1664837ef06
https://doi.org/10.1175/jhm-d-19-0255.1
https://doi.org/10.25914/606e9120c5ebe
https://doi.org/10.5194/hess-22-4513-2018
https://doi.org/10.1038/nature09396
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1175/JCLI-D-14-00556.1


S. Hobeichi et al.: Robust historical evapotranspiration trends across climate regimes 3873

fluxes for general circulation models, J. Geophys. Res.-Atmos.,
99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.

Lloyd, S.: Least squares quantization in PCM, IEEE Trans. Inf. the-
ory, 28, 129–137, 1982.

Long, D., Longuevergne, L., and Scanlon, B. R.: Uncertainty in
evapotranspiration fromland surfacemodeling, remote sensing,
and GRACE satellites, Water Resour. Res., 50, 1131–1151,
https://doi.org/10.1002/2013WR014581, 2014.

Lorenz, C., Tourian, M. J., Devaraju, B., Sneeuw, N., and
Kunstmann, H.: Basin-scale runoff prediction: An Ensem-
ble Kalman Filter framework based on global hydromete-
orological data sets, Water Resour. Res., 51, 8450–8475,
https://doi.org/10.1002/2014WR016794, 2015.

MacQueen, J.: Some methods for classification and analysis of mul-
tivariate observations, in: Proceedings of the fifth Berkeley sym-
posium on mathematical statistics and probability, 1, 281–297,
Oakland, CA, USA, 1967.

Mann, H. B.: Nonparametric tests against trend, Econom. J.
Econom. Soc., 245–259, 1945.

Marengo, J. A., Souza, C. M., Thonicke, K., Burton, C., Halla-
day, K., Betts, R. A., Alves, L. M., and Soares, W. R.: Changes
in Climate and Land Use Over the Amazon Region: Current
and Future Variability and Trends, Front. Earth Sci., 6, 228,
https://doi.org/10.3389/feart.2018.00228, 2018.

Martens, B., Miralles, D., Lievens, H., Van Der Schalie, R., De Jeu,
R., Fernández-Prieto, D., and Verhoest, N.: GLEAM v3: updated
land evaporation and root-zone soil moisture datasets, Geophys.
Res. Abstr., EGU General Assembly 2016, 18, 2016–4253, 2016.

Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de
Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A.,
and Verhoest, N. E. C.: GLEAM v3: satellite-based land evapora-
tion and root-zone soil moisture, Geosci. Model Dev., 10, 1903–
1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.

McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel,
D., and Wood, E. F.: The GEWEX LandFlux project: eval-
uation of model evaporation using tower-based and glob-
ally gridded forcing data, Geosci. Model Dev., 9, 283–305,
https://doi.org/10.5194/gmd-9-283-2016, 2016.

Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M.,
Ershadi, A., Martens, B., McCabe, M. F., Fisher, J. B., Mu,
Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.:
The WACMOS-ET project – Part 1: Tower-scale evaluation of
four remote-sensing-based evapotranspiration algorithms, Hy-
drol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-
20-803-2016, 2016.

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H.,
Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface
evaporation estimated from satellite-based observations, Hydrol.
Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-
453-2011, 2011a.

Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H., and
Dolman, A. J.: Magnitude and variability of land evaporation and
its components at the global scale, Hydrol. Earth Syst. Sci., 15,
967–981, https://doi.org/10.5194/hess-15-967-2011, 2011b.

Miralles, D. G., Van Den Berg, M. J., Gash, J. H., Parinussa,
R. M., De Jeu, R. A. M., Beck, H. E., Holmes, T. R. H.,
Jiménez, C., Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J.,
and Johannes Dolman, A.: El Niño-La Niña cycle and recent

trends in continental evaporation, Nat. Clim. Change, 4, 122–
126, https://doi.org/10.1038/nclimate2068, 2014.

Mu, Q., Zhao, M., and Running, S. W.: Improvements
to a MODIS global terrestrial evapotranspiration al-
gorithm, Remote Sens. Environ., 115, 1781–1800,
https://doi.org/10.1016/j.rse.2011.02.019, 2011.

Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M.,
Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., Jung,
M., Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M.,
Rodell, M., Sheffield, J., Teuling, A. J., Wang, K., Wood, E. F.,
and Zhang, Y.: Evaluation of global observations-based evapo-
transpiration datasets and IPCC AR4 simulations, Geophys. Res.
Lett., 38, 3–10, https://doi.org/10.1029/2010GL046230, 2011.

Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A.,
Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan,
F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield,
J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S.
I.: Benchmark products for land evapotranspiration: LandFlux-
EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17,
3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.

Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F.,
Maisongrande, P., and Pan, M.: Combining datasets of satel-
lite retrieved products for basin-scale water balance study.
Part II: Evaluation on the Mississippi Basin and closure cor-
rection model, J. Geophys. Res.-Atmos., 119, 12100–12116,
https://doi.org/10.1002/2014JD021953, 2014.

Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to
end of 2018, Copernicus Climate Change Service (C3S) Climate
Data Store (CDS), https://doi.org/10.24381/cds.68d2bb30, 2019.

Paca, V. H. d. M., Espinoza-Dávalos, G. E., Hessels, T. M., Moreira,
D. M., Comair, G. F., and Bastiaanssen, W. G. M.: The spatial
variability of actual evapotranspiration across the Amazon River
Basin based on remote sensing products validated with flux tow-
ers, Ecol. Process., 8, 1–20, https://doi.org/10.1186/s13717-019-
0158-8, 2019.

Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J.,
and Wood, E. F.: Multisource estimation of long-term terrestrial
water budget for major global river basins, J. Climate, 25, 3191–
3206, https://doi.org/10.1175/JCLI-D-11-00300.1, 2012.

Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora,
V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombar-
dozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and
Running, S. W.: Evaluation of global terrestrial evapotranspira-
tion using state-of-the-art approaches in remote sensing, machine
learning and land surface modeling, Hydrol. Earth Syst. Sci., 24,
1485–1509, https://doi.org/10.5194/hess-24-1485-2020, 2020.

Quesada-Montano, B., Wetterhall, F., Westerberg, I. K., Hidalgo, H.
G., and Halldin, S.: Characterising droughts in Central America
with uncertain hydro-meteorological data, Theor. Appl. Clima-
tol., 137, 2125–2138, https://doi.org/10.1007/s00704-018-2730-
z, 2019.

Rodell, M., Beaudoing, H. K., L’Ecuyer, T. S., Olson, W. S.,
Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M.
G., Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J.,
Gao, X., Gu, G., Hilburn, K., Huffman, G. J., Lettenmaier, D.
P., Liu, W. T., Robertson, F. R., Schlosser, C. A., Sheffield,
J., and Wood, E. F.: The observed state of the water cycle
in the early twenty-first century, J. Climate, 28, 8289–8318,
https://doi.org/10.1175/JCLI-D-14-00555.1, 2015.

https://doi.org/10.5194/hess-25-3855-2021 Hydrol. Earth Syst. Sci., 25, 3855–3874, 2021

https://doi.org/10.1029/94JD00483
https://doi.org/10.1002/2013WR014581
https://doi.org/10.1002/2014WR016794
https://doi.org/10.3389/feart.2018.00228
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.5194/gmd-9-283-2016
https://doi.org/10.5194/hess-20-803-2016
https://doi.org/10.5194/hess-20-803-2016
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/hess-15-967-2011
https://doi.org/10.1038/nclimate2068
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1029/2010GL046230
https://doi.org/10.5194/hess-17-3707-2013
https://doi.org/10.1002/2014JD021953
https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.1186/s13717-019-0158-8
https://doi.org/10.1186/s13717-019-0158-8
https://doi.org/10.1175/JCLI-D-11-00300.1
https://doi.org/10.5194/hess-24-1485-2020
https://doi.org/10.1007/s00704-018-2730-z
https://doi.org/10.1007/s00704-018-2730-z
https://doi.org/10.1175/JCLI-D-14-00555.1


3874 S. Hobeichi et al.: Robust historical evapotranspiration trends across climate regimes

Sahoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J.,
and Wood, E. F.: Reconciling the global terrestrial water bud-
get using satellite remote sensing, Remote Sens. Environ., 115,
1850–1865, https://doi.org/10.1016/j.rse.2011.03.009, 2011.

Sen, P. K.: Estimates of the regression coefficient based on
Kendall’s tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.

Sharma, A., Wasko, C., and Lettenmaier, D. P.: If precipitation ex-
tremes are increasing, why aren’t floods?, Water Resour. Res.,
54, 8545–8551, 2018.

Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in
global drought over the past 60 years, Nature, 491, 435–438,
https://doi.org/10.1038/nature11575, 2012.

Stackhouse Jr., P. W., Gupta, S. K., Cox, S. J., Zhang, T., Mikovitz,
J. C., and Hinkelman, L. M.: 24.5-Year surface radiation budget
data set released, Glob. Energy Water Cycle Exp. News, 21, 1–
20, 2011.

Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N.,
Kato, S., L’Ecuyer, T., Stackhouse, P. W., Lebsock, M., and
Andrews, T.: An update on Earth’s energy balance in light
of the latest global observations, Nat. Geosci., 5, 691–696,
https://doi.org/10.1038/ngeo1580, 2012.

Su, Z.: The Surface Energy Balance System (SEBS) for estima-
tion of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100,
https://doi.org/10.5194/hess-6-85-2002, 2002.

Teuling, A. J.: A hot future for European droughts, Nat. Clim.
Chang., 8, 364–365, 2018.

Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubi-
net, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H.,
and Spank, U.: Evapotranspiration amplifies European summer
drought, Geophys. Res. Lett., 40, 2071–2075, 2013.

Ukkola, A. M., Pitman, A. J., Donat, M. G., De Kauwe, M. G., and
Angélil, O.: Evaluating the Contribution of Land-Atmosphere
Coupling to Heat Extremes in CMIP5 Models, Geophys. Res.
Lett., 45, 9003–9012, https://doi.org/10.1029/2018GL079102,
2018.

van der Horst, S. V. J., Pitman, A. J., De Kauwe, M. G.,
Ukkola, A., Abramowitz, G., and Isaac, P.: How represen-
tative are FLUXNET measurements of surface fluxes dur-
ing temperature extremes?, Biogeosciences, 16, 1829–1844,
https://doi.org/10.5194/bg-16-1829-2019, 2019.

Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J.
B.: Global estimates of evapotranspiration for climate studies
using multi-sensor remote sensing data: Evaluation of three
process-based approaches, Remote Sens. Environ., 115, 801–
823, https://doi.org/10.1016/j.rse.2010.11.006, 2011.

Wan, Z., Zhang, K., Xue, X., Hong, Z., Hong, Y., and Gourley,
J.: Water balance-based actual evapotranspiration reconstruction
fromground and satellite observations over the conterminous
United States Zhanming, Water Resour. Res., 51, 6485–6499,
https://doi.org/10.1002/2015WR017311, 2015.

Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.:
A continuous satellite-derived global record of land surface
evapotranspiration from 1983 to 2006, Water Resour. Res., 46,
W09522, https://doi.org/10.1029/2009WR008800, 2010.

Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong,
Y., Gourley, J. J., and Yu, Z.: Vegetation Greening and Climate
Change Promote Multidecadal Rises of Global Land Evapotran-
spiration, Sci. Rep., 5, 1–9, https://doi.org/10.1038/srep15956,
2015.

Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H. S.,
Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Mi-
ralles, D. G., and Pan, M.: Multi-decadal trends in global terres-
trial evapotranspiration and its components, Sci. Rep., 6, 19124,
https://doi.org/10.1038/srep19124, 2016.

Zhang, Y., Pan, M., Sheffield, J., Siemann, A. L., Fisher, C. K.,
Liang, M., Beck, H. E., Wanders, N., MacCracken, R. F., Houser,
P. R., Zhou, T., Lettenmaier, D. P., Pinker, R. T., Bytheway, J.,
Kummerow, C. D., and Wood, E. F.: A Climate Data Record
(CDR) for the global terrestrial water budget: 1984–2010, Hy-
drol. Earth Syst. Sci., 22, 241–263, https://doi.org/10.5194/hess-
22-241-2018, 2018.

Hydrol. Earth Syst. Sci., 25, 3855–3874, 2021 https://doi.org/10.5194/hess-25-3855-2021

https://doi.org/10.1016/j.rse.2011.03.009
https://doi.org/10.1038/nature11575
https://doi.org/10.1038/ngeo1580
https://doi.org/10.5194/hess-6-85-2002
https://doi.org/10.1029/2018GL079102
https://doi.org/10.5194/bg-16-1829-2019
https://doi.org/10.1016/j.rse.2010.11.006
https://doi.org/10.1002/2015WR017311
https://doi.org/10.1029/2009WR008800
https://doi.org/10.1038/srep15956
https://doi.org/10.1038/srep19124

	Abstract
	Introduction
	Data and methods
	Data
	Global ET datasets
	Flux tower data

	Methods
	Weighting approach
	Computing uncertainty in ET
	Tiering of dataset subsets in time and space to maximise coverage
	Weighting groups
	Out-of-sample testing approach


	Results and discussion
	Out-of-sample performance of DOLCE V2 and DOLCE V3
	Comparison of DOLCE V2 and DOLCE V3 with their parent datasets
	Comparison of basin and continental ET with existing literature
	Performance of DOLCE V2 at flux sites
	Changes in ET since 1980
	Annual ET trends over the global land
	ET regimes
	Global annual trends across the ET regimes


	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

