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Abstract: Summertime continental shallow cumulus clouds (ShCu) are detected using Geostationary
Operational Environmental Satellite (GOES)-16 reflectance data, with cross-validation by observations
from ground-based stereo cameras at the Department of Energy Atmospheric Radiation Measurement
Southern Great Plains site. A ShCu cloudy pixel is identified when the GOES reflectance exceeds the
clear-sky surface reflectance by a reflectance detection threshold of ShCu, ∆R. We firstly construct
diurnally varying clear-sky surface reflectance maps and then estimate the ∆R. A GOES simulator
is designed, projecting the clouds reconstructed by stereo cameras towards the surface along the
satellite’s slanted viewing direction. The dynamic ShCu detection threshold ∆R is determined by
making the GOES cloud fraction (CF) equal to the CF from the GOES simulator. Although there are
temporal variabilities in ∆R, cloud fractions and cloud size distributions can be well reproduced
using a constant ∆R value of 0.045. The method presented in this study enables daytime ShCu
detection, which is usually falsely reported as clear sky in the GOES-16 cloud mask data product.
Using this method, a new ShCu dataset can be generated to bridge the observational gap in detecting
ShCu, which may transition into deep precipitating clouds, and to facilitate further studies on ShCu
development over heterogenous land surface.

Keywords: GOES-16; GOES-R; Advanced Baseline Imager; cloud; shallow cumulus clouds; stereo
camera

1. Introduction

Continental shallow cumulus clouds (ShCu) are tightly coupled with the land surface
and have strong impacts on the surface energy partition and the turbulent transport of
momentum, heat, and moisture [1–6]. They are also important for their seeding role in
transitioning into hot-tower deep convective clouds with heavy precipitation [7]. ShCu
are small in horizontal extent, of around a few hundred meters to several kilometers, and
they are short-lived, lasting 15 to 30 min from initiation to dissipation [8–14]. With such
spatiotemporal scale, ShCu cannot be explicitly resolved, but are highly parameterized in
climate models. Systematic model biases in the surface energy balance and precipitation are
often attributed to the parameterized processes associated with ShCu, e.g., the shallow-to-
deep convection transition and the interactions among land surface, atmospheric boundary
layer, clouds, and precipitation [15,16].

To develop a theoretical understanding and improve parameterizations, comprehen-
sive and continuous observations on ShCu are greatly needed, especially those resolving
the diurnal variation in cloud life cycle and cloud size over a vast land area with varying
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albedos, surface roughness, soil moisture content, and leaf area index. This is because: (1)
ShCu strongly interact with the surface heating and moistening driven by the diurnally
varying solar and infrared radiation; (2) observations of the initiation and continuous
development of ShCu are needed to study the mechanisms controlling the transition from
shallow to deep convection; (3) cloud size is important as larger clouds can grow deep
and rain more easily [17]; and (4) ShCu may form preferentially over certain land surface
properties or land cover types [18,19].

Traditional ground-based instruments, e.g., zenith-pointing radars and lidars at the US
Department Of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great
Plains (SGP) site, provide high-resolution vertical-profiling ShCu data [10,11]; however,
they provide no horizontal area coverage due to their small fields of view. In recent years,
scanning cloud radars have been deployed to resolve the evolution of ShCu with certain
scanning strategies, e.g., focused sector scanning mode with the radar beam steering
guided by expert judgement. Recently, a novel approach of scanning cloud radars has
been developed to automatically identify and track clouds with guidance from external
observations, e.g., images from satellite- or surface-based cameras [20]. However, the
significant drop in radar sensitivity with distance greatly impacts the detection accuracy
of ShCu, especially those that are thin and small, with low reflectivity [21]. The largest
range for successful ShCu detection is much smaller than the typical maximum detection
range (20 km) of scanning cloud radars. Such spatial coverage of scanning cloud radars
may not be adequate to accommodate enough sampling of ShCu in response to the highly
heterogeneous land surface. In July 2017, three pairs of stereo cameras were installed
at the ARM SGP site to provide the most accurate high-resolution three-dimensional
measurements of the boundaries of ShCu clouds in a 6 by 6 by 6 km3 domain every 20 s [22].
In some respects, they are superior to any other traditional ground-based measurements
with regard to observing the life cycle of the ShCu population. In one example, a parade
of ShCu clouds passing over the site was reported by stereo cameras; however, they were
not detected by any other vertically pointing or scanning cloud radars due to instrument
sensitivities [22].

High-spatial-resolution satellite can observe ShCu from space [1,23–28]. The horizon-
tal resolution of Landsat data is 30 m; however, Landsat cannot provide detailed diurnal
information due to its 16-day revisit time. Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard polar-orbiting satellites observe the cloud field over a large area with
a much shorter revisit cycle, e.g., four times a day passing over the United States SGP
regions, due to its larger viewing swath. However, such temporal resolution is still an
obstacle for MODIS in capturing the diurnal variations of ShCu in response to land surface
and their transition to deep convection.

The geostationary satellite supports weather monitoring, forecasting, and meteorology
research [19,29–31]. Deriving an accurate cloud mask from geostationary satellite data
has been a research topic since the launch of the first Earth-observing satellite, TIROS-
1, in 1960 [32–35]. Cloud detection methods are developed based on machine learning
methods, which learn from training data, and classical algorithm approaches, which are
implemented using a threshold of different image parameters [36]. Even though the
probability of detecting clouds has been reported to exceed 90% in recent years [37,38],
detection of thin and low clouds, especially those with low contrast from the underlying
surface, is not simple for satellite remote sensing.

The latest generation of geostationary weather satellites, the Geostationary Opera-
tional Environmental Satellite GOES-R Series (GOES-16/-17), significantly improves the
detection of clouds [39–41]. The GOES-16 primary instrument, the Advanced Baseline
Imager (ABI), views the Earth with 16 different spectral bands, including two visible chan-
nels, four near-infrared channels, and ten infrared channels, providing three times more
spectral information, four times greater spatial resolution, and more than five times the
temporal coverage compared to the former generation [42–44]. The GOES-16 Continental
U.S. (CONUS) scans are performed every five minutes, providing coverage of the 5000 km
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(east/west) and 3000 km (north/south) rectangle over the CONUS. The ‘red’ visible band
on ABI, 0.64 µm, has the finest spatial resolution (0.5 km at the nadir point). GOES-16′s
high spatiotemporal resolution brings the new potential to detect most of the ShCu clouds
continuously and simultaneously throughout their life cycle evolutions over a large region.
However, there is no operational GOES-16 cloud product which can be easily used and
dedicated to ShCu studies so far.

The aim of this study is to detect summertime continental ShCu by taking advan-
tage of the high temporal and spatial resolutions of GOES-16 reflectance data and three-
dimensional cloud structures retrieved from ground-based stereo cameras. We will deter-
mine an optimal detection threshold for ShCu using a newly developed GOES simulator,
which projects the stereo camera reconstructed clouds towards the surface along the satel-
lite’s slanted viewing direction. The new ShCu dataset from this study can bridge the gap
aforementioned on ShCu observations. The remaining parts of the paper are organized
as follows. Section 2 introduces the data in detail. Section 3 describes the procedures for
ShCu detection. The results are presented in Section 4, the discussion in Section 5, and a
summary in Section 6.

2. Data

The major datasets used in this study are from two kinds of instruments: (1) ground-
based stereo cameras at the ARM SGP site and (2) ABI on GOES-16.

Ground-based stereo cameras were installed in three pairs at 6 km from the central
facility at the ARM SGP site in Oklahoma. Using observations from these six stereo cameras,
the Clouds Optically Gridded by Stereo (COGS) data product was developed [22]. The
COGS product is a four-dimensional grid of cloudiness within a 6 km × 6 km × 6 km cube
at a spatial resolution of 50 m and a temporal resolution of 20 s. Within that domain, the
intersection of the fields of view of the six cameras forms a three-dimensional polygon
that we will refer to here as the reconstructable region: this is the part of the domain in
which clouds can be measured. The central location of the COGS product is at 36◦36′19”N,
97◦29′11”W. Compared to the widely used DOE ARM Active Remote Sensing of CLouds
(ARSCL) product [5,10,45], which is developed by merging observations from multiple
vertical pointing sensors (cloud radars, lidars, and ceilometers) [46], the COGS product
improves cloud fraction and cloud size estimations. This is mainly because (1) the COGS
product is not impacted by insects, while identifying and removing insect clutter from Ka-
band ARM Zenith pointing Radar (KAZR) observations is one of the most challenging tasks
of the operational ARSCL processing [47,48]; (2) COGS provides a more representative four-
dimensional grid of cloudiness, while KAZR and ceilometer are ‘soda-straw’ observations
with very limited spatial coverage.

COGS data used in this study are from 27 days of ShCu observations during July and
August in 2018 and 2019, satisfying the following criteria: (1) cloud fraction less than 0.6; (2)
no surface precipitation reported by Arkansas–Red Basin River Forecast Center (ABRFC)
data; and (3) cloud top under 4 km.

In this study, we use the reflectance data in the ‘red’ visible channel from GOES-16
ABI CONUS scans—the GOES-16 cloud and moisture imagery (CMI) data product [49,50].
CMI provides the dimensionless quantity “reflectance factor”, which is defined as the
top of atmosphere (TOA) Lambertian equivalent albedo multiplied by the cosine of the
solar zenith angle. The reflectance used in this study is the red-band TOA reflectance
(Lambertian equivalent albedo) [50]. The spatial resolution varies with the distance from
the GOES nadir and is approximately 650 m at the SGP region. The temporal resolution is
5 min.

The ABI Clear Sky Mask (ACM) product is an official and operational cloud mask
product for GOES-16. It uses data from nine channels and a combination of spatial,
temporal, and spectral tests to label clear-sky and cloud-sky pixels [37,51]. It provides a
binary mask (clear or cloudy) every 5 min (in CONUS scan), and the horizontal resolution
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of ACM is 2 km. Such a resolution is not adequate for the detection of ShCu clouds, most
of which are much smaller than 2 km.

An example of ShCu cloud fields on 11 July 2018 observed from both ground-based
stereo cameras and GOES-16 satellite is illustrated in Figure 1. The formulation to calculate
cloud fraction is:

CF =
Number of cloudy pixels in a certain region

Number of total pixels in the same region
(1)
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Figure 1. (a) Time evolution of the vertical profile of cloud fraction on 11 July 2018 from Clouds
Optically Gridded by Stereo (COGS) data product with a dash line plotted over 20:33:40 UTC; (b)
cloud mask from COGS for a 6 km by 6 km domain with a spatial resolution of 50 m on 20:33:40
UTC 11 July 2018; (c) GOES-16 reflectance in the red band (0.64 µm) with a spatial resolution of
approximately 650 m; (d) GOES-16 cloud mask based on ABI Clear Sky Mask (ACM) data product
with spatial resolution of 2 km on 20:33:43 UTC 11 July 2018; (e) new cloud mask derived from the
method developed in this study with spatial resolution of approximately 650 m. Red boxes in (c),
(d), and (e) correspond to the COGS 6 km by 6 km domain. Shallow cumulus clouds, which were
captured by DOE ARM surface stereo cameras, are not fully reported by the GOES-16 ACM data
product but are successfully detected by the new method developed in this study.

For COGS-3D (x-y-z) data of 50-m resolution, cloud thickness (2D, x-y) can be cal-
culated. A two-dimensional cloud mask is generated where a pixel is labeled as cloudy
if cloud thickness at the corresponding position is larger than zero. Figure 1a shows the
daytime evolution of the vertical profile of cloud fraction from 18 to 23 UTC (12 to 17 local
time) based on the COGS product. ShCu cloud fields undergo an initial formation of small
and thin clouds before 19 UTC, a mature development with maximum cloud vertical extent
and cloud fraction between 19 and 21 UTC, and a dissipation stage towards the end of the
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day. Figure 1b shows the cloud mask based on COGS data at 20:33:40 UTC (dash line on
Figure 1a); during this time, three large clouds are clearly seen within the 6 km by 6 km
COGS domain. Figure 1c shows the cloud reflectance from GOES-16 at 20:33:43 UTC on
the same day over a large region in the vicinity of the SGP site, with the COGS domain
denoted by the red box. The three shallow cumulus clouds on the COGS image (Figure 1b)
are shown as bright and high-reflectance objects on the GOES image (Figure 1c). Figure 1d
shows the cloud mask from the GOES operational ACM data product. It can be clearly seen
that these three ShCu clouds seen from the COGS image (Figure 1b) are not fully reported
as clouds in the GOES ACM product (Figure 1d). Figure 1e shows our newly developed
cloud mask with the successful detection of the three ShCu clouds in the COGS domain
(Figure 1b) using GOES-16 reflectance data (Figure 1c). The new method is discussed in
detail in the following sections.

3. Methods

In the new method, a cloudy pixel is identified when the GOES reflectance exceeds
the clear-sky surface reflectance (in the absence of clouds for that pixel) by a detection
threshold of ShCu reflectance (∆R) [52,53]. This can be expressed as

Rcloud (x,y,t) ≥ Rclear (x,y,t) + ∆R (2)

In the following, we first generate diurnally varying clear-sky surface reflectance
maps, Rclear(x,y,t), and then make estimates of the ShCu detection threshold, ∆R.

3.1. Determination of Clear-Sky Surface Reflectance

Clear-sky surface reflectance is determined at high resolution (ABI pixel size, approxi-
mately 650 m at SGP) based on an algorithm in [53] and [52] that we describe below. In [49],
it was confirmed that the patterns of clear-sky radiation using this algorithm agree well
with the MODIS albedo maps. The assumption for this algorithm is that land surfaces are
stable and slow-varying over a restricted time period and that the signal measured by the
GOES instrument during this period can be considered only a function of the scene-viewing
geometry and cloudiness [54]. In this study, clear-sky surface reflectance climatology maps
are generated for July–August based on data in 2018 and 2019. To reduce the diurnal
variability effects from the solar zenith angle, while at the same time still retaining suf-
ficient data, clear-sky surface reflectance climatology for July–August is calculated per
pixel per hourly interval using 45 randomly selected days in July and August over the
2-year period. Figure 2a shows that, for each pixel, 540 reflectance values (45 days × 12
observations per hour) are sorted to generate a cumulative distribution frequency (CDF)
on 21 UTC (15 local time) with the bin spacing of 0.01. The clear-sky surface reflectance
is determined as the reflectance value with the greatest gradient along the curve of the
CDF. The greatest gradient corresponds to the change from cloud shadow to clear-sky
surface. The reflectance values smaller than the determined surface reflectance correspond
to the cloud shadow [54]. The sample numbers in each bin are shown in Figure 2b. To
generate the CDF, adequate clear-sky cases are needed. Among the randomly selected 45
days, manual case screening of satellite images confirms around half of the cases as clear
sky. The spatial variabilities of the clear-sky surface reflectance are clearly seen within the
COGS 6 km by 6 km domain (Figure 2c). The surface reflectance values in a 4◦ by 3.5◦ large
domain centered at the COGS location are also calculated and shown in Figure 2d. It is
found that the clear-sky surface reflectance agrees well with the land cover map (Figure 2e),
in which higher surface reflectance is found over city and over grassland than over forest.
The reflectance is small over open water in general, except for the solar salt plant region
(−99.25◦, 36.75◦) in Figure 2e. The land cover map for the year 2018 is from the Cropland
Data Layer dataset (https://nassgeodata.gmu.edu/CropScape/ (accessed on 11 September
2020).) hosted by CropScape for the continental United States, which has a 30-m spatial
resolution [55,56]. This surface reflectance method works well when the land surface

https://nassgeodata.gmu.edu/CropScape/
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conditions (e.g., vegetation) are stable and vary slowly. A more detailed discussion can be
found in Section 5.
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Figure 2. (a) An example of the estimation of the dynamic clear-sky surface reflectance at the central
point of COGS domain on 21 UTC. The clear-sky surface reflectance is determined as the reflectance
with the greatest gradient along the curve of the cumulative distribution frequency (CDF). (b) The
corresponding sample numbers in each of the CDF bins. (c) The surface reflectance in the COGS 6
km by 6 km domain and (d) in a 4◦ by 3.5◦ large domain centered at COGS location (black star). (e)
Land cover in the large domain.

3.2. The GOES Simulator

The ShCu detection threshold ∆R is estimated from GOES reflectance by cross-
validation with cloud fraction (CF) from stereo cameras at the ARM SGP site. To estimate
an accurate ∆R, the surface camera data and the GOES satellite data should be aligned well
to observe the same cloud fields. However, the parallax issue, the displacement of cloud lo-
cation and the enhancement of cloud fraction/size, occurs in satellite imaging, particularly
for the surface regions with high viewing zenith angles [57–61] (Figure 3a). Due to the 48◦

viewing angle of GOES-16 towards SGP, the parallax shift leads to a difference between
cloud images from satellites looking at clouds in a slanted view and from the COGS data
product projecting clouds to the surface in the zenith direction.

To better estimate ∆R for every satellite image during the ShCu days, a GOES simulator
is designed using observations from stereo cameras, projecting clouds observed in the
COGS reconstructable region along the slanted viewing direction of GOES-16 to the land
surface. The projected surface for the GOES simulator is the same as the ellipsoid surface
used in the GOES ABI data. The elevation of the SGP central facility above the GOES
ellipsoid surface is 285 m after considering the terrain correction for the GOES satellite.
The satellite viewing zenith angle and satellite azimuth angle are 48.64051◦ and 145.23258◦

at the COGS domain center (36.60529◦, −97.48642◦). The satellite viewing zenith angle
and the azimuth angle are assumed constant in the GOES simulator, which is reasonable
because the dimension of the interested domain is very small compared with the Earth–
satellite distance. The output from the GOES simulator is the mean path through clouds
projected at each GOES ABI pixel based on COGS data every 20 s. The mean cloud path is
calculated as the volume of the clouds intercepted by lines connecting the GOES satellite to
locations in the GOES surface pixel, divided by the area of the GOES pixel.
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Figure 3. (a) Sketch of the projected location of a cloud on the Earth’s surface, seen from nadir and
from GOES with a satellite zenith angle (θ). The gray box represents the 6 km × 6 km × 6 km
COGS domain, where ShCu can be observed by surface stereo camera system. A GOES simulator is
developed, projecting clouds observed by surface stereo cameras towards the land surface along the
GOES-16′s slanted viewing direction. Two example simulator slanted paths (green and orange lines)
are provided in (a). For green path, the minimum and maximum heights are 0 km and 6 km. For
orange path, the minimum height is around 3 km, much higher than 0 km. (b) The distance passing
through the COGS reconstructable region along the path from the GOES-16 satellite to the GOES
pixel at surface. The (c) minimum and (d) maximum heights of the COGS reconstructable region
intercepted by paths from the GOES-16 satellite to the GOES surface pixel. (e) A mask of the GOES
simulator. Each marked (black) point at surface in (e) corresponds to one GOES slanted viewing path.
Along these marked slanted viewing paths, pixels below 6 km seen by GOES are all within the 6 km
× 6 km × 6 km COGS domain. In (c) to (e), the red box is the actual location of the COGS domain,
and the magenta box, as a reference, is a shifted domain of the same size, 0.015◦ north and west of
the COGS domain, due to the GOES slanted view.

When GOES-16 looks towards surface through the original 6 km × 6 km × 6 km
COGS domain in the slanted view, the distance of the path, the minimum (maximum)
height along the path intercepted by the COGS reconstructable region, varies from GOES
pixel to pixel (Figure 3b–d). Two example paths (green and orange lines) are provided in
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Figure 3a. For the green path, the minimum and maximum heights are 0 km and 6 km,
while for the orange path, the minimum height is 2 km, which indicates that, along this
GOES slanted viewing path, pixels observed by GOES below 2 km are all outside of the 6
km × 6 km × 6 km COGS domain. In other words, along this slanted path, GOES observes
more clouds than the GOES simulator, if any cloud occurs in the orange shaded area in
Figure 3a.

In order to best match clouds observed by the GOES satellite and GOES simulator
based on COGS data, we need to select an analysis domain in which ShCu observed by
GOES all come from the COGS reconstructable region. Using COGS observed shallow
cumulus data during July to August in 2018 and 2019, we find that the shallow cumulus
cloud base heights are all above 0.65 km, and 95% of the cloud top heights are lower than
2.55 km. Thus, a valid slanted path is selected with a minimum height lower than 0.65 km
and a maximum height higher than 2.55 km. The corresponding pixels at the surface with
valid slanted paths are labeled as black points in Figure 3e (we refer to this as the GOES
simulator mask hereafter).

The COGS data product projects clouds reconstructed by stereo cameras at zenith
direction toward the surface over a 6 km by 6 km domain. The location of projection is
shown as the red box in Figure 3e. The GOES simulator projects clouds reconstructed by
surface stereo cameras at the GOES slanted viewing direction. We found that all the GOES
simulator marked points are within a 6 km by 6 km domain of the same size (magenta box
in Figure 3e), which is 0.015◦ north and west of the actual COGS domain. This indicates
that the shifts from the actual COGS location to the satellite off-nadir displaced location are
approximately 0.015◦ in both N-S and W-E directions.

3.3. Determination of ShCu Detection Threshold ∆R

We estimate the ShCu detection threshold ∆R for each of the GOES-16 reflectance
images based on the cloud fractions (CF) from the GOES simulator. The CF for the GOES
simulator is calculated as the number of cloudy pixels divided by the total number of pixels
within the GOES simulator mask region (Figure 3e). A cloud path distance threshold is
needed to identify whether a pixel is clear sky or cloudy. This cloud path distance threshold
is estimated for each GOES simulator image based on the COGS 20s data.

The estimation of the ShCu detection threshold ∆R is based on four images (Figure 4a–d):
(Image A) a high-resolution (50 m) cloud thickness image from the COGS data; (Image
B) a low-resolution (at GOES resolution) cloud thickness image derived from the high-
resolution COGS data; (Image C) a cloud path distance image from the GOES simulator;
and (Image D) a reflectance difference image from the GOES-16.

Here, we introduce how to prepare these four images. For a given GOES image, one
snapshot of 3D COGS data is selected closest to the time of the GOES image scan over the
SGP central facility. Contiguous US images from GOES-16 scans are provided every 5 min.
The GOES ABI CMI product does not provide the scan time stamp for individual pixels.
The pixel scan time over the SGP central facility is calculated using the GOES calibration
tool, an ABI time model look up table (available at https://www.star.nesdis.noaa.gov/
GOESCal/goes_tools.php (accessed on 18 March 2021)).

We then use this selected snapshot of COGS 3D data to generate two cloud thickness
images (Images A and B). At each (x, y) location in the COGS domain, the cloud physical
thickness is calculated (Figure 4a, Image A). The high-resolution (50 m) COGS cloud
thickness is then averaged within the GOES ABI pixel (approximately 650-m resolution
at SGP) to generate a low-resolution COGS cloud thickness image (Figure 4b, Image B).
Figure 4c (Image C) is the cloud path distance map from the GOES simulator based on the
selected snapshot of COGS data. The reflectance in Figure 4d (Image D) is calculated as
the difference between the GOES reflectance and the clear-sky surface reflectance at the
0.64 µm channel. Using these four images, Figure 4e summarizes the assumptions, major
steps, and datasets used to estimate ∆R in three steps.

https://www.star.nesdis.noaa.gov/GOESCal/goes_tools.php
https://www.star.nesdis.noaa.gov/GOESCal/goes_tools.php
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Figure 4. (a) Cloud thickness from COGS on 20:33:40 UTC 11 July 2018. (b) Re-gridded COGS
data from (a) to the same resolution of GOES. (c) The mean distance through clouds observed by
stereo cameras (the COGS data) along the path from GOES-16 satellite to the GOES surface pixel.
(d) Reflectance difference from GOES data, which is the difference between GOES reflectance and
clear-sky surface reflectance at the 0.64 µm “red” band. The red box is the actual COGS domain, and
the magenta box is a domain of the same size, 0.015◦ north and west of the COGS domain. (e) A
flowchart to summarize the assumptions, major steps, and datasets used to estimate ∆R, a reflectance
threshold to identify a cloudy pixel in the satellite data. A cloudy pixel on satellite image is defined
when the GOES reflectance exceeds the clear-sky surface reflectance by a certain value, e.g., ∆R.

Firstly, we determine a cloud thickness threshold on the low-resolution cloud thickness
image (Image B). From the high-resolution cloud thickness image (Image A), a reference
cloud fraction (CFCOGS_HighRes) is retained by defining a cloudy pixel with the cloud
physical thickness larger than zero. From the low-resolution cloud thickness image, a
simple 1D look up table is generated: for a given thickness threshold, we count the
number of cloud pixels with cloud thickness greater than this threshold and calculate the
corresponding CF (CFCOGS_LowRes). The final thickness threshold is determined at the
low-resolution COGS grid as the value making the CFCOGS_LowRes equal to CFCOGS_HigRes.

Secondly, we determine cloudy pixels on the cloud path distance map from the GOES
simulator (Figure 4c, Image C) using the thickness threshold from the step above. If the
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distance through clouds is larger than the cloud thickness threshold, we identify this pixel
as cloudy, and then we calculate the CF (CFsimulator) as the ratio of the number of cloudy
pixels over the number of total pixels in the GOES simulator mask region (Figure 3e).

Lastly, we determine the ShCu detection threshold ∆R. A simple 1D look up table is
generated: for a given reflectance detection threshold, ∆R, the number of cloud pixels is
identified with the reflectance greater than this threshold and the CF (CFGOES) is calculated
on the reflectance difference images (Figure 4d, Image D) in the GOES simulator mask
region (Figure 3e). The final reflectance detection threshold, ∆R, is determined as the value
making the CFGOES equal to CFsimulator.

To estimate an accurate ∆R, the cloud images from the GOES simulator and the GOES
reflectance data should be aligned well to observe the same cloud fields as much as possible.
GOES can observe multi-layer clouds, e.g., ShCu in COGS cube overlapping with high
clouds above 6 km outside the COGS cube; however, COGS can only observe clouds under
6 km. In other words, clouds higher than 6 km outside the COGS reconstructable region
can be observed by GOES but not by the GOES simulator. To best facilitate an apple-to-
apple comparison of cloud fractions for an accurate determination of ∆R, in the last step
aforementioned, we further (1) select images with GOES mean reflectance less than 0.2
to exclude a few images with multi-layer clouds; (2) select the pair of GOES simulator
and GOES images with their normalized cross-correlation larger than 0.5. Normalized
cross-correlation, usually its two-dimensional version, is a metric to evaluate the degree of
similarity between two images [57]. Two-dimensional fast Fourier transform convolutions
of the image are used to compute the correlation to make the calculation faster [58].

4. Results

In this section, we firstly show the results using the estimated dynamic ∆R based
on each of the satellite images. The estimation of these dynamic ∆Rs depends on the
availability of observations from ground-based stereo cameras as a constraint. If there are
no ground-based observations, can we use a constant threshold ∆R to detect ShCu? In the
following, we pursue an optimal constant reflectance threshold. Based on this optimal
constant reflectance threshold, we further provide the cloud size distribution and the
diurnal cycles of cloud fraction and cloud size.

4.1. Dynamic and Best-Fit Constant ∆R

The distributions of the dynamic ShCu cloud detection threshold ∆R are shown in
Figure 5a based on the CF comparison of the 773 pairs of GOES reflectance difference
images and GOES simulator images during the ShCu days. ∆R varies from 0.01 to 0.2, with
83% of the data samples between 0.02 and 0.07 and a mode value at 0.04.

The best-fit constant ∆R is determined as the value making the smallest difference in
CF between using the dynamic ∆R values and the constant ∆R. A mean bias is calculated
to quantify the difference. In Figure 5b, the mean bias of CF approaches zero when ∆R is
0.045, suggesting that the best-fit constant ∆R is 0.045.

To evaluate the performance of this best-fit ∆R, we calculate the percent error (PE) as

PEi = 100 ∗
∣∣yc,i − yd,i

∣∣/yd,i, (3)

where yd,i and yc,i are the CFs of the ith image estimated using dynamic and constant ∆R
values [59]. Figure 5c shows the distributions of probability density function (PDF) and
cumulative density function (CDF) of the CF percent errors using constant ∆R = 0.045. The
CDF of PE (Figure 5c green line) shows that the CF errors of half of the data (CDF below
50%) are less than 20%, and the CF errors of another 1/3 of the data (CDF from 50% to
80%) are between 20% and 40%. Further discussion of the percent errors can be found in
Section 5.
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Figure 5. (a) The probability density functions (PDFs) of ∆R, a threshold used to identify a cloudy
pixel in the satellite data. (b) The mean bias of CFs from satellite data estimated using constant ∆R
values. The length of the vertical bars denotes two standard errors of the biases. The CF bias equals
zero (horizonal black dash line) when ∆R equals 0.045. (c) The PDFs and cumulative distribution
functions (CDFs) of the percent errors (PEs) of CFs from satellite data estimated using constant ∆R
values (0.035, 0.045, and 0.055), compared with the CFs from GOES simulator. The horizonal black
dash lines denote 0.5, 0.8, and 0.9 cumulative distributions.

4.2. Cloud Size Distributions

In addition to cloud fraction, the size of each individual cloud is also estimated from
the GOES simulator and the GOES reflectance difference images. Cloud size is defined as
the square root of the projected surface area, which is calculated by the number of cloudy
pixels times the area per pixel. For the purpose of showing the GOES detectability of
small clouds, the first nine bins are shown as the corresponding cloud sizes estimated from
clouds composed of 1 to 9 pixels on the satellite image. Above 2.0 km, the bin width is
0.2 km. Figure 6 confirms that using a constant ∆R of 0.045 to detect ShCu can still maintain
a very similar cloud size distribution as that derived using dynamic ∆R values. It slightly
underestimates (overestimates) the probabilities of clouds, which are composed of one
pixel (two pixels) on the satellite image. When the clouds are composed of more than three
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cloudy pixels, there are minor differences in the probabilities of cloud sizes estimated from
the GOES simulator and GOES data using the dynamic and constant ∆R (0.045) threshold.
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Figure 6. Cloud size distributions based on all the shallow cumulus cases from re-gridded low-resolution COGS, GOES
simulator, and GOES data using dynamic and constant ∆R threshold (0.045). The first nine bins correspond to the cloud
sizes estimated from clouds composed of 1 and 9 pixels on the satellite image. Above 2.0 km, the bin width is 0.2 km.

The cloud size distribution from COGS at GOES resolution (low-resolution COGS) is
also plotted in Figure 6. The difference between the distributions derived from GOES and
COGS LowRes may be because (1) the cloud sizes are enlarged when seen from GOES at a
slanted view compared to the cloud sizes projected in the zenith view from the COGS data
product; (2) the smaller clouds can be partially or fully blocked by larger clouds from the
GOES simulator due to the slanted view. Because of the two effects mentioned above, the
CFs from nadir view and from slanted view are not the same.

4.3. Diurnal Cycles of Cloud Fraction and Cloud Size

Figure 7a shows an example of a CF diurnal cycle estimated using the constant ∆R
(0.045) within the GOES simulator mask on 11 July 2018 from 18 to 23 UTC. The CFs are
compared with CFs from the GOES operational ACM data product at 2 km spatial and
5-min temporal resolutions. As seen in Figure 7a, in many cases, GOES ACM will not
report cloudy pixels when the CFs are around or lower than 0.1. Figure 7b shows the
evolution of cloud sizes. The mean and median values of the cloud sizes increase from 18
to 20 UTC (12 to 14 local time) and then decrease after 20 UTC. In line with the GOES ACM
results shown in Figure 7a, it is found that, when the cloud sizes are smaller than 1 km, the
operational GOES ACM product will tend to report pixels as clear sky instead of clouds.
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Figure 7. (a) Time evolutions of cloud fraction (CF) from operational GOES ABI cloud mask (ACM,
orange) and estimation from this study using a constant (0.045, green) ∆R threshold on 11 July 2018
within the GOES simulator mask. (b) Time evolutions of cloud sizes (CS). The horizontal line within
the box indicates the median and the dot represents the mean. The boundaries of the box represent
the 25th and 75th percentiles.

5. Discussions

In this section, we discuss the performance of the best-fit constant ∆R value of 0.045
and the applicability of this shallow cumulus detection threshold.

We first conduct several sensitivity tests on the constant detection threshold ∆R.
Figure 5c also shows the distributions of the percent errors of CFs from satellite data
estimated using 0.035 and 0.055 in addition to 0.045. The larger probability for a small
percent error, the better the result. We found that there is a smaller PDF (and CDF) with
percent errors smaller than 10% (first bin in x-axis) when using constant ∆R values of 0.035
or 0.055 as compared with using 0.045, which suggests the better performance of 0.045.

Using 5 min data, the mean CF bias using different ∆R values is further calculated
with respect to the different ranges of in-cloud thickness, which is the mean thickness
of the cloudy pixels on each COGS image (Figure 8a). In general, the mean bias is very
close to zero when ∆R equals 0.045, much smaller than when using 0.035 or 0.055. The
mean bias is negative (positive) when the in-cloud thickness is less (greater) than 150 m,
but the CF mean bias values are always within ±0.013. The mean CF bias values are also
calculated in the different CF ranges (Figure 8b). Using ∆R as 0.045, the mean biases are
within ±0.02 when CF is less than 0.4. When CF is larger than 0.4, using a smaller ∆R
(e.g., 0.035) yields better results than using 0.045. However, the occurrence probability of
continental shallow cumulus CF larger than 0.4 is very small [11,62]. In the comparisons
of hourly mean CFs estimated using dynamic and constant ∆R thresholds (Figure 8c), the
mean biases are within ±0.01 in all the CF ranges when using ∆R of 0.045.
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By using constant ∆R 0.045 as the detection threshold, we further investigate the
detection probability with respect to cloud fraction and cloud thickness. Within the COGS
domain, we calculate the in-cloud thickness and cloud fraction for each GOES ABI grid
based on the high-resolution (50 m) COGS data product. A cloudy pixel in the 50-m-
resolution COGS product is defined as a cloud thickness larger than 0. The grid cloud
fraction is calculated as the ratio of the number of cloudy pixels over the number of total
pixels within one GOES ABI grid.

For each GOES ABI grid, satellite reflectance data at each grid will be used to identify
it as either cloudy or clear sky using the ∆R threshold of 0.045. Figure 9a shows the
joint probability of the identified cloudy pixels at different bins of in-cloud thickness and
cloud fraction. Note that probabilities are only shown in the bins with sample numbers
(Figure 9b) larger than 100. The probabilities larger than 50% (in reddish colors) indicate
that the grid is prone to be identified as cloudy rather than clear sky. As shown in Figure 9a,
when the cloud thickness is smaller than 250 m, 50% probability can be achieved with
lower cloud fractions as cloud thickness increases. For example, the 50% probability is
found for a cloud thickness of 100 m (second bin in x-axis) with a cloud fraction of 0.5,
and for a cloud thickness of 150 (200) meters with a cloud fraction of 0.4 (0.3), while for
a cloud thickness of 250 m with a cloud fraction of 0.2, 60% of the cases in that bin are
identified as cloudy. When the cloud thickness is greater than 250 m, the cases in those bins
are usually also associated with high cloud fractions, e.g., 0.5 or above. Moreover, for those
bins, usually 60% or more of the cases will be identified as cloudy.
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Figure 9. (a) Probability of identified cloudy condition using constant ∆R (0.045) under different cloud thickness and cloud
fraction ranges at the resolution of GOES ABI grids (approximately 650 m at the SGP site). The mean cloud thickness
(in-cloud value) and cloud fraction are calculated for each GOES ABI grid, based on high-resolution (50 m) COGS data
product. (b) The corresponding sample numbers in each bin. In (a), probabilities are only shown in bins with sample
numbers larger than 100.

In this study, we suggest using GOES ABI ‘red’ channel reflectance with a constant
cloud detection threshold (0.045) to detect ShCu clouds at SGP. However, further validations
might be needed at other locations to test the universal applicability of such ShCu detection
threshold values. Our study is designed for the ShCu detection in particular, which is a
missing part in the operational GOES ABI cloud mask, rather than to provide a method to
detect all kinds of clouds under different conditions. The shallow cumulus cloud detection
threshold may not work well for multi-layer clouds, such as cirrus clouds overlapping
with ShCu. Case selection by screening satellite images is necessary to ensure that there
are no higher-level clouds above lower-level ShCu, such that the clouds detected using
our method are valid shallow cumulus. Additional observations from the GOES ABI 1.38
channel can be useful to detect cirrus clouds [63].

The procedure to generate the clear-sky reflectance maps can be applied to other
locations over land with prevailing ShCu populations. However, it does have some
limitations. It is not suitable for surfaces with very high reflectance. For example, fresh
snow cover during wintertime has high visible reflectance similar to the reflectance of
clouds, which may lead to large uncertainty in distinguishing between the clear-sky values
and the cloud detection. Moreover, short-term changes in the land surface properties
must be considered, if any. For example, during May and June, the winter wheat harvest
takes place in the SGP region. The reflectance of the winter wheat will change before and
after the harvest. Cloud detection cannot be based on only one surface reflectance map
for the SGP warm season. Another example is the Eufaula Lake (−96◦–95.5◦; 35◦–35.5◦),
labeled as open water in Figure 2e, which is impounded by the Eufaula dam. The lake
reflectance changes when the Eufaula dam provides flood control, as the reflectance of
turbid and clear water in the Eufaula Lake at the visible channel is very different [64].
The surface reflectance method introduced in this study may not work well with such
large variation over a lake with a dam during flooding season. In our study, because the
vegetation change is not significant in July and August at SGP, the surface reflectance map
was generated using four months of data in July and August from 2018 and 2019. However,
the accuracy of the estimated surface reflectance could be improved by using observations
from a running time period, such as using 60-day observations to estimate the surface
reflectance [54].
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Although further investigation may be needed to confirm its applicability to other
regions, this new method enables the detection of small and short-lived ShCu during
daytime. This ShCu detection method makes it feasible to trace the deep convective
clouds back to their “seeds”, the shallow cumulus. Such capability bridges the gaps in
observational studies, especially in detecting the initiating life stages in shallow to deep
convection transition. The method can provide a large sample set of ShCu clouds at the
SGP region from GOES observations both occurring over different locations and in different
stages of their life cycles. It allows us not only to analyze ShCu cloud object characteristics
but also to identify relationships among cloud size, rain likelihood, the environmental
conditions, and land surface properties. Such data may improve the general understanding
of rain production and help to constrain ShCu clouds and their impacts in climate models.

The framework developed in this study can be applied to other satellite sensors, such
as the Advanced Himawari Imager (AHI) onboard Himawari-8, if similar observations (e.g.,
stereo cameras) are available at ground level. When there are more ShCu cases observed by
ground-based stereo cameras, especially those with GOES-16 and GOES-17 concurrently,
further improvement of ShCu detection may be possible by using a dual-satellite (GOES-16
and GOES-17) approach with simultaneous satellite measurements.

6. Conclusions

In this study, summertime continental ShCu are detected by taking advantage of the
high temporal and spatial resolutions of GOES-16 reflectance data and three-dimensional
cloud structures retrieved from ground-based stereo cameras. A ShCu cloudy pixel is
identified when GOES reflectance exceeds the clear-sky surface reflectance by a detection
threshold of ShCu reflectance ∆R. We first derive the diurnally varying clear-sky surface
reflectance maps. Next, the detection threshold for shallow cumulus (∆R) is determined
according to the accurate cloud statistics from the surface stereo cameras. When images
from satellite and ground-based stereo cameras are compared, the effect of the cloud
parallax issue on GOES satellite images is carefully considered through a newly developed
GOES simulator, which projects stereo camera reconstructed clouds towards the surface
along the GOES-16′s slanted viewing direction. The dynamic ShCu detection threshold ∆R
is determined by making the GOES CF equal to the CF from the GOES simulator.

When ground-based observations are not available as a constraint to estimate the
dynamic reflectance threshold ∆R, similar cloud size distributions and cloud fractions can
be reproduced using a constant cloud detection threshold (0.045) at the ARM SGP site. The
best-fit constant ∆R (0.045) is determined as the value causing the smallest CF difference
between using the dynamic ∆R values and the constant ∆R. Several sensitivity tests on the
constant detection threshold ∆R confirm the better performance when using ∆R of 0.045
than when using other values (e.g., 0.035 or 0.055). Cloud size distribution, and the diurnal
cycles of cloud fraction and cloud size, are also derived to show a reasonable performance
of 0.045 as the shallow cumulus detection threshold ∆R. The mean biases for hourly mean
cloud fraction are within 1 percent compared with the results using the dynamic ∆R.

Detection of the low-level, small, and short-lived ShCu during daytime is a missing
feature in the current GOES cloud mask product. Using the method presented in this study,
a new ShCu dataset can be generated at SGP to bridge the observational gap in detecting
ShCu, which may transition into deep precipitating clouds, and to facilitate further studies
on the ShCu development over a heterogenous land surface.
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