
Radar Super Resolution Using a Deep Convolutional Neural Network

ANDREW GEISS
a,b

AND JOSEPH C. HARDIN
a

aAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
bDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

(Manuscript received 19 May 2020, in final form 19 August 2020)

ABSTRACT: Super resolution involves synthetically increasing the resolution of gridded data beyond their native reso-

lution. Typically, this is done using interpolation schemes, which estimate sub-grid-scale values from neighboring data, and

perform the same operation everywhere regardless of the large-scale context, or by requiring a network of radars with

overlapping fields of view.Recently, significant progress has beenmade in single-image super resolution using convolutional

neural networks. Conceptually, a neural network may be able to learn relations between large-scale precipitation features

and the associated sub-pixel-scale variability and outperform interpolation schemes. Here, we use a deep convolutional

neural network to artificially enhance the resolution of NEXRAD PPI scans. The model is trained on 6 months of

reflectivity observations from the Langley Hill, Washington, radar (KLGX), and we find that it substantially outperforms

common interpolation schemes for 43 and 83 resolution increases based on several objective error and perceptual quality

metrics.
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1. Introduction

Image super resolution is a well-established area of research

in the field of computer vision and image processing. It involves

artificially increasing the resolution of an image beyond the

resolution of the sensor used to capture the image. (Nasrollahi

and Moeslund 2014) provide an detailed review of classical

image super-resolution techniques. Here we focus on single-

image super resolution (SISR), where sub-pixel-scale features

are inferred based only on the information contained in a single

original image, though several techniques exist that take ad-

vantage of video (Baker and Kanade 1999; Huang et al. 2018),

multiple viewing angles (Tao and Muller 2018; Richard et al.

2020), or in the case of radars, multiple overlapping radars

(Bharadwaj 2009). SISR is an ill-posed problem: there are

multiple high-resolution scenes that, when downsampled, can

produce the same low-resolution image. The simplest of SISR

techniques are interpolation schemes, which estimate sub-

pixel-scale information from only neighboring pixels in the

original image and perform the same operation everywhere in

the image regardless of large-scale context. More advanced

SISR schemes often operate on image patches, and use ad-

ditional low-resolution texture information from the area

surrounding a pixel along with a dictionary of exemplars to

infer likely sub-pixel-scale features (Timofte et al. 2015).

These schemes can outperform interpolation in terms of both

objective metrics like mean-squared error computed on pixel

intensity and in terms of the aesthetics of the result. Recently,

deep convolutional neural networks (CNNs) have become a

popular tool for SISR (Wang et al. 2019). Here we apply a

state-of-the-art CNN-based SISR scheme to NEXRAD plan

position indicator (PPI) scans. Though precipitation is most

immediately determined by microphysical processes, the

features that appear in PPI scans are ultimately constrained

by the synoptic meteorology (cyclone-scale weather fea-

tures), and similar precipitating features occur across many

different PPI scans depending on the regional weather, for

instance, the presence of a cold front and corresponding

heavy precipitation in an extratropical cyclone. By learning

common sub-pixel-scale features in the context of large-scale

weather in PPI scans, a neural network can outperform in-

terpolation schemes.

Though introduced in the late 1980s, deep CNNs have

become very popular since about 2010 for various image

processing tasks, and have consistently and dramatically

outperformed existing algorithms for tasks such as image la-

beling and segmentation (Ronneburger et al. 2015; He et al.

2015; Haung et al. 2017). CNNs are particularly useful for two-

dimensional gridded inputs. Instead of learning unique weights

for each location in the image they learn weights for many

small convolutional kernels (typically 3 3 3 to 10 3 10 pixels)

that are applied everywhere in the image. This significantly

reduces the number of weights in the neural network and

makes training large networks feasible. The trend in current

research is toward increasingly large and complex CNNs.

Recently, several researchers have been successful applying

various types of CNNs for SISR (Dong et al. 2014; Ledig et al.

2017; Kim et al. 2016; Lai et al. 2017; Lim et al. 2017; Johnson

et al. 2016), and here we extend some of these techniques for

use with precipitation radar data.

This is not the first work to look at machine learning–based

super resolution in the context of radars. (Gao et al. 2017)

showed how a complex valued CNN could be used to improve

the resolving capability of mm-wave (;220 GHZ) imaging

radars. This was not a true SISR technique, but rather an
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improvement in the image formation process converting from

frequency space to an image. (Armanious et al. 2019) used

generative adversarial networks to perform SISR on micro-

Doppler imagery. Veillette et al. (2018) focused on weather

radar, but instead of super resolution focused on generating

weather radar data from ‘‘radar-like’’ sources such as lightning

flashes and cloud-top height from satellites. As such, we be-

lieve ours is the first work to focus on super resolution of

weather radar imagery from single images.

There are many applications for weather radar SISR tech-

niques spanning radar operations to research. Operationally,

radar SISR allows faster coarser scans to be taken and subse-

quently increased in resolution, allowing for more efficient

scanning. As for research applications, the ability to increase

the resolution of the data to a new grid while maintaining as

much fidelity and frequency information as possible makes it

easier to compare radar observations with both high-resolution

models and other sources of instrumentation. For instance, by

increasing resolution, precipitation maps could be better in-

corporated into hydrologic modeling of rainfall in orographic

areas. This technique also has the potential to be extended to

satellite weather radars to mitigate the nonuniform beam fill-

ing problem (Ohsaki and Nakamura 1998). Finally, increasing

the resolution in a physically plausible way allows for better

3D visualization of weather radar data without the need for

overly smooth isosurfaces.

2. Data

The data used here areNEXRADcomposite reflectivity PPI

scans from the Langley Hill, Washington, radar (KLGX). The

observations used were taken in October, November, and

December of 2016, 2017, and 2018. The Langley Hill radar is an

S-band Doppler weather radar run by the U.S. National

Weather Service. It sits on the coast of Washington State and

provides radar coverage of midlatitude cyclones approaching

from the Pacific Ocean that are obscured from inland radars by

the Olympic mountain range. Because of the annual cycle of

the storm tracks and the coastal mountain range this is one of

the rainiest extratropical regions in the world in autumn, and

most PPI scans at this time of year show precipitation.

We use cases when the radar was operating in volume cov-

erage pattern (VCP) 12, 212, or 215 mode which account for

about 63% of the observations. The radar operates in these

modes when there is precipitation nearby, so most of the

samples used include some precipitating features, though in

some only a small fraction of the scan includes precipitation

and there are some clear-sky scans typically taken immediately

before or after precipitation is present. A PPI scan is a 3608
radial (range versus azimuth) scan around the radar. The

NEXRAD VCP modes involve taking successive PPI scans at

several increasing antenna elevation angles to retrieve three-

dimensional observations in a volume around the radar. We

convert these volumes to a composite reflectivity by taking the

maximum reflectivity with respect to elevation angle for the

first six sweeps of each volume scan, resulting in a range by

azimuth dataset representing the maximum reflectivity for el-

evation angles at or below 3.18. That is, each pixel in the 2D

scans used here represents the maximum reflectivity observed

above that point in the corresponding 3D volume scan, ex-

cluding the higher scan angles. Composite reflectivity PPI

scans are the radar product typically used in TV weather

broadcasts and are likely the most familiar weather radar

product for the general public.

In the scanning modes used, the radar’s range resolution is

250m and its azimuthal resolution is 0.58. Convolutional neural
networks are typically built to operate on uniformly gridded

data, so the composite reflectivity data are then interpolated on

to a 512 3 512 cartesian grid with a grid spacing of 1.56 km

using a nearest neighbor scheme. This reduces the effect of the

range dependence of the radar’s spatial sampling: increasing

pixel sizes further from the radar. A downside of this approach

is that the regridded high-resolution (512 3 512) scans used

here have a lower resolution than the range resolution of the

radar. Furthermore, while the cartesian grid is uniform, the

weather features in the scans are still subject to the radar’s

resolution reduction with respect to range: more distant

weather features are not as sharply resolved as precipitation

close to the radar. This is an important step for the CNN-based

approach, however, because it ensures that the scale (2D area)

of weather features does not change depending their posi-

tion in the scan. Given the success of CNN-based super

resolution on Cartesian gridded radar data, developing

CNN-based techniques that can be applied to polar gridded

data in the radar’s native coordinates is a valuable area for

future research.

3. Method

a. Neural network architecture

The neural network consists of two main components. The

first is a CNN architecture commonly referred to as a ‘‘U-net.’’

U-nets were first used for segmentation of medical scans

(Ronneburger et al. 2015). This network architecture is par-

ticularly useful for cases when the output of the network has

similar dimensions to the input, and pixels in the output rely on

feature information spanning a large range of spatial scales in

the input. The U-net downsamples an input image by passing it

though several blocks of convolutional layers, and then up-

samples it, again through several convolutional layers, to the

resolution of the input but with a larger number of channels.

Each downsampling/upsampling block in the neural network

used is composed of three ‘‘densely connected’’ layers (Haung

et al. 2017). Each of the layers in the dense blocks performs

batch normalization (Ioffe and Szegedy 2015), followed by a

33 3 convolution, and a rectified linear unit (ReLU) activation

function [defined by f(x) 5 max(x, 0)]. A key feature of this

network architecture is that it contains ‘‘skip’’ connections (He

et al. 2015) between downsampling and upsampling blocks

with the same dimensions and layers within the dense blocks.

This means that the shortest path between input and output in

this neural network only passes through 1 convolutional layer

while the longest passes through 37 (all of the convolutional

layers: 93 4-layer dense blocks and one output layer; see

Fig. 1), and the neural network can learn to combine infor-

mation passing through various numbers of convolutional

2198 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

Brought to you by BATTELLE PACIFIC NW LAB | Unauthenticated | Downloaded 05/26/21 10:30 PM UTC



layers to generate the output. The second half of the neural

network is an upsampling module consisting of either two or

three upsampling blocks depending on the desired increase in

resolution. The motivation for this architecture is that the

U-net module can identify useful large-scale features (for in-

stance the presence of a cold front covering a significant por-

tion of the scan) in the low-resolution scan and the upsampling

module along with the upsampling blocks in theU-net canmap

this information to sub-pixel-scale variability. A diagram of the

neural network architecture is shown in Fig. 1.

While U-net style neural networks have gained popularity

recently, there are several other network architectures that

are well suited for this task. We trained several other varieties

of CNNs using full PPI scans as described above. We used

90 training epochs in each case and ensured that each neural

network had around 106 trainable parameters (620%). Figure 2

shows The mean-squared pixel-wise error (MSE) computed on

the validation set for 6 different CNN types: a ‘‘residual’’

network (He et al. 2015), a ‘‘dense network’’ (Haung et al.

2017), a classical U-net (Ronneburger et al. 2015), a U-net with

dense blocks (used here), a network similar to SRCNN as

proposed by Dong et al. (2014), and a network composed of

only convolutional layers inspired by Long et al. (2014). The

implementations of each of these CNNs diverge slightly from

those in the cited texts; see supplement section 1 for a detailed

description of each. The dense U-net outperforms all of

the other architectures, though not by much, so we use it in

this study.

b. Training procedure

Several different densely connected U-nets were ultimately

trained on the gridded composite reflectivity data for two dif-

ferent SISR tasks. The first involves increasing the resolution

of an entire PPI scan. In this case 5123 512 data are artificially

degraded to a resolution of either 64 3 64 or 128 3 128 by

taking either 83 8 or 43 4 pixel averages, respectively. During

training, the degraded scan is provided as input to the neural

network and the original 512 3 512 scan is used as a target.

Because the radar observations look equally realistic regard-

less of their orientation in the azimuthal plane, we apply data

augmentation during training by randomly rotating each scan

by 08, 908, 1808, or 2708 and randomly reflecting in the hori-

zontal and vertical axes, which artificially increases the number

of unique observations used during training.

In the second case we train a scale/shift/rotation invariant

model. During each training epoch a random region is selected

from each scan using a randomly placed window between

192 3 192 and 512 3 512 pixels. The chunk of data is then

downsampled to a resolution of 192 3 192, which is used as a

target, and a resolution of 483 48, which is used as an input to

FIG. 1. Diagramof neural network architecture. The left portion of the CNN is aU-netmeant

to infer meaning from the precipitation features in the low-resolution PPI scan, while the right

portion is an upsampling module. Each blue block consists of three densely connected layers

where each layer includes a 2D convolution, batch normalization, and rectified linear unit

transfer function. The values printed in each blue box represent the output resolution, number

of channels, and size of the convolutional kernel.
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the neural network. In this case we also use rotation and flip-

ping data augmentation.

Both approaches to SISR are operationally relevant for ra-

dar data. Doppler radars trade off range resolution for velocity

resolution (Bringi and Chandrasekar 2001). A neural network

trained to enhance the resolution of a full PPI scan can be

trained on data collected by a radar operating with high range

resolution and low velocity resolution and then applied when

the radar is operating with low range resolution and high ve-

locity resolution, to mitigate the effects of this trade-off

(Armanious et al. 2019). The second approach, which oper-

ates on partial PPI scans and does not rely on a consistent input

resolution, can be used to enhance the resolution of a scan

beyond the maximum resolution of the radar, though there is

no way to validate the result.

The model was designed and trained using Keras with a

Tensorflow backend. The CNNs were trained for 250 epochs

using an ADAM optimizer (Kingma and Ba 2014) with a

learning rate of 0.001 and a batch size of 5. Then the learning

rate was reduced by a factor of 10 and the model was trained

for an additional 50 epochs from the model state that achieved

the lowest validation score during the first 250 epochs. The

MSE is used as a loss function andMSEwith respect to training

epoch is shown in Fig. 3:

MSE5
1

XY
�
x2X

�
y2Y

(t
x,y

2 t̂
x,y
)
2
; (1)

here, x and y iterate over space, tx,y represents the ground truth

reflectivity at a coordinate, and t̂x,y represents the neural net-

work’s predicted reflectivity at that coordinate.

From the fall of 2016 and 2017, 25 478 PPI scans were used

for training while 11 381 scans from fall of 2018 were used as a

test set. We reserved 25% of the 2016 and 2017 training scans

as a validation set. VCP 12 takes the radar about 5 min to

complete, so successive scans frequently contain the same

FIG. 3. Mean squared pixel error performance of the CNN during a final training run for 300 epochs.

(a) Performance on the validation set for 43 super resolution (128 3 128 to 512 3 512), and (b) for 83 super

resolution (64 3 64 to 512 3 512). In each case, the CNN was trained for 250 epochs, then the model state that

achieved the lowest validation score in these first 250 epochs was trained for an additional 50 epochs with a lower

learning rate. The gray portion of the curve represents validation loss from the high-learning-rate portion of the

initial training that occurred after the model’s best validation score was achieved, the corresponding model states

were not used. The lowest overall validation score achieved is marked with a red plus sign. The horizontal lines

represent the performance of several common interpolation schemes used as benchmarks.

FIG. 2. A comparison of the mean-squared pixel error super-

resolution performance of various neural network architectures

on the validation set during training. ‘‘Dense U-net’’ (blue line), a

U-net composed of several densely connected blocks, is the archi-

tecture used. The asterisks denote the epoch at which each model

achieved its lowest validation score. Descriptions of the models can

be found in Fig. 1 and supplement material section 1.
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precipitation features that have been advected downstream

(and modified by the small-scale flow and cloud/rain physics).

The frequency and type of precipitation that occurs in this

region also undergoes a seasonal cycle, with fewer days with

precipitation at the beginning and end of the study period. The

validation set is generated by selecting 12 temporally contig-

uous chunks of data with random start times to prevent the

seasonal cycle from influencing the results. The 24 scans (;2 h)

from before and after each time-chunk used for validation are

excluded to prevent any data leakage between the training and

validation sets due to persistence of precipitation features.

c. Validation metrics

We compare the output from the CNN to several com-

mon interpolation schemes: nearest neighbor, linear, bicubic,

and Lanczos. Nearest neighbor is the simplest and involves

simply repeating pixel data, and results in a pixelated looking

upsampled image. Linear and bicubic involve fitting the space

between known pixels with a linear or cubic (respectively)

function, and sampling sub-pixel-scale data from that function.

Finally, Lanczos resampling uses a sinc function as a kernel and

is useful for preserving sharp edges in upsampled images.

Lanczos and bicubic interpolation are frequently used for im-

age upsampling because they tend to produce visually ap-

pealing results.

Several different metrics are used to compare the neural

network output to these four interpolation schemes. The first is

simply the MSE computed between the upsampled scan and

the ground truth. Structural similarity index (SSIM) (Wang

et al. 2004), is a dimensionless metric between21 and 1 that is

well suited for evaluating the perceptual difference between

image pairs. The SSIM was developed to approximate the

quality of an image as perceived by the human visual system.

Signal-to-noise ratio (SNR) compares the MSE to the magni-

tude of the pixel data in the output scan. Here we define

SNR as

SNR5
jjÎjj2F

jjI2 Îjj2F
, (2)

where jj � � � jjF is the Frobenius norm, I is the target PPI scan,

and Î is the CNN output. SNR is used here instead of the

commonly used peak (P)SNR because a significant portion of

many of the scans contain no precipitation, and (2) does not

heavily reward reproducing the empty portions of PPI scans

while PSNRdoes.We also report power spectral density (PSD)

curves for the CNN output and the various interpolation

schemes. The PSD curves show how well each of the tech-

niques preserves small-scale features and can also be used

to identify aliasing. Here we define PSD as

PSD5 10 log
10

F
2
fÎg�� ��2� �

, (3)

where the overbar represents radial averaging in Fourier space,

and F2{���} is the 2D Fourier transform.

During training of the neural network, the reflectivity data

are normalized to a21 to 1 scale, and the training loss (MSE) is

computed as an average over the whole scan. In the figures

that show performance during training (Figs. 2 and 3)

we report this dimensionless metric. While this is useful

for measuring relative performance between different super-

resolution schemes, dimensional values give a more intuitive

idea of the practical performance of the neural network. To

this end, we also report dimensional mean absolute error

(MAE) in dBZ. Computing this value over all pixels in the

scans means that the MAE is skewed significantly lower for

FIG. 4. Examples of (left) 43 and (right) 83 super resolution applied to a KLGX composite reflectivity PPI scan

from 23 Dec 2018. (top) The original scan (target) and the degraded scan (input). (bottom) The neural network

output to bicubic interpolation. The neural network is much better at preserving sharp edges, isolated small-scale

features (middle left of scan), and complicated small-scale variability (upper center and lower right of scan).
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scans without many weather features, and does not give a

good idea of what the actual difference in dBZ is between

schemes for a pixel containing weather, so the MAE is cal-

culated by averaging only over pixels where the ground

truth data contain reflectivities greater than a threshold

of 232 dBZ and neighboring pixels. This metric is meant to

indicate the differences in reflectivity one can expect be-

tween schemes when there is weather present.

4. Results

Figure 3 shows the validation set MSE for both the 43SR

and 83SR cases with respect to training epoch. In both cases

the validation MSE remained relatively stable throughout

training. The neural networks both begin to outperform the

benchmark interpolation schemes (shown as horizontal lines)

after only a single epoch but continue to incrementally improve

throughout the remainder of the training. As described in

section 3b, after reducing the learning rate at 250 epochs the

previous state of themodel that produced the lowest validation

loss is trained for 50 additional epochs at a lower learning rate.

The training epochs at the higher learning rate after the model

achieved its lowest validationMSE are still shown in light gray.

A plus sign indicates the training epoch that produced the best

validation set MSE overall.

Sample CNN output for a portion of a PPI scan that contains

some small-scale precipitation features is shown in Fig. 4.

Figure 4a shows, top to bottom left to right: the original PPI

scan, the degraded PPI scan, the result of applying bicubic

interpolation to the degraded scan, and the result of applying

the CNN-based SR to the degraded scan. The CNN output is

subjectively superior to the interpolation scheme. Neither ap-

proach is able to recover all of the very finescale precipitation

structure that is lost when the original scan is degraded; how-

ever, the neural network preserves more of the finescale

structure and is notably better at preserving sharp edges as-

sociated with the larger features. Figure 4b is the same as

Fig. 4a, but in this case for 83SR. Again, just examining the

neural network output is enough to see that it is able to recover

more of the small-scale features than interpolation. Notably, in

TABLE 1. Comparison of mean squared pixel error (MSE),

signal-to-noise ratio [SNR; Eq. (2)], structural similarity index

(SSIM), and mean absolute pixel error (MAE) computed on the

test set for several interpolation schemes and the CNN output.

MAE (dBZ) is computed only over regions where the ground truth

data shows precipitation.

Nearest Bilinear Bicubic Lanczos CNN

43 super resolution

MSE 3103 3.28 2.90 2.57 2.57 1.93

SNR 15.3 16.9 19.3 19.3 25.5

SSIM 0.92 0.92 0.93 0.93 0.95

MAE (dBZ) 6.67 6.68 6.21 6.21 4.99

83 super resolution

MSE 3103 5.66 5.10 4.66 4.66 3.76

SNR 8.6 9.4 10.5 10.6 13.7

SSIM 0.88 0.88 0.89 0.89 0.92

MAE (dBZ) 8.82 8.80 8.34 8.33 7.14

Scale/shift invariant super resolution

MSE 3103 5.33 4.53 3.86 3.64 2.69

MAE (dBZ) 5.26 5.21 4.71 4.56 3.64

FIG. 5. Radially averaged power spectral density (PSD) of CNN output [Eq. (3)], interpolation schemes, and full-

resolution scans. The full-resolution scans are 5123 512 pixels and in each panel the vertical black line indicates the

resolution of the artificially degraded scan used as input to the neural network. The higher PSD of the CNN output

(green line) at higher wavenumbers indicates that the neural network is much better at preserving small-scale

variability than common interpolation schemes (purple, yellow, and red lines). It also notably avoids the artifacts

that the interpolation schemes introduce at higher wavenumbers, and preserves all of the power at lower wave-

numbers up to the Nyquist frequency of the degraded scans (half the distance from the y axis to the black line),

which the interpolation schemes do not.
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both cases, the small parallel linear precipitation features in the

upper center and lower right portion of the scan are much

better approximated by the neural network. In fact, in the

83SR case the texture of these features appears to be

completely lost when the scan is degraded and the bicubic

interpolation scheme combines them into a single blob of

precipitation, but the neural network splits the precipitation

here into two parallel features, a much better approximation

of the input. We speculate the CNN has learned to infer the

likely presence of this type of parallel linear feature based

on the orientation of the larger nearby precipitation fea-

tures. The data augmentation process means that the CNN

should not have learned to preferentially produce this type

of feature with a specific orientation in the case that they are

caused by interaction with orography. The CNN also pro-

duces subjectively superior results in the region at the top of

the sample, where again there are a number of small-scale

linear features. It is also much better at localizing small

isolated points of precipitation that tend to be smeared out

over a large area by interpolation. There is a good example of

this at the left edge of the sample shown in Fig. 4. We provide

additional samples from individual scans in section 2 of the

supplemental material.

The neural network performance on the test set for the

43SR, 83SR, and partial scan cases are listed in Table 1. In all

cases the neural networks substantially outperform several

common interpolation schemes, and yield error near the value

of their final validation error during training, shown in Fig. 3,

indicating that the model has not overfit. Other metrics are

more useful for evaluating the aesthetic quality of the results in

an objective way. Figure 5 shows PSD [Eq. (3)] plots for the

full-resolution scan, the CNN, and bilinear, bicubic, and

Lanczos interpolation schemes. The neural network preserves

substantially more power at high wavenumbers, corresponding

to finescale features, than any of the interpolation schemes do.

The vertical black line in each panel represents the resolution

FIG. 6. Comparison of (left to right) mean squared pixel error (MSE), structural similarity index (SSIM), signal-to-noise ratio (SNR),

and mean absolute error (MAE) in dBZ computed on the test set for degraded scans (nearest-neighbor interpolation), bicubic inter-

polation, and the CNN output. For MSE andMAE lower scores are better and for SSIM and SNR higher scores are better. The boxplots

indicate the 10th, 25th, 50th, 75th, and 90th percentiles for the 11 381 PPI scans in the test set. The neural network outperforms inter-

polation by every metric.
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of the downgraded scan, and the CNN notably avoids the

ripple artifacts that are generated by the interpolation

schemes at high wavenumbers to the right of this line. We

also note that the PSD line for the neural network overlaps

that of the original scan up to the Nyquist frequency (half

the resolution) of the degraded scan. The interpolation

schemes all lose some of the information even for these low

wavenumbers.

Finally, we show the distribution of MSE, MAE, SSIM, and

SNR [Eq. (2)] for the test set in Fig. 6, and compare to bicubic

and nearest neighbor interpolation as benchmarks. The box-

plots in Fig. 6 show the 10th–90th percentiles as whiskers, the

25th–50th percentiles as the box, and the median as the hori-

zontal line in the box computed across all 11 381 samples in the

test set. The CNN outperforms interpolation in each metric for

both 43SR and 83SR. Note that for MSE and MAE (left and

right columns of Fig. 6) lower scores are better while for SSIM

and SNR (center columns) higher scores are better. The SSIM

metric is defined in such a way that its spatial distribution

within an image can be computed. We show several examples

of the spatial distribution of SSIM and the corresponding PPI

scan in supplement section 3. The overall result is that portions

of the scan that tend to have very high-frequency textured

features tend to have lower SSIM scores which is perhaps to be

expected. Comparison to SSIM computed for bicubic inter-

polation shows that the neural network gains a large advantage

in this metric by preserving sharper edges for large precipita-

tion features. Figure 7 is the same as Fig. 6, but here only the

top 10% of scans in the test set by total (spatially averaged)

reflectivity were used, meaning the 10% of scans with the most

precipitation features. The CNN and interpolation both get

high scores in these metrics for scans with very few precipita-

tion features because performing SR on an empty scan is

trivial. Including only the top 10% of scans by total precipi-

tating features removes these trivial cases from the analysis,

and in Fig. 7 there is even greater separation between the

neural network scores and the interpolation scores, though

all of the scores are lower than those in Fig. 6.

FIG. 7. Error metrics (as in Fig. 6) computed on the top 10% of the test set with the most precipitation. Many of the PPI scans contain

large regions with no precipitation and both interpolation and the CNN will achieve high scores for these trivial cases. This is the same as

Fig. 6, but only includes scans with many precipitating features. While all scores are slightly worse than in Fig. 6, there is a much larger

difference between the performance of the interpolation scheme and the neural network.

2204 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

Brought to you by BATTELLE PACIFIC NW LAB | Unauthenticated | Downloaded 05/26/21 10:30 PM UTC



The CNN trained on randomly shifted and scaled samples of

PPI scans also performs very well in terms of the MSE and

MAE metrics listed in Table 1, and significantly outperforms

interpolation. While we have not performed the same detailed

analysis of PSD, SSIM, and SNR in this case, this neural net-

work also produces subjectively superior results (Fig. 8).

Figures 8a–d show application of this CNN to a degraded

portion of the same PPI scan shown in Fig. 4. There were two

main objectives in training this network. The first is to show

that the information learned by these CNNs is shift and scale

invariant, which the MSE andMAE demonstrate. The other is

that requiring only a portion of a PPI scan as input means that

the CNN can easily be applied to sections of a scan that has not

been degraded to increase the scan resolution beyond its native

resolution. An example is shown in Figs. 8e–g, using the boxed

region in Fig. 8a. Finally the bottom row in Fig. 8 (Figs. 8h–i)

FIG. 8. Application of a neural network trained on randomly scaled and spatially shifted PPI scans to the same example scan shown in

Fig. 4. (a)–(d) Application of this CNN to a 1923 192 section of the PPI scan [see (d)] that has been degraded to a resolution of 483 48

[see (a)]. In (b) and (c) The results of applying bicubic interpolation and the neural network to (a), respectively, are shown. (e)–(g)

Interpolation and theCNNare applied to the boxed region in (d), to increase beyond the resolution of the original scan. In this case there is

no ground truth for comparison. (h),(i) Bicubic interpolation and the neural network are each applied twice to the boxed region in (a) to

achieve 163 super resolution.While the result is significantly worse than in (f) and (g), the neural network produces amuch better-looking

result than interpolation.
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show the result of applying the CNN to its own output (using

the boxed region in Fig. 8d as input) to achieve 163SR, and

again produce output with higher resolution than the native

resolution of the scan. We note here that in doing this we have

assumed that the sub-pixel-scale precipitation features that are

too small to be resolved by the radar are similar to the larger

features that are resolved, which is not necessarily true. While

these results are intriguing and we believe the high-resolution

output from the CNN is subjectively better than the result of

bicubic interpolation, because we have increased beyond the

native resolution of the radar there is no ground truth to which

to compare our results.

5. Conclusions

Here we have demonstrated that CNN-based super resolu-

tion can significantly outperform traditional interpolation

schemes when applied to radar data in terms of both pixel-wise

error and several different perceptual quality metrics that

measure structure, frequency content, and visual fidelity.

Increased performance is at least partly a result of the wider

perceptive field used in the convolutional neural networks, as

well as prior knowledge of the statistics of storms and other

weather features based on a large training set. The advantage

becomes especially pronounced when applied to larger in-

creases in spatial upsampling. This benefit was demonstrated

using a variety of CNN models, including a U-net with dense

blocks architecture that showed the best overall performance

of the CNNs by a small margin.

Applying super resolution to weather radar data has many

applications: increased resolution and frequency content im-

proves the capability for observational comparisons with

models operating at fine grid spacing. Physically consistent

interpolation will help improve hydrological modeling and

have applications to nonuniform beam filling. More qualita-

tively, increased resolution improves the visual fidelity of prod-

ucts such as isosurfaces and broadcastmeteorology products.We

believe this could have applications to the nonuniform beam

filling problem often encountered in satellite retrievals and fu-

ture work will focus on testing the bounds of this technique on

other measurement platforms. This work lays out the basis for a

super-resolution technique that is not limited to weather radar

but has potential applications for a wide variety of instrumenta-

tion and model data. Very large gridded datasets from precipi-

tation radars, satellite imagers, and climate and weather models

for instance, are ubiquitous in the field of atmospheric science.

This type of data is very well suited for recently developed

convolutional-neural-network-based techniques, like the super-

resolution scheme presented here, and further effort in this area

has the potential to profoundly change the field moving forward.

Acknowledgments. The authors thank PNNL for hosting the

Joint PNNL/UW measurements workshop, from which this

original idea developed. AG designed and implemented code,

ran experiments and analysis, and wrote the paper. JCH con-

ceived of the original idea and helped with paper writing.

The authors declare they have no competing interests. JCH’s

contributions were supported under the U.S. Department of

EnergyOffice of Science Biological and Environmental Research

as part of the Atmospheric Systems Research Program.

Data availability statement. NEXRAD data are freely

available from the National Climatic Data Center; the dataset

used here was retrieved from https://registry.opendata.aws/noaa-

nexrad. Our code is available from https://github.com/avgeiss/

nexrad_sr.

REFERENCES

Armanious, K., S. Abdulatif, F. Aziz, U. Schneider, and B. Yang,

2019: An adversarial super-resolution remedy for radar design

trade-offs. arXiv, https://arxiv.org/abs/1903.01392.

Baker, S., and T. Kanade, 1999: Super resolution optical flow.

Carnegie Mellon University Robotics Institute Tech. Rep.

CMU-RI-TR-99-36, 13 pp.

Bharadwaj, N., 2009: Networked radar systems: Waveforms, signal

processing and retrievals for volume targets. Ph.D. thesis,

Colorado State University, 170 pp.

Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler

Weather Radar: Principles andApplications. CambridgeUniversity

Press, 636 pp.

Dong, C., C. Loy, K. He, and X. Tang, 2014: Image super-

resolution using deep convolutional networks. arXiv, https://

arxiv.org/abs/1501.00092.

Gao, J., B. Deng, Y. Qin, H. Wang, and X. Li, 2017: Enhanced

radar imaging using a complex-valued convolutional neural

network. arXiv, https://arxiv.org/abs/1712.10096.

Haung, G., Z. Liu, K. Weinberger, and L. Van der Maaten, 2017:

Densely connected convolutional networks. arXiv, https://

arxiv.org/abs/1608.06993.

He, K., X. Zhang, S. Ren, and J. Sun, 2015: Deep residual learning

for image recognition. arXiv, https://arxiv.org/abs/1512.03385.

Huang, Y., W. Wang, and L. Wang, 2018: Video super-resolution

via bidirectional recurrent convolutional networks. IEEE

Trans. Pattern Anal. Mach. Intell., 40, 1015–1028, https://

doi.org/10.1109/TPAMI.2017.2701380.

Ioffe, S., and C. Szegedy, 2015: Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv, https://arxiv.org/abs/1502.03167.

Johnson, J., A. Alahi, and L. Fei-Fei, 2016: Perceptual losses for

real-time style transfer and super-resolution. arXiv, https://

arxiv.org/abs/1603.08155.

Kim, J., J. Lee, and K. Lee, 2016: Accurate image super-resolution

using very deep convolutional networks. arXiv, https://

arxiv.org/abs/1511.04587.

Kingma, D. P., and J. Ba, 2014: Adam: A method for stochastic

optimization. arXiv, https://arxiv.org/abs/1412.6980.

Lai, W.-S., J.-B. Huang, N. Ahuja, and M.-H. Yang, 2017: Deep

Laplacian pyramid networks for fast and accurate super-

resolution. arXiv, https://arxiv.org/abs/1704.03915.

Ledig, C., and Coauthors, 2017: Photo-realistic single image super-

resolution using a generative adversarial network. arXiv,

https://arxiv.org/abs/1609.04802.

Lim, B., S. Son, H. Kim, S. Nah, and K. Lee, 2017: Enhanced deep

residual networks for single image super-resolution. arXiv,

https://arxiv.org/abs/1707.02921.

Long, J., E. Shelhamer, and T. Darell, 2014: Fully convolutional

networks for semantic segmentation. arXiv, https://arxiv.org/

abs/1411.4038.

Nasrollahi, K., and T. Moeslund, 2014: Super-resolution: A com-

prehensive survey. Mach. Vis. Appl., 25, 1423–1468, https://

doi.org/10.1007/s00138-014-0623-4.

2206 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

Brought to you by BATTELLE PACIFIC NW LAB | Unauthenticated | Downloaded 05/26/21 10:30 PM UTC

https://registry.opendata.aws/noaa-nexrad
https://registry.opendata.aws/noaa-nexrad
https://github.com/avgeiss/nexrad_sr
https://github.com/avgeiss/nexrad_sr
https://arxiv.org/abs/1903.01392
https://arxiv.org/abs/1501.00092
https://arxiv.org/abs/1501.00092
https://arxiv.org/abs/1712.10096
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/TPAMI.2017.2701380
https://doi.org/10.1109/TPAMI.2017.2701380
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1511.04587
https://arxiv.org/abs/1511.04587
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1704.03915
https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1707.02921
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1411.4038
https://doi.org/10.1007/s00138-014-0623-4
https://doi.org/10.1007/s00138-014-0623-4


Ohsaki, Y., and K. Nakamura, 1998: Simulation-based analysis of

the error caused by non-uniform beam filling and signal fluc-

tuation in rainfall rate measurement with a spaceborne radar.

J. Meteor. Soc. Japan, 76, 205–216, https://doi.org/10.2151/

jmsj1965.76.2_205.

Richard, A., I. Cherabier, M. R. Oswald, V. Tsiminaki, M. Pollefeys,

and K. Schindler, 2020: Learned multi-view texture super-

resolution. arXiv, https://arxiv.org/abs/2001.04775.

Ronneburger, O., P. Fischer, and T. Brox, 2015: U-Net: Convolutional

networks for biomedical image segmentation. arXiv, https://

arxiv.org/abs/1505.04597.

Tao, Y., and J.-P. Muller, 2018: Super-resolution restoration of

MISR images using the UCL MAGiGAN system. Remote

Sens., 11, 52, https://doi.org/10.3390/rs11010052.

Timofte, R., V. De Smet, and L. Van Gool, 2015: A1: Adjusted

anchored neighborhood regression for fast super-resolution.

12th Asian Conf. on Computer Vision, Singapore, 111–126,

https://doi.org/10.1007/978-3-319-16817-3_8

Veillette,M., E. Hassey, C.Mattioli, H. Iskenderian, and P. Lamey,

2018: Creating synthetic radar imagery using convolutional

neural networks. J. Atmos. Oceanic Technol., 35, 2323–2338,

https://doi.org/10.1175/JTECH-D-18-0010.1.

Wang, Z., A. Bovik, H. Sheikh, and E. Simoncelli, 2004: Image

quality assessment: From error visibility to structural similar-

ity. IEEE Trans. Image Process., 13, 600–612, https://doi.org/

10.1109/TIP.2003.819861.

——, J. Chen, and S. Hoi, 2019: Deep learning for image super-

resolution: A survey. arXiv, https://arxiv.org/abs/1902.06068.

DECEMBER 2020 GE I S S AND HARD IN 2207

Brought to you by BATTELLE PACIFIC NW LAB | Unauthenticated | Downloaded 05/26/21 10:30 PM UTC

https://doi.org/10.2151/jmsj1965.76.2_205
https://doi.org/10.2151/jmsj1965.76.2_205
https://arxiv.org/abs/2001.04775
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.3390/rs11010052
https://doi.org/10.1007/978-3-319-16817-3_8
https://doi.org/10.1175/JTECH-D-18-0010.1
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://arxiv.org/abs/1902.06068

