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Abstract— Accurately determining the height of the planetary
boundary layer (PBL) is important since it can affect the climate,
weather, and air quality. Ground-based infrared hyperspectral
remote sensing is an effective way to obtain this parameter. Com-
pared with radiosonde measurements, its temporal resolution is
much higher. In this study, a method to retrieve the PBL height
(PBLH) from the ground-based infrared hyperspectral radiance
data is proposed based on machine learning. In this method,
the channels that are sensitive to temperature and humidity
profiles are selected as the feature vectors, and the PBLHs derived
from radiosonde are taken as the true values. The support vector
machine (SVM) is applied to train and test the data set, and the
parameters are optimized in the process. The data set collected
at the Atmospheric Radiation Measurement (ARM) program
Southern Great Plains (SGP) from 2012 to 2015 is analyzed.
The instruments used in this letter include Atmospheric Emitted
Radiance Interferometer (AERI), Vaisala CL31 ceilometer, and
radiosonde. It shows that the root mean square error (RMSE)
between the PBLHs calculated by the proposed method using
AERI data and those from radiosonde data can be within 370 m,
and the square correlation coefficient (SCC) is greater than 0.7.
Compared with the PBLHs derived from the ceilometer, it can
be found that the new method is more stable and less affected
by clouds.

Index Terms— Atmospheric emitted radiance interferometer
(AERI), diurnal cycles, planetary boundary layer height (PBLH),
seasonal cycles, support vector machine (SVM).

I. INTRODUCTION

HE planetary boundary layer (PBL) is the lowest layer

of the troposphere, which is a physically mixed layer
due to the effects of shear-induced turbulence and convective
overturning near the Earth’s surface [1]. The PBL height
(PBLH) is an important parameter for characterizing many
atmospheric processes, including the dispersion of air pollu-
tants and the formation of clouds [2]. PBLH is usually inferred
from radiosonde measurements [3]; however, its temporal
resolution is too sparse to detect the evolution of the diurnal
structure. Therefore, to monitor PBL in a more continuous
way, several remote sensing methods have been proposed
to estimate PBLH by using the wind profiler, lidar, and
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ceilometer. The wind profiler can be used to detect the PBLH
based on the turbulence structure data [4], but it is restricted
to shallow boundary layers due to their limited range. Using
aerosol as a tracer, the PBLH can be inferred from the aerosol
vertical distribution measured by a lidar or a ceilometer [5].
However, the measurement under cloudy conditions needs to
be further determined.

Some thermodynamic profile remote sensing instruments,
such as atmospheric emitted radiance interferometer (AERI)
[6] and microwave radiometer (MWR) [7], are also used to
determine PBLHs from the inverted vertically thermodynamic
variables [8]. One of the main limitations of these methods
is their low vertical profile resolution. Moreover, the profile is
particularly oversmoothed at higher altitudes so that the impor-
tant features within the retrieved profiles are missing, such as
vertical gradients of temperature and water vapor that used to
do PBLH estimation [9]. Another challenge is how to reconcile
PBLH from aerosol as a tracer and that from thermodynamic
profiles. They often do not match up in their representation
of the PBLH. The purpose of this letter is to demonstrate
the potential of the machine learning approach for a fast,
robust, accurate, and automated PBLH estimation approach
to overcome the above problems. We do not carry out the
inversion of thermodynamic profiles but directly use the AERI
radiance (AERIRAD) data to estimate PBLH. Radiance data of
the selected bands that are sensitive to temperature and humid-
ity profiles are extracted as the input variables. The PBLHs
derived from the radiosonde are taken as the “truths.” The
regression relationship between AERIRAD data and “truths”
is established by using the support vector machine (SVM).

This letter is organized as follows. Section II is a brief
summary of all the instruments and the data set used in
this work. Section III formulates the PBLH retrieved algo-
rithm using AERIRAD data. Section IV compares the PBLHs
retrieved from AERI with those from radiosonde and Vaisala
CL31 ceilometer (VCEIL). Finally, the conclusions are pre-
sented in Section V.

II. ESTABLISHMENT OF DATA SET

The instruments used in this study include AERI,
radiosonde, and ceilometer located at the Atmospheric Radi-
ation Measurement (ARM) Southern Great Plains (SGP)
site. The data set covers the period from January 2010 to
December 2015. There are many methods to calculate PBLHs
by using radiosonde. In this letter, we use Liu and Liang
method based on the vertical potential temperature gradient
to calculate the PBLHs [10], [11] as “truths.”

AERI is a ground-based spectrometer that measures
the downwelling infrared radiance from 3.3 to 19 um
(3020-520 cm~') at 0.5-cm~! resolution. When using
AERIRAD to retrieve PBLHs, radiances of 555 channels
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TABLE I
NUMBER OF DATA SETS FROM 2010 TO 2015 AT THE ARM SGP SITE

Number of sample set groups

Particular year

Cloudy Cloud free Total
2010 429 916 1345
2011 462 911 1373
2012 181 573 754
2013 183 383 566
2014 443 799 1242
2015 528 913 1441

that are sensitive to thermodynamic profiles are selected as
the input parameters [12]. The sensitive channels of water
vapor are 538-588 and 1250-1350 cm~!, and the sensitive
channels of temperature are 612618, 624-660, 674-713, and
2223-2260 cm~!. The observational time of radiosonde and
AERI is different, so it is necessary to do time-matching before
establishing a database. Table I shows the number of time-
matching between AERI and total available radiosondes of the
whole day. We use VCEIL and Total Sky Image (TSI) to judge
cloudy or cloud-free at the corresponding time. Data from
2010 and 2011 are used as training samples, and the rest are
testing samples. PBLHs derived from thermodynamic profiles
given by the value-added product of AERI (AERIPROF) [13],
[14] are also calculated, which are based on the maximum
potential temperature gradient [15]. PBLHs from ceilpbl (the
value-added product of ceilometer) [16] are used to do the
comparison with those from AERI.

III. INVERSION OF PBLH BASED ON SVM

Using AERIRAD to estimate PBLHs can be regarded as
a regression problem. Section III-A presents the channel
selection process. Section III-B describes the support vector
regression method. Section III-C summarizes the proposed
algorithm for PBLH estimation.

A. Channel Selection

First, the radiance data of 538-588, 612-618, 624-660,
and 674713 cm™! are divided by 180, and 1250-1350 cm™!
is divided by 80. The radiance data of 1250-1350 and
2223-2260 cm™ are divided by 5. This normalization process
makes the radiance data of each channel in the same order of
magnitude.

Then, the minimal-redundancy-maximal-relevance (mRMR)
method is used to screen the characteristic quantities [17] by
considering the correlation between features and categories
and the redundancy between features. Finally, the most impor-
tant 50 channels are selected, which can be found in Table II.

B. Support Vector Machine

We consider a training set of (x,-,y,-)lfle,i = 1,...,k,
where x; and y; represent the input and output and k is the
dimension of the training set. The form of SVM estimation is

taken as
fX)=w -Ox)+b (D)

where w is a weighting matrix and b is a bias term. @
denotes a nonlinear transformation to a higher dimensional
feature space. Equation (1) can be converted to minimize the
regression error as [18]

1 :
min{|wll® +C Y (G +¢) )
i=1

st.lyi—w-dx)+bl=e+d, &, >0 ()
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Fig. 1. Proposed algorithm for PBLH estimation.

where ¢ is the permissible error and C denotes the penalty fac-
tor. Every vector outside e-tube is captured in slack variables
¢ and (. The radial basis function (RBF) kernel is applied
as

K (x;, x) = exp(—g||x; — x| )

where g is a parameter inversely proportional to the width of
the Gaussian kernel.

C. Proposed Algorithm for PBLH Estimation

Fig. 1 shows the flowchart of the proposed algorithm for
PBLHs estimation. The main processes are as follows.

1) Create the training and testing samples. Find the match-
ing data between AERI and radiosonde to establish the
database.

2) Select the best channels based on the mRMR method.
Calculate the maximum correlation and minimum redun-
dancy between channels.

3) Search for the best parameters of the SVM algorithm.
The selected channels are brought into the SVM algo-
rithm, and the best kernel parameter g and penalty factor
C are selected by grid search method [19] to verify the
testing set. The range of C and g is 27328, and the
search step is 298,

4) Use the optimal model to estimate the PBLHs of all
testing samples. The accuracy of the model is measured
by the root mean square error (RMSE) and the square
correlation coefficient (SCC). RMSE is the deviation
between the retrieved results and the “truths”; SCC is
the degree of the fitting.

Table III shows the retrieved results with different channel
numbers selected by the mRMR method. Considering the
computational complexity and the accuracy of the model,
the optimal 50 channels are selected, as shown in Table II.
The corresponding C and g are 9.1896 and 5.278.

IV. EVALUATION OF PBLH INVERSION ALGORITHM

The data set from 2012 to 2015 is used to evaluate the
PBLHs retrieved algorithm in this section. The comparison
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TABLE II
50 OPTIMAL CHANNELS SELECTED BY MRMR
Serial Wavenumber Serial Wavenumber Serial Wavenumber Serial Wavenumber  Serial Wavenumber
number (cm™) number (cm™) number (cm™) number (cm™) number (cm™)
1 1349.05 11 2247.29 21 2240.06 31 2236.68 41 2232.34
2 1250.21 12 540.00 22 2253.56 32 541.93 42 1252.14
3 561.22 13 1253.10 23 1250.69 33 1255.99 43 538.56
4 2251.63 14 2241.50 24 1305.65 34 2243.43 44 1288.30
5 1260.81 15 1312.40 25 559.29 35 2225.59 45 2251.15
6 2234.27 16 558.33 26 2229.45 36 2250.18 46 1276.24
7 1278.17 17 2228.00 27 1251.65 37 1268.05 47 2237.16
8 2259.34 18 2255.48 28 2257.41 38 558.81 48 565.56
9 1287.33 19 1255.51 29 1272.39 39 2249.70 49 1339.89
10 2226.56 20 1259.85 30 1338.44 40 1319.15 50 1269.98
TABLE III TABLE 1V

ESTIMATION RESULTS WITH DIFFERENT CHANNEL NUMBERS

Channel numbers ~ RMSE (m) SCC
3 363.15 0.6391
5 321.26 0.7140
10 256.94 0.8162
20 247.87 0.8290
30 246.37 0.8293
50 227.73 0.8574
200 225.92 0.8581
555 213.16 0.8636
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Fig. 2. Scatter plots of PBLHs derived from radiosonde, AERIRAD,
AERIPROF, and VCEIL of the whole day from 2012 to 2015 at the ARM
SGP site.

of the PBLHs obtained by AERIRAD, AERIPROF, VCEIL,
and radiosonde is shown in Fig. 2. When the PBLH is below
2500 m, the difference between AERIRAD- and radiosonde-
derived PBLHs is relatively small. However, the difference
gradually increases when the PBLHs are above 3000 m; the
maximum difference can reach more than 1000 m. It may be
partly because AERIRAD is sensitive to the near-surface layer.
The RMSE and SCC of PBLHs derived from AERIRAD,
AERIPROF, and VCEIL are shown in Table IV. AERIPROF-
derived PBLHs are based on the thermodynamic profiles
inversed from radiance on selected bands. The error of temper-
ature and humidity profile inversion will increase the PBLH
estimation error of AERIPROF. However, using AERIRAD to
retrieve PBLHs directly can avoid this error. This is the reason
why the accuracy of AERIRAD-derived PBLHs is higher
than AERIPROF-derived PBLHs. What is more, AERIPROF
can give temperature and humidity information every 50 m
below 1000 m and every 100 m between 1000 and 2000 m,
the vertical resolution is low, and it decreases with height. This
is also the reason why the accuracy of PBLHs’ inversion from
AERIPROF is lower.

RMSE AND SCC oF PBLHS DERIVED FROM AERIRAD, VCEIL,
AND AERIPROF OF THE WHOLE DAY FROM 2012 TO 2015

AERIRAD  AERIPROF VCEIL
RMSE (m) 364.8 641.1 548.1
SCC 0.7041 0.4644 0.3145

VCEIL detects the PBLHs using aerosol as a tracer; the
aerosol-derived PBLHs may not be consistent with the PBLHs
derived from thermodynamic profiles. Therefore, VCEIL- and
radiosonde-derived PBLHs may have a certain deviation.
AERIRAD uses the radiance of selected bands to retrieve
PBLHs, which is consistent with the thermodynamic pro-
file method. Hence, compared with VCEIL-derived PBLHs,
the SCC of AERIRAD-derived PBLHs (0.7041) is signifi-
cantly larger, and the RMSE (364.8 m) is smaller. In addition,
VCEIL is more easily affected by the clouds, which also
affects the accuracy of PBLHs derived from VCEIL. To take
an insightful look at this phenomenon, Section IV-A introduces
the influence of cloudy on the PBLHs of two instruments.
Sections IV-B and IV-C compare the accuracy of two instru-
ments in different time periods. Section IV-D analyzes the
edge cases.

A. Evaluation When a Cloud Is in the Field of View

Table V shows the RMSE and SCC of AERIRAD- and
VCEIL-derived PBLHs under cloudy and cloud-free condi-
tions. The agreement of PBLH detection from AERIRAD is
better in the cloud-free case than cloudy. The SCC of the
AERIRAD-derived PBLHs (0.7219) under cloud-free condi-
tions is significantly higher. Clouds can attenuate the down-
ward infrared hyperspectral radiance. Sawyer and Li [20] have
proved that AERI-derived PBLHs based on the thermody-
namic profiles are unreliable in cloudy conditions. Therefore,
the cloud may also increase the retrieval error of AERI-
RAD. Based on this phenomenon, we add cloudy samples
in the training set to reduce the influence of clouds on the
AERIRAD-derived PBLHs. The proportion of cloudy and
cloud-free samples in the training set is given in Table I.

Compared to radiosonde-derived PBLHs, AERIRAD-
derived PBLHs are more accurate than VCEIL-derived PBLHs
no matter in cloudy cases or cloud-free cases. Moreover,
the PBLHs derived from VCEIL are more seriously affected
by clouds. When it is cloudy, the SCC of the VCEIL-derived
PBLHs is small. Fig. 3 shows an example in cloudy conditions
on December 26, 2014. After 1700 Coordinated Universal
Time (UTC), there were low and thick clouds, which had a
great influence on the PBLHs’ inversion. In this case, it is
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TABLE V

COMPARISON OF THE PBLHS DERIVED FROM AERIRAD AND VCEIL
UNDER CLOUDY OR CLOUD-FREE CONDITIONS

RMSE (m) scc

AERI VCEIL _ AERI _ VCEIL

Cloudy 3246 5509 05166 0.1424
Cloud-free 3779 5512 0.7219 03759

—— PBLH from AERIRAD
PBLH from VCEIL
® PBLH from Radiosonde

log2(backscatting)

15:00 17:00 20:00 22:00

Time (UTC)

Fig. 3. Comparison of PBLHs derived from radiosonde, AERIRAD, and
VCEIL under the cloudy condition on December 26, 2014, at the ARM SGP

site.
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Fig. 4. PBLHs derived from radiosonde, AERIRAD, and VCEIL during a
ten-day period from August 21 to 30, 2013, at the ARM SGP site.

easy to misjudge the cloud base height as the PBLH by using
VCEIL.

B. Diurnal Cycle

Fig. 4 shows the results of ten-day continuous detection
of the PBLHs from August 21 to 30, 2013. Boundary layers
undergo strong diurnal cycling at the ARM SGP site [20],
and the PBLHs reach the minimum in the early morning
and the maximum in the afternoon. PBL can be classified
into three regimes: the convective boundary layer (CBL),
the stable boundary layer (SBL), and the residual layer (RL)
[10]. As shown in Table VI, it can be seen that CBL (91.92%)
is dominant in the daytime, and SBL (75.02%) is dominant
in the nighttime of the testing set. Compared to radiosonde-
derived PBLHs, the errors of both the AERIRAD- and VCEIL-
derived PBLHs are relatively larger in the nighttime. The SCC
of AERIRAD-derived PBLHs in the daytime is higher than
that in the nighttime, and the RMSE is relatively smaller. This
may due to the relative stability of SBL at night, which leads
to the insufficient thermodynamic distribution to determine the
PBLHs. Therefore, turbulent kinetic energy (TKE) profiles are

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

TABLE VI

COMPARISON OF THE PBLHS DERIVED FROM AERIRAD AND VCEIL
DURING DAYTIME AND NIGHTTIME

PBL regimes (%) RMSE (m) SCC
CBL SBL RL AERI VCEIL AERI  VCEIL
Daytime 9192 557 251 4251 629.5 0.5610  0.2781
Nighttime  24.98  75.02 0 251.2 479.9 0.1224  0.0246
4000 [ T T T T T T T
! ! ——PBLH from AERIRAD
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Fig. 5. Monthly mean values of PBLHs derived from radiosonde, AERIRAD,
and VCEIL during daytime from 2012 to 2015 at the ARM SGP site.

used to calculate PBLHs [21]. However, AERIRAD is not sen-
sitive to TKE as TKE does not affect the downwelling infrared
radiance. The AERIRAD is more suitable for determining the
PBLH in the daytime than at nighttime. Furthermore, the PBL
is well-mixed in the daytime; VCEIL-derived PBLHs are also
better in the daytime.

In addition, compared with VCEIL-derived PBLHs,
AERIRAD-derived PBLHs have better accuracy. The SCC of
the AERIRAD-derived PBLHs is relatively higher, and the
RMSE is small no matter in the daytime or nighttime. It may
be due to the inconsistency between aerosol-derived PBLHs
and the PBLHs derived from thermodynamic profiles.

C. Seasonal Cycle

Due to the inaccuracy of AERI and VCEIL in the mea-
surement of PBLHs in the nighttime, this section is limited
to analyze the PBLHs during daytime. Fig. 5 shows monthly
averages (AVGs) of PBLHs measured by three instruments
at the ARM SGP site. Compared to the radiosonde-derived
PBLHs, the AERIRAD-derived PBLHs are more consistent
than the VCEIL-derived PBLHs on the seasonal scale. The
AVGs are given in Table VII. The VCEIL-derived PBLHs
are about 500 m lower than the radiosonde-derived PBLHs in
spring and autumn, 700 m lower in summer, and 400 m lower
in winter. It reveals that we can reconcile the PBLHs from
aerosol and thermodynamic profiles in a simple bias correction
on the seasonal time scale. Table VII also shows that the SCC
of the AERIRAD-derived PBLHs in summer and autumn is
higher than that in spring and winter. It may be due to the
varieties of cloudy conditions in different seasons. As shown
in Table VIII, there are more cloudy scenes (about 40%) in
the spring and winter of the testing set.

D. Edge Cases

The AERIRAD- and radiosonde-derived PBLHs are com-
pared in different height regions during daytime in this
section. The mean and standard deviation of the difference
between these two PBLHs as a function of height are shown
in Fig. 6(a). The region from 500 to 2500 m occupies the
majority in both training and testing set [see Fig. 6(b)]. PBLHs
derived from AERIRAD and radiosonde are consistent in this
region also. The error of AERIRAD-derived PBLHs is larger
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TABLE VII

COMPARISON OF THE PBLHS DERIVED FROM THREE INSTRUMENTS
DURING DAYTIME IN FOUR SEASONS

RMSE (m) scc AVG (m)
AERI VCEIL AERI VCEIL AERI _VCEIL RS
Spring 4790 5724 03152 0.1858 13028 8318  1369.2
Summer 4289 7763 04667 0.1995 17780 9683  1705.0
Autumn 3807 6115 05108 02203 12952 7348 12922
Winter  267.0  447.8 02654  0.1130 8899 5313 901.2
TABLE VIII

PROPORTION OF CLOUDY SAMPLES DURING DAYTIME IN FOUR SEASONS

Spring  Summer Autumn Winter
Proportion (%)  41.25 25.22 21.86 46.23
4000 4000
——testing set
3500 3500 ——training set
3000 3000
E 2500 2500
5
5 2000 2000
=
—
2 1500 1500
1000 1000
500 500
0 1 0
-2000 -1000 0 1000 2000 0 5 10 15
deviation (m) proportion (%)
(a) (b)

Fig. 6. (a) Mean (u) and standard deviation (o) of the difference between
AERIRAD- and radiosonde-derived PBLHs in different height regions of the
testing set. (b) Proportion of PBLHs in different height regions of training
and testing set during the daytime.

when the PBLHs are above 3000 m or below 500 m. It may be
caused by the small number of such edge cases in the training
set. There are only 46 groups (3.3%) with the PBLHs above
3000 m and 94 groups (6.7%) below 500 m. In addition, AERI
is less sensitive to the temperature and humidity profiles above
3 km [13], which means low sensitivity for high PBLHs.

V. CONCLUSION

This letter proposes a machine learning approach for PBLHs
estimation using AERIRAD. The results of the proposed
approach were compared with those from AERIPROF, VCEIL,
and radiosonde to determine its performance. The experimen-
tal results demonstrated that the AERIRAD-based method had
a better response to the sharp change of the PBLHs in the day-
time with high accuracy and was less affected by clouds. What
is more, it could better reflect the diurnal and seasonal cycles
of PBLHs. The major advantage of the proposed method is
that PBLHs can be retrieved directly from AERIRAD avoiding
the thermodynamic profiles inversion. We can get fast, robust,
accurate, and high temporal resolution PBLHs by using this
approach. Insufficiently, we only used the Liu and Liang [11]
method of radiosonde as the “truth.” Our future work includes
testing the influence of the “truth” values obtained by different
algorithms on the inversion results. We also intend to use deep-
learning techniques to avoid the process of channel selection
and will verify the applicability of this algorithm in different
sites.
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