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Abstract

Sub-cloud turbulent kinetic energy has been usquhtameterize the cloud-base updraft veloaity) {n
cumulus parameterizations. The validity of thissid&s never been proved in observations. Insteadsi
challenged by recent Doppler lidar observationsviing a poor correlation between the two. We artjaé t
the low correlation is likely caused by the diffiiguof a fixed-point lidar to measure ensemble jeries

of cumulus fields. Taking advantage of the statitpand ergodicity of early-afternoon convectiove
developed a lidar sampling methodology to measud a shallow cumulus (ShCu) ensemble (not a single
ShCu). By analyzing 128 ShCu ensembles over theh8ou Great Plains, we show that the ensemble
properties of sub-cloud turbulence explain nearbif tof the variability in ensemble-meaws,
demonstrating the ability of sub-cloud turbulencedictatew,. The derived empirical formulas will be

useful for developing cumulus parameterizations satdllite inference ofs.
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1. Introduction

Cloud-base updraft velocityw) is a crucially important variable as it influescearious
aspects of cumulus clouds (Rogers and Yau, 19%@wi§f modulates the aerosol cloud-mediated
effect by governing the supersaturation near cloases (Twomey, 1959; Rosenfeld, 2014). In
polluted conditions, cloud droplet size and numb@ncentration are more sensitivewipthan
aerosol concentration and size (Reutter et al.9R0oreoverw, dictates lateral entrainment of

cumulus that remains an unresolved bottlenecklfiorate modeling (Donner et al., 2016).

Despite its importance, current cumulus parameigoa schemes rarely express
explicitly (Donner et al., 2016). Most schemes paaterize the cloud-base mass fliv) without
specifying thew,. For example, Arakawa and Schubert (1974) deterthie®, by adjusting the
cloud work function towards a value maintainingeguilibrium between the large-scale forcing
and the convection. Krishnamurti et al. (1983) datee My under the assumption that convection
must balance the column integrated vertical adeaadf moisture. Kain and Fritsch (1993) and
Grell (1993) parameteriziél, by requesting the convection to remove the lagggesinstability

over the convective time scale.

The earliest effort that explicitly represents thgin My closure is Brown (1979) who
approximates thes, using the environmental vertical velocity from gwerounding nine points at
lower tropospheric levels. This scheme is physiclidlwed by the fact that the air masses that
initiate cumulus clouds are convective in naturg@isTssue is addressed by Neggers et al. (2009)
and Fletcher and Bretherton (2010) (FB10) who aighat thew, could be dictated by the sub-
cloud turbulent intensity. FB10 used a set of cloegblving simulations to empirically derive the

following formula to represent tha:
Wh = 0.28xTKEu Y2+ 0.64, (1)

in which the TKE is the turbulent kinetic energy averaged horizntand vertically in the sub-
cloud mixed layer. FB10 shows that such a bountamr-based mass flux closure scheme

outperforms several commonly used schemes for tuewilus cases.

Still lacking is observational evidence of the apibf TKEmL to explain thew. As quoted

by Donner et al. (2016): .. parameterizations that do provide vertical vetiesi have been
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subject to limited evaluation against what haveluetently been scant observatichhe only
observational pursuit to evaluate the Eq. (1) enfilLareau et al. (2018) who analyzed Doppler
lidar observations of ~1500 individual shallow cdusu(ShCu) over the Southern Great Plains
(SGP), finding that sub-cloud vertical velocity iarce (a proxy for TKkL) explains only a few
percent of thew, variability. This led them to cast doubt upon te&ationship. They argue that
sub-cloud updrafts must work against negative bonoyanear the top of the mixed layer to

generatevy,, and such a penetrative nature of the conveceberidrates their correlations.

Given the contrasting results, it is imperativeatswer the question of whether or not sub-
cloud turbulence explains th,. This is not only important for cumulus parametations but
also crucial for advancing other pursuits in theldfiof cumulus dynamics. First, theoretical
inquiries of cumulus dynamics often rely on theuasgstion of a tight coupling between the sub-
cloud turbulence anah,. For example, in one-dimensional bulk models airmtary layer clouds,

a key variable is the Deardoff velocity scalé, which dictates the sub-cloud turbulence intensity
(Betts, 1973; Neggers et al., 2006; Stevens, 2BBéng, 2019). Linking the* with thew, is the

basis for several important coupling processes éatvthe cloud and sub-cloud layers (Neggers
et al., 2006; van Stratum et al., 2014; Zheng.e28P0). Second, recently emerging new satellite
remote sensing methodologies of retriewmg(Zheng and Rosenfeld, 2015; Zheng et al., 2015,
2016) have offered great insights into the aerosbtect effect and climate change (Rosenfeld et
al., 2016; Seinfeld et al., 2016; Li et al., 20Gtpsvenor et al., 2018; Rosenfeld et al., 2019).
These studies infer the via quantifying the TKRL or its equivalents. Evaluating if the TKE

explains thew, is essential to evaluate the physical validityh&fse techniques.

To that end, this study examines the relationskiwbéen thew, and sub-cloud turbulence
for ShCu using DL observations over the SGP. Waidamw, of ShCu ensembles, not single
ShCu, because the former is more relevant to cuisypdrameterization. We show that ensemble-
averagedw, and sub-cloud turbulence are highly correlatedhwstatistical significance
(correlation coefficient greater than 0.7). Evalugtthe relationship on ensembles but not on
individual ShCu might explain the disparities wilkie previous finding (Lareau et al., 2018). The
next session discusses the difference betweemt®rdle-meam, and thew, of single cumuli.

It lays the foundation for developing the samplisigategy of ShCu ensembles. Section 3
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introduces the observational data and methodol8ggtion 4 shows the results, followed by

discussions. The last section presents the comguémarks.

2. Wp of cumulus ensembles

Distinguishing between the ensemble and individsiaCu is necessary. The concept of
cumulus ensemble is a fundamental building blockalbcumulus parameterizations (Arakawa
and Schubert, 1974). A cumulus ensemble on spstales of several tens of kilometers is
composed of individual cumulus with a wide rangedstributions in size and age. Since the
individual cumulus clouds are at different stagetheir lifetime, their physical properties differ

considerably even if the surface and large-scatgrfg are uniform.

The difference could be illustrated by Figure 1wimg a ShCu ensemble simulated by the
Weather Research and Forecasting (WRF) in the EHadgly Simulation (LES) Atmospheric
Radiation Measurements (ARM) Symbiotic Simulation @®bservation (LASSO) project (Text
S1)(Gustafson Jr et al., 2020). The surface flaxeklarge-scale forcing are uniform over the 14.4
x 14.4 km domain with a horizontal grid size of 100 The vertical velocity field at the cloud-
base level shows a distinctive pattern with stropdrafts within clouds surrounding by shells of
downdrafts (Fig. 1a). We can see a rough corresppmalbetween the vertical velocity field at the
cloud-base level (Fig. 1a) and the TWE(Fig. 1b): regions with larger TKE typically have
stronger updrafts near cloud bases. Such a comdspoe, however, breaks down on the length
scale of a single ShCu. For example, the vertiedboity field shows strong updrafts within
individual clouds surrounding by shells of downtsafhereas the TKiz variability across the
cloud edges is considerably more uniform. This @& surprising since both updrafts and
downdrafts contribute to the vertical mixing, jdyntegulating the TKRL. As a result, their
covariation on the length scale of individual SH€uds to be noisy, which is confirmed by Figure
1c that compares the two quantities averaged owkvidual ShCu. The degree of scattering is

likely to increase substantially when the synoptid surface forcings are allowed to change.
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Figure 1: Examples of the different length scales of spataiability of wy, and TKEuL
using WRF-simulated ShCu on 21 UTC, June 6, 2()5Spatial distribution of vertical velocity
at the cloud-base level with maximum cloud cover&jack contours mark the cloudy regions
with liquid water content greater than 0.01 /(b)) The same scene but the color shading is the
TKEwmL. (c) Scatter plot of cloud-base vertical velosigrsus TKE, with each point
representing mean over individual cumuli. The siza point is proportional to the size of
cumuli. The data are obtained from the first phafdeASSO project. The TKf is computed as

0.5(u'* + v'* + w'?) averaged below the cloud base, in which the peation quantities are

defined as deviations from domain average at eaeH At instantaneous times.

Measuring the ensemble-mean from a surface-based DL, however, is challengirte

DL at a fixed location samples a line of cloud edets along the direction of horizontal winds. In
order to sample an adequate amount of individualutto constitute an ensemble, the sampling
time window must be at least several hours. Fomgia, for the wind speed of 5 m/s, a 2-hour
sampling window corresponds to a distance of ~ 86 &mparable to the spatial scale of a
continental ShCu ensemble. However, ShCu expergedistinctive diurnal variations over the
continent. Within the 2-hour sampling period, ti€C8 ensemble may evolve, leading to sampling
uncertainties. Fortunately, a convective boundagel often experiences a quasi-steady state
(Moeng, 1984; Lensky and Rosenfeld, 2006; Stull2)0In atmospheric science, whether a
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dynamical system can be considered quasi-steadgndspon the difference between the
characteristic time scale of the system and the tamale of external forcing. For a typical

convective boundary layer over the continent, tmase forcing time scale is on the order of a
few hours (defined as half of the period when tUmésge heat fluxes remain positive) whereas the
time scale for shallow convective circulationseveral tens of minutes (i.e. the convective time
scale) (Fig. S1a). Such a time scale separatiowalthe mixed layer to remain in a quasi-steady
state in which changes in turbulent properties ragligible compared with the turbulence

production and dissipation terms (Stull, 2012).sTduasi-steady assumption is particularly valid
in the early afternoon when the surface fluxes hretheir plateau and their time derivatives

minimize (Fig. S1b). As such, focusing on earlyeaibon ShCu can reduce the uncertainty of

sampling due to temporal evolution.

In summary, to measure thag of ShCu ensembles from surface-mounted DL, thepiam
window must be at least a few hours to sample émangount of individual ShCu. Moreover, an

ideal sampling period is the early afternoon whenlioundary layer is close to stationarity.

3. Dataand Methodology

We use observations from the Department of Enejlyisospheric Radiation Measurement
(ARM) SGP observatory. The key instrument usedhis study is the DL. The DL measures
vertical velocity with ~ 1 s temporal and 30 m Vet grid spacing. The transmitted wavelength
is 1.5 um. In addition to DL, we also use data fr@aaliosondes, a ceilometer, a Ka-band cloud

radar (KAZR), and ARM instruments measuring surfaxeeorological variables routinely.

3.1. An example case

To illustrate the sampling principle of ShCu enskspFigure 2a shows a MODIS satellite
imagery of a ShCu field over the SGP at 20:30 UTiQune 10, 2012. The wind is southeasterly
at a speed of ~ 9 m/s, corresponding to a horizaiggance of ~ 70 km over the two hours (the
red solid line in Fig. 2a). One can see a few dsz#nsingle cumuli drifting over the SGP site
along the wind direction. Figure 2b shows a timaghieplot of the DL from 19 to 21 UTC,
corresponding to 13 ~ 15 local standard time (LBIack dots mark the cloud-base heiglz$ (
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measured by the ceilometer. To count how many iddat cumuli are sampled during this period,
we use the DL reflectivity to identify single cumufigure 2¢ shows the zoomed-in window near
cloud bases during the 19:48 ~ 20:00 UTC. The nesmnytours encompass pixels with DL
reflectivity greater than #°m™ srt, a threshold that defines cloudy pixels (Lareaal £2018).
Based on the reflectivity threshold, a total ofiBdividual clouds are identified during the 2-h
period. The majority of them have a duration shdtian 4 s, which seems too short to constitute

a single cloud. Thus, we congregate clouds wittsgap0 s, reducing the cloud population to 29,
with 12 of them lasting longer than 30 s.
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Figure 2: An example case of the shallow cumulus field am 3@, 2012, over the SGP.
(a) MODIS image centered on the SGP site (red atar0:30 UTC. The red solid line
marks the rough direction and travel distance efrtiean horizontal wind during the 19 ~

21 UTC. (b) Height-time plot of Doppler lidar imagévertical velocity during a two-
hour window from 19 to 21 UTC. The black dots m#m& cloud-base heights measured
by a ceilometer. The blue rectangle marks a smailedow shown in the (c). Navy
contours mark the cloudy regions defined as gradipsxels with reflectivity greater
than 16*¢mt srt.
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3.2. Computing thew,

We select “cloud-base” DL pixels through two stefpsst, to exclude the decoupled cloud
elements and elevated cloud sides, pixels withcclmases higher than lifting condensation level
(LCL) by 30% are removed. Second, for the remairdogpled clouds, we select pixels within
three gates below the cloud base (~ 100 m) andlglpixels above the cloud base. These pixels
are defined as “cloud-base” pixels. Because o$timng signal attenuation, the DL only penetrates
< 100 m into the clouds. Therefore, the cloudy Isie@e mostly concentrated near several tens of
meters above the cloud base. Figure S2 shows aas@op of the vertical velocity probability
density function (PDF) between the two sub-groups“aoud-base” pixels. Their PDF
distributions are overall similar, suggesting thas tenable to combine them as “cloud-base”

pixels.

To compute the ensemble-meas) we average the selected vertical velocities m ways.
The first is to simply average the vertical velmstabove a threshold: = Y} N;w; /Y, N;, in which
the N; represents the frequency of occurrence of positeracal velocityw; that is greater than a
critical value (rit). This is the common way for cloud-base mass fluxedys The second way
of averaging is weighted by volumg¥°! = ¥ N;w?/3 N; w;. The volume-averaged updraft speed
has been considered as more relevant to the uaddisyy of aerosol cloud-mediated effects
because it gives more weight to the larger vertedbcities that generate clouds with greater
volume (Rosenfeld et al., 2014; Zheng et al., 2Rdsenfeld et al., 2016).

3.3. Other quantities

Ideally, the TKEL should be computed & (u'” + v'> + w'?) averaged below the cloud
base. However, the DL can only measure the vertimaponent).5w'?, denoted as TKEa.. In
this study, we use the TR to approximate the TK¥z , motivated by the fact that TKH.
dominates the TKf in typical convective boundary layers (Stull, 2D1dhe potential
contributions from horizontal components of T¥{Ewill be taken into account in our analyses in

section 3.

We used the surface temperature and moisture nezhsinom the ARM Surface
Meteorology Systems to compute the LCL using theceanalytical formula of Romps (2017).
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As described in the example case, we used thenibicesf DL reflectivity to identify single cumuli.

To compute the chord length of individual cumulie wsed the DL product of horizontal wind
speed near cloud-base, which is derived from acitglazimuth display algorithm (Teschke and
Lehmann, 2017). The multiplication of cloud-baseizantal wind speed and individual cloud

duration yields the cloud chord length.
3.4. Case selection

A total of 128 ShCu days were selected between 202014. The selection criterion is in
principle similar to previous studies (Zhang anéiK) 2013; Lareau et al., 2018), which involves
both objective and subjective criteria. The objextriteria include three steps: (1) the cloud-base
height (defined as the mean of the lowest quantitein the 2-h period) has to be within 30% of
LCL to ensure coupling, (2) the KAZR reflectivitamenot exceed 0 dBZ between the surface and
cloud base to ensure no considerable precipitasind,(3) the cloud duration cannot exceed 30
min to exclude stratiform clouds. Besides, we examimageries from KAZR and %13
Geostationary Operational Environmental Sateltterisure ShCu-like characteristics. This is the
best we can do since a completely objective metbioselecting ShCu remains missing, although
the emerging new technique of machine learning@sngsing to address this issue in the near
future (Rasp et al., 2019).

Based on these criteria, we obtain 32 ShCu dayyegser, similar to the 28 ShCu days per
year in Zhang and Klein (2013) and Lareau et @018}, suggesting that there is no marked
sampling difference between this study and prevmuss. Fig S3 shows the statistics of these
selected ShCu ensembles. On average, each enssmbiaposed of ~ 20 individual ShCu, with
half lasting longer than 30 secs. The majorityhef €nsembles have the maximum cloud chord

length shorter than 5 km, consistent with prior\texalge.

4. Results

Figure 3 shows the scatter plots®f (a) andw}°! (b) versus (TKEw)Y2for differentwei.
Overall, the (TKEu)Y2is a good predictor of cloud-base updrafts, expigin- 50% of their

variances. Note that the degree of scatteringlimsticeable, but given the instrument error of
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the DL (~ 0.1 m/s) and potential sampling errors thuthe assumption of stationarity, such degrees
of correlation are good enough for demonstratirghysical validness. To our knowledge, this
is the first observational evidence supporting abdity of the sub-cloud turbulence to dictate
cloud-base updrafts that was only found in higlohggon models (Grant and Brown, 1999;
Fletcher and Bretherton, 2010; van Stratum et 28114). Such good correlations suggest a
continuity of vertical momentum between the suhididayer and cloud base, despite the in-
between weakly stable layer (i.e. cloud-base ttamsliayer) (Neggers et al., 2007; Stevens, 2007).
Indeed, the stability of the transition layer irstess with the convective circulation, a manifesiati

of the dynamical coupling between the sub-cloud endd layers, to reach an equilibrium that
maintains the mass conservation (Neggers et a06;2Bletcher and Bretherton, 2010). In this
regard, the transition layer property should notbesidered an external forcing that alters the
coupling between the sub-cloud and cloud-base digsatout an internal parameter that responds

to the circulation.

Both w, andw}°! increase with theneit, but thew?°! shows much weaker sensitivity

primarily because the}°! gives more weight to the larger vertical velociti€ke intercepts also
increase withwrit, which is an artificial consequence of using nemeavcit. Physically speaking,
a zero TKEwm should lead to zero cloud-base updraft speed. Tdrerewe will focus our

subsequent discussions on the slopes that bearphgsecal meaning than intercepts.

To compare our results with that from FB10, we alge the Eq. (1) in Figure 3a (light blue
curve). FB10 uses thecit of 0.5 m/s. Our empirical estimate (the red lisebws a stronger
sensitivity ofw, to the sub-cloud turbulence than FB10 by more théactor of 3. What causes
the difference? One possible reason is that we theeTKE"w that does not include the horizontal
components of the TKE, leading to smaller valueEKE and, thus, a steeper slope. Another more
likely reason is that the horizontal grid spacifigh® model used by FB10 are too coarse (1 km)
to accurately simulate the vertical velocities. Fatance, modeled vertical velocities decrease
with the model grid spacing by a power law of -@Rauscher et al., 2016; Donner et al., 2016).
The underestimatedt, due to coarse grid spacing may flatten the sldpe,wersus (TKm)Y2
in FB10.
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To understand which factor is responsible, we beel ES data of 18 ShCu days from the
LASSO project (Text S1). The LASSO horizontal gsmhcing is 100 m, 10 times finer than that
used in FB10. With the model output of three-din@mal winds, we are able to diagnose the full
components of TKi. so that we can conduct an “apple-to-apple” consparibetween the
LASSO and FB10. As shown by the green lines in B&.LASSO models (WRF and System for
Atmospheric Modeling, SAM) show slopes steeper tih@FB10 by more than a factor of 3 (see
Fig. S4 for their scatter plots with statisticatalks). This confirms that the flatter slope of B
is likely caused by the coarse model grid spaclig comparison between the LASSO and DL,
which is not the focus of this study, is discussethe supplementary material (Text S2). Its key
message is that the cloud-base vertical velocgiesilated by the LASSO models are biased
toward updrafts due to misrepresented model phgsich as lateral mixing (Endo et al., 2019),

leading to a steeper slope than the DL.

We have tabulated the empirical formulasigrandw°!for differentweri; (Table S1) so

that readers can use what suits their researctegtse

— y=1.04x+0.11 R=0.73 (w>0m/s)
y=1.04x+0.20 R=0.73 (w>0.1m/s)
—— y=0.98x+0.61 R=0.68 (w>0.5m/s)
—— y=0.28x+0.64 FB 2010 (w>0.5m/s)
-=--- y=1.07x+0.21 LASSO WRF (w > 0.5 m/s )
—— y=0.97x+0.21 LASSO SAM (w > 0.5m/s )

20 a 30 b

— y=1.81x+0.22 R=0.74 (w>0m/s)

y=1.80x+0.24 R=0.74 (w> 0.1 m/s)
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Figure 3: Scatter plots o, (a) andwy°" (b) versus (TKEw)Y? for wei = 0, 0.1, and 0.5 m/s. Each
point represents a ShCu ensemble mean. The bhadisel marks the Eq. (1), the empirical

formula developed in Fletcher and Bretherton (2010)

5. Discussions

5.1. Cloud center versus edge

For any vertically pointed instruments, the sanplsoff the cloud center, leading to a bias
toward edges of clouds (e.g. Romps and Vogelmadh7)2 How does the off-center sampling
influence the results? To answer it, we dividestéi@pled cloud-base DL pixels into two categories:
those closer to the center of individual cloud dsothan the edges are categorized as “center”
pixels whereas others are “edge” pixels. Compattiregresults from these two groups (Fig. S5)
shows that sampling the “center” pixels yieldslatrenship with a higher R, a steeper slope, and
an intercept closer to the origin than that sangptire “edge” pixels. This makes physical sense
because cloud edges are more influenced by thedsudpshells and lateral mixing (e.g. Heus and
Jonker, 2008), both deteriorating the relationsBipspite the difference, the sensitivity of the
result to this potential bias is not significant€a the relationship for the “edge” pixels has an R
of 0.65). This suggests that our ensemble-baseglsgrmethodology allows for a statistically

robust characterization of the ensemble-mean chasd updraft speed.

5.2. Diurnal dependence

Given that all cases are in the early afternooe,raay ask how the observed relationship is
representative of the other times of a diurnal €y@lo address this question, we use the LASSO
data to examine its diurnal dependence. We chese.th= 0 m/s for determining the, because,
as noted above, using an ad-hegi, say 0.5 m/s, leads to a markedly posiwgfor zero
(TKE“m)Y2. By usingwei = 0 m/s, we can force the best-fit line through tigin through the
least-square algorithm, freeing us from the unpiatsineaning of positive intercepts. Figure 4a
and b show the scatterplots of #hgversus (TKEm)*?in different local times simulated by WRF

and SAM, respectively. Both models show notablynigant correlations between the two
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guantities in different phases of a diurnal cyctmmfirming the ability of (TKEw)Y2to explain the
variability of w,. More importantly, the slope of the relationshiries little with local time,
except in the early morning and late afternoon.(Bgand d). In the early morning, the stronger
capping inversion weakens the speeds of risingrtalsrwhen they penetrating into the inversion,
leading to smallet, for given sub-cloud turbulence (Fig. Slc). Suchtabiization effect
becomes less influential as the convection kickswipch lessens the inversion strength. In the
late afternoon, as the solar insolation weakeressthiface fluxes decrease considerably whereas
the boundary layer remains deep (Fig. S1d). Tlidddo a decoupling between the ShCu and the
surface (Stull, 2012), which may explain the flagwpe betweew, and (TKE'm)Y? in the late

afternoon.

In summary, the diurnal dependence of the couletgeen thewand sub-cloud turbulence
is small, except in the early morning and lateraften when the strong capping inversion and

cloud-surface decoupling may lead to flatter slppespectively.
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Figure 4: Scatterplots ofv, (Werit = 0 m/s) versus the (TKm)Y2 grouped by the local
standard time, simulated by WRF (a) and SAM (bxhegroup of points corresponds to a best-
fit linear regression line forced through zero. Blepes of the best-fit lines are plotted in (o)l an
(d) for WRF and SAM, respectively.

6. Conclusion

This study examines the relationship between theckoud turbulence and cloud base
updrafts using Doppler lidar (DL) observations @Blshallow cumulus (ShCu) ensembles over
the Southern Great Plains. We proposed a new Dipl#agnmethod that allows measuring the
cloud-base updrafts for an ensemble, instead ofiohaal, ShCu. Specifically, we take advantage
of the stationarity and ergodicity of ShCu-toppedithdary layers in the early afternoon when the
temporal change in the surface forcing is miniméior each ShCu case, we selected a 2-hour
window of DL that includes an average amount ofC~ir&lividual cumuli with varying sizes,
constituting an ensemble. This allows us to computeensemble-averaged quantities from DL
measurements made at a fixed point. By analyziegl28 ShCu ensembles, we found that the
vertical velocity variance explains ~ 50% varialilbf ensemble-mean cloud-base updrafts, thus
supporting the widely-held hypothesis and praaticesing the sub-cloud turbulent kinetic energy
to parameterize the cloud-base updrafts in some-sfahe-art mass flux closure schemes of
convection parameterization (Bretherton et al. £08:ggers et al., 2009; Fletcher and Bretherton,
2010). To our knowledge, this is the first obseval evidence that demonstrates the ability of

sub-cloud turbulence intensity to dictate the clbade updrafts.

With the observational data, we derived empiriegdtionships between the square-root of
sub-cloud turbulent kinetic energy and ensembleamelaud-base updraft speeds that are
computed for different thresholds of vertical vafpcand by different averaging schemes.
Although all the 128 cases were sampled in theyesitbrnoon, the diurnal variation of the
relationship is weak (except in the early mornimgl date afternoon), as shown by the LES
simulations of 18 ShCu cases over the SGP. Thegarieah formulas are useful for the
developments of cumulus parameterizations, thealesiudies of ShCu dynamics, and satellite-

based inference of cloud-base updrafts.
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