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ABSTRACT

2



A wide range of approaches exists to account for subgrid cloud variability

in regional simulations of the atmosphere. This paper addresses the follow-

ing questions: (1) Is there still benefit in representing subgrid variability of

cloud in convection-permitting simulations? (2) What is the sensitivity to

the cloud fraction parameterization complexity? (3) Are current cloud frac-

tion parameterizations scale-aware across convection-permitting resolutions?

These questions are addressed for regional simulations of a six-week observa-

tion campaign in the US Southern Great Plains. Particular attention is given

to a new diagnostic cloud fraction scheme with a bimodal subgrid saturation-

departure PDF, described in Part I. The model evaluation is performed using

ground-based remote sensing synergies, satellite-based retrievals and surface

observations. It is shown that not using a cloud-fraction parameterization re-

sults in underestimated cloud frequency and water content, even for stratocu-

mulus. The use of a cloud-fraction parameterization does not guarantee im-

proved cloud property simulations, however. Diagnostic and prognostic cloud

schemes with a symmetric subgrid saturation-departure PDF underestimate

cloud fraction and cloud optical thickness, and hence overestimate surface

shortwave radiation. These schemes require empirical bias-correction tech-

niques to improve the cloud cover. The new cloud-fraction parameterization,

introduced in Part I, improves cloud cover, liquid water content, cloud base

height, optical thickness and surface radiation compared to schemes reliant

on a symmetric PDF. Furthermore, cloud parameterizations using turbulence-

based, rather than prescribed constant subgrid variances, are shown to be more

scale-aware across convection-permitting resolutions.
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1. Introduction36

Over the past decades, different approaches have been proposed to represent subgrid cloud vari-37

ability in numerical weather prediction (NWP) models. This occurred against a backdrop of ever38

increasing computing power and decreasing grid spacing, providing both opportunities and chal-39

lenges for model development. On the one hand, the increased computing power allows for a more40

physical representation of processes that induce subgrid variability. On the other hand, the contin-41

uous increase in model resolution necessitates the development of scale-aware parameterizations42

that require less resolution-specific tuning.43

The inception of subgrid cloud fraction (CF) parameterizations dates back to the 1970s with44

simple schemes, relating the CF to the grid-box mean relative humidity (Sundqvist 1978; Del45

Genio 1996). Later adjustments involved the assumption of an underlying probability density46

function (PDF) of the saturation departure (SD) (Smith 1990; LeTreut and Li 1991; Lewellen and47

Yoh 1993; Lohmann et al. 1999). The CF in these schemes is diagnosed by integration over the48

saturated part of the PDF, introducing sensitivity to the higher-order PDF moments. It is common49

practice to keep assumptions about the PDF moments fairly simple. The PDF variance is often50

kept constant by specifying a critical relative humidity (RHcrit) at which cloud just starts to form in51

a sub-saturated grid box, while higher-order moments (e.g. skewness) are ignored. A few notable52

exceptions to this simplified approach are Ricard and Royer (1993) and Lohmann et al. (1999),53

who obtain the PDF-variance from the turbulence parameterization, while still ignoring the PDF54

skewness.55

Later advances in CF parameterization development abandoned the diagnostic approach and56

introduced prognostic equations for the time evolution of either the CF itself (Tiedtke 1993; Wil-57

son et al. 2008), or the underlying uni-variate (saturation-departure or humidity) PDF moments58
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(Tompkins 2002). A further step-change in cloud scheme development involves the integration of59

cloud, turbulence and convection in so-called assumed-PDF schemes (Golaz et al. 2002; Gerard60

2007; Larson et al. 2012). These parameterizations provide a fully self-consistent set of prog-61

nostic equations for all higher-order moments of multi-variate subgrid PDFs. These advanced62

schemes are mathematically elegant, but still require a host of closure assumptions, for instance in63

the specification of sometimes hard-to-observe source and sink terms for higher-order moments.64

Hence, while the time scales of certain cloud-related processes warrant a prognostic approach,65

these schemes have considerable added complexity, making them increasingly un-tractable for in-66

evitable tuning in an operational context. Furthermore, the question remains whether the greater67

complexity is justified in an operational environment with fierce competition for computing power68

between more advanced physics and higher resolution.69

This paper presents an in-depth evaluation of six CF parameterization approaches at convection-70

permitting scales, with particular attention for the new diagnostic bimodal CF scheme described in71

Van Weverberg et al. (2020), hereafter Part I. This new scheme allows for bimodal and skewed sub-72

grid distributions within the entrainment zone. Hindcasts with a near-operational regional config-73

uration of the U.K. Met Office Unified Model (UM) are performed for a 6-week observation cam-74

paign, the Midlatitude Continental Convective Clouds Experiment (MC3E; Jensen et al. (2016))75

over the U.S. Southern Great Plains (SGP). These hindcasts are thoroughly evaluated using high-76

quality ground-based remote-sensing synergies, satellite retrievals and surface measurements.77

More specifically, this paper aims to address the following questions: (1) Is there still benefit78

in the use of CF parameterizations at convection-permitting scales? (2) What is the sensitivity79

of convection-permitting simulations to a number CF parameterization approaches? How does80

the performance of the bimodal cloud scheme compare to conventional approaches with various81
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complexity? (3) Are CF schemes tested here scale aware across a range of convection-permitting82

resolutions?83

A description of the observations used in addition to those introduced in Part I is given in Section84

2. An overview of the model configurations is provided in Section 3. The results section consists85

of three subsections. First, a single case study evaluation is shown, focusing on the detailed time-86

height evolution of the cloud properties. Second, a more general evaluation of the entire MC3E87

campaign is performed, focusing on vertical profiles and diurnal cycles of cloud properties. Third,88

scale awareness of the observed and simulated cloud properties is investigated. The main conclu-89

sions are summarized in Section 5.90

2. Observations91

a. Vertical Cloud Locations and Water Content92

The foremost source of information about cloud locations and water content in this study are the93

Active Remote Sensing of CLouds (ARSCL) and the Microbase ARM synergistic data products94

respectively. A detailed description of these products is provided in Part I. It is re-iterated that,95

based on observed wind speeds (Toto and Jensen 2016) and given the model grid length, a moving96

time window is applied on these cloud locations to establish the ‘observed’ cloud fraction. The97

same time window is used to establish the grid-box mean liquid water content.98

Given the observational uncertainty, most of this paper focuses on non-precipitating, liquid99

clouds. We refer to Part I for details about the precipitation screening and the uncertainties as-100

sociated with ARSCL and Microbase.101
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b. Liquid Water Path102

Observations of the liquid water path (LWP) are obtained from the microwave radiometer103

(MWR) at the SGP site, which is also used as a constraint in the Microbase. The MWRRET104

ARM data product (Turner et al. 2007) Best-Estimate LWP is used, which is retrieved using an105

algorithm that combines information from the MWR brightness temperatures, surface-based me-106

teorological data and radiosondes. Uncertainty estimates for the LWP are provided for individual107

measurements and are reported in the results section.108

c. Vertical Relative Humidity and Boundary Layer Height109

Radiosondes are routinely launched at the SGP site 4 times a day, and more frequently during the110

MC3E campaign. Relative humidity (RH) from the morning (1130 UTC, 0630 LT) and evening111

(2330 UTC, 1830 LT) radiosonde launches is used in this paper. These profiles are compared112

against simulated profiles nearest to the SGP and for the output time closest to the mean time113

between radiosonde launch and it reaching an altitude of 500 hPa. Uncertainty in the radiosonde114

RH is about 3%.115

Information about the observed boundary-layer depth is obtained from the Planetary Boundary116

Layer (PBL) Height ARM product (Sivaraman et al. 2013). This product provides an estimate of117

the PBL heights for each available sounding, using four different methods. The Heffter (1980) and118

Liu and Liang (2010) methods use the potential-temperature profile and two additional estimates119

use the bulk Richardson Number. The average of these estimates is used as the observed PBL120

height, while the variability between these methods is shown as the observational uncertainty.121

Last, this study uses the interpolated sounding ARM product (Toto and Jensen 2016), which122

interpolates observed soundings to a regular time-height grid with 332 levels and a 1-minute res-123

olution. RH between the observed sounding launches is scaled using MWR observations.124
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d. Surface Radiation125

Surface radiation observations are obtained from the ARM Best Estimate Cloud and Radiation126

Data product (Xie et al. 2010). Surface downwelling longwave (LW) and shortwave (SW) radiation127

from the SGP Central Facility radiometer were used, with a temporal resolution of 60 s. This128

product averages two out of three different co-located instruments measuring irradiances that agree129

best with each other (Shi and Long 2002). Uncertainties are of the order of 6 and 2.5% for SW130

and LW radiation respectively (Stoffel 2005).131

e. Satellite Cloud Optical Thickness and Water Path132

Data from the Moderate Resolution Imaging Spectroradiometer (MODIS), on-board the Aqua133

satellite were used as an additional independent observation of the cloud properties. Cloud Optical134

Thickness (COT ) and Water path (WP) from the Collection 6 Level-2 Aqua-Modis cloud products135

(Platnick et al. 2017) was used from the mid-afternoon (1400 or 1500 LT) overpass over the136

SGP. Note that all pixels identified as ‘overcast cloudy’, ‘partly cloudy’ and ‘cloud edge’ were137

included in the analysis. The optical properties from MODIS are retrieved simultaneously using138

multispectral reflectances for the liquid and ice phase, using visible, infrared and thermal channels139

(Platnick et al. 2017). A simple regridding to the model grid was performed, since MODIS and the140

evaluated model configuration both have a resolution of 1 km. Model evaluation was performed141

in a model-to-observation approach, using the Cloud Feedback Model Intercomparison Project142

(CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al. 2011). This software143

uses simplified synthetic retrieval processes to mimic what the satellite observations would be,144

given the model’s simulated cloud fields. Uncertainty in the MODIS COT and WP retrievals is145

provided on a per-pixel basis and is reported in the results section.146

8



f. Surface Precipitation147

The National Center for Environmental Prediction (NCEP) routinely produces the Stage IV148

radar-based, gauge-adjusted surface precipitation product with a 4-km spatial resolution and149

hourly sampling (Lin et al. 2005). Data covering the entire 1-km simulation domain are used150

in this paper. Uncertainties in the Stage IV rainfall estimates are generally within 25% (Westcott151

et al. 2008).152

3. Model configurations153

All simulations in this paper are integrated with the Met Office Unified Model (UM, vn11.4),154

using horizontal grid spacings of 4, 2, 1, and 0.5 km, nested within the GA6 configuration global155

model (Walters et al. 2017) at a resolution of N512 (' 30 km grid spacing near the SGP). Nesting156

of the successive domains was done one-way only, with no impact of the high-resolution domains157

onto the coarse-resolution domains.158

We refer to Part I for more details about the model configurations and the scientific details other159

than the cloud schemes used. All three configurations from Part I, only varying in their cloud160

scheme settings, are used in the forthcoming analysis. These include the operational mid-latitude161

configuration (RA2-M, Bush et al. (2019)), using the diagnostic Smith (1990) cloud scheme and an162

empirical adjustment of the cloud cover (RA2M), a configuration using the Smith cloud scheme163

without the operational cloud cover adjustment (NOEACF), and a configuration with the new164

diagnostic bimodal cloud scheme (BM). More details about these configurations can be found in165

Part I. Three additional configurations are included in this paper. First, a version of the UM without166

a cloud fraction (CF) parameterization is used (NOCF), but with otherwise identical settings to167

the previous permutations.168
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A second additional configuration uses the Smith cloud scheme, but rather than using a pre-169

scribed and time-invariant profile of RHcrit, it diagnoses variances from the turbulence param-170

eterization, following Van Weverberg et al. (2016) (SMITH-TKE). Subgrid saturation-departure171

variance σ2
s in this configuration is estimated as follows:172

σ
2
s = a2

Lq′2T −2aLbLq′T θ ′liq +b2
Lθ ′2liq (1)

where aL and bL account for latent heat release, q′2T is the variance of the total water (qT =173

qv + qliq), θ ′2liq is the variance of the liquid potential temperature (θliq) and q′T θ ′liq the co-variance174

between the two.175

Following Mellor and Yamada (1982), (co-)variances are parameterized as:176

θ ′2liq = BzShlbl
2(

∂θL

∂ z
)

2

(2)

q′2T = BzShlbl
2(

∂qT

∂ z
)

2

(3)

q′T θ ′liq = BzShlbl
2 ∂qT

∂ z
∂θL

∂ z
(4)

where lbl is the blended subgrid mixing length following Boutle et al. (2014), Bz = 15 as in177

Nakanishi (2001) and Sh is the stability function. Note that these variances are subsequently178

translated into RHcrit as follows:179

RHcrit = 1−
√

6σs

aLqsat(TL)
(5)

We refer to Van Weverberg et al. (2016) for more information about these formulations.180
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A last configuration employs a more complicated prognostic CF scheme, the Prognostic Clouds181

and Condensate scheme (PC2), described in Wilson et al. (2008) (PC2-TKE). This cloud scheme182

calculates time-step tendencies of CF and liquid water content (LWC) from each parameterization183

that affects temperature or moisture and carries memory of the cloud state from previous time184

steps. This scheme uses the turbulence-based variances in its cloud initiation term (Equation185

1), like SMITH-TKE, and is used in the global atmosphere configuration (GA7; Walters et al.186

(2019)), and in the tropical regional configuration (RA2-T, Bush et al. (2019)) at the Met Office.187

An overview of all model experiments is provided in Table 1.188

4. Results189

a. Case Study Evaluation190

Before providing a statistical analysis of the entire MC3E campaign, a detailed case study eval-191

uation is shown here. Given the difficulty of the Smith (1990) scheme to produce full cloud cover192

in stratocumulus conditions (Part I), the case of 27 April 2011 was selected, when an extensive193

stratocumulus field moved over the SGP. Figure 1 shows the time-height cross sections of cloud194

fraction (CF) and liquid water content (LWC) at the ARM SGP site, as retrieved by ARSCL and195

Microbase and as simulated using all model configurations. Observations (Figures 1a and h) show196

an overcast stratocumulus deck, breaking up in the late afternoon. The afternoon cloud and PBL197

top are fairly stationary at about 2000 m and the LWC suggests occasional light rain not reaching198

the surface (e.g. at 1300 LT).199

The NOCF (without a CF parameterization) displays an overcast cloud layer, although the cloud200

base is lower than observed (Figure 1b). Furthermore, clouds severely lack water, while breaking201

too late (Figure 1i).202
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All three Smith-based configurations (NOEACF, RA2M and SMITH-TKE) struggle to maintain203

full cloud cover throughout the afternoon and underestimate the LWC (Figure 1). As expected,204

the CF is somewhat better captured by RA2M with occasionally overcast conditions (Figure 1d).205

However, these overcast moments remain interspersed with partially cloudy episodes, unlike in206

the observations (Figure 1a and d).207

Interestingly, the advanced prognostic cloud scheme (PC2-TKE) produces too small CF as well208

(1f), but improves the LWC (Figure 1m) compared to the aforementioned configurations.209

Persistent near-overcast conditions and larger LWC in the afternoon are achieved using the new210

bimodal cloud scheme (BM, Figure 1g and n). Hence BM outperforms all other configurations for211

this stratocumulus case, although the cloud breaks up too late.212

From Figure 1, all configurations reproduce the large-scale humidity (blue contours), tempera-213

ture (not shown) and the PBL depth (red lines) fairly well, apart from a near-surface dry bias. It214

is remarkable that the similar humidity environments in all simulations are capable of producing215

fairly large differences in CF and LWC, dependent on the cloud scheme used.216

Given the uncertainties associated with the ground-based retrievals, Figure 2 provides an inde-217

pendent evaluation against MODIS observations. As mentioned in Section 2, the COSP software218

was used to provide synthetic observations from the model simulations.219

Observed cloud optical thickness (COT ), condensed water path (WP) and cloud top pressure220

(CT P) at 1500 LT are given in Figure 2a, h and o. The location of the SGP site, used for the cross221

sections in Figure 1, is marked by the yellow diamond on Figure 2 while the MODIS overpass time222

is indicated on the cross sections in Figure 1 with the vertical dashed gray line. Consistent with223

Figure 1a, MODIS displays an optically thick stratocumulus sheet covering most of the domain,224

with a few breaks near the Texas Panhandle and over Kansas (Figure 2a). The WP is fairly high225

within the closed cells, although there is considerable variability (Figure 2h). Apart from a few226
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high-level clouds to the northeast of the SGP site, clouds tops are generally fairly low (Figure 2o),227

confirming the principal contribution from the low-level stratocumulus deck to the WP in Figure228

2h.229

All model configurations, apart from BM, fail to show a continuous, optically thick stratocu-230

mulus sheet with large WP (Figure 2b-f and i-m), confirming their poor representation of cloud231

properties evident from Figure 1. Note that RA2M exhibits fairly similar cloud properties than232

NOEACF (Figure 2 c and d). Indeed, the operational bias adjustments in RA2M are limited to the233

CF , not affecting the LWC.234

The clear improvement in CF and LWC in BM in Figure 1 is reflected in the COSP-diagnostics235

(Figure 2g and n). The COT and WP are substantially larger and more continuous in BM compared236

to the other configurations, bringing them closer to the observations.237

Figure 3 shows the observed and simulated diurnal cycles of surface SW and LW downwelling238

radiation during 27 April and Table 2 shows evaluation statistics for each simulation. Apart from239

a brief gap in the clouds around 1000 LT, most of the daylight period remains overcast in the240

observations, leading to subdued downwelling SW and enhanced downwelling LW radiation. All241

simulations transmit too much SW radiation through the afternoon stratocumulus (Figure 3a),242

consistent with the underestimated CF and/or WP (Figure 1 and 2). The overcast stratocumulus243

sheet in NOCF (Figure 1b) fails to reflect sufficient downwelling SW (Figure 3a and Table 2),244

given its underestimated LWC (Figure 1i). The PC2-TKE, having larger LWC, but much more245

broken clouds (Figure 1f and m), also has excessive surface SW (Figure 3a and b). It is only when246

both CF and the LWC are well-captured, as in BM, that the surface radiation statistics improve247

(Figure 3 and Table 2).248

From the evidence presented so far, the bimodal cloud scheme is clearly beneficial for the 27249

April stratocumulus case. One of the remarkable findings for the other configurations is the limited250
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impact of using a more realistic saturation-departure variability in SMITH-TKE and PC2-TKE.251

Figure 4 provides a time-height cross section of the variable RHcrit and associated variances for252

SMITH-TKE on 27 April 2011. Since these variances are based on a combination of the turbulent253

kinetic energy (TKE) and the local thermodynamic gradients (section 3) the lowest RHcrit and254

largest variances manifest themselves near the PBL top. Most of the stratocumulus cloud (high-255

lighted by the dotted area) resides well within this region of high variability. The RHcrit parame-256

terization described in Van Weverberg et al. (2016) imposes a resolution-dependent minimum limit257

on the RHcrit, based on aircraft observations. From Figure 4, this minimum limit (about 86% for258

the 1 km grid spacing shown here) is reached throughout the entire cloudy region. The NOEACF259

has a fairly similar value of 80% at this altitude, which explains why SMITH-TKE does not yield260

vastly different cloud properties. Future research might revisit these resolution-dependent RHcrit261

limits in SMITH-TKE.262

A similar analysis is provided for BM (Figure 5). As explained in Part I, the individual modes263

in the mixture of PDFs in the bimodal cloud scheme are symmetric and Gaussian, with variances264

based on an extension of the Furtado et al. (2016) scheme to all liquid clouds. These turbulence-265

based unimodal variances are provided in Figure 5a. In contrast to the turbulence-based variances266

in SMITH-TKE (Figure 4), the variances following Furtado et al. (2016) are not maximized near267

the PBL top. These variances are more uniquely related to the TKE and turbulent mixing length,268

and do not have a gradient-related term in their formulation like SMITH-TKE. Hence, variances269

here are larger within the PBL, where TKE is maximized.270

A unique feature of the bimodal cloud scheme is the assignment of a bimodal subgrid SD PDF271

to each level encompassed by an entrainment zone (EZ, see Part I). This is done by combining272

the modes of variability from the bottom and the top of the EZ, using their respective mean and273

variance, and weighting them to conserve the SD at the level of interest. Any level outside the274
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EZ uses a unimodal distribution with the local turbulence-based variance. We refer to Part I for275

more details about the bimodal cloud scheme. Figure 5b shows the combined variance of the276

bimodal mixture distribution. The EZ is denoted by the gray contour and clearly, the variances of277

the mixture distribution within the EZ are much larger than the local turbulence-based variance.278

Hence, the mixture-distribution variance is maximized near the PBL top in Figure 5b, as typically279

observed (Price 2006; Wood and Field 2000; Turner et al. 2014; Wulfmeyer et al. 2016; Osman280

et al. 2018). Note that the mixture-distribution variances near the PBL top are larger than those281

obtained from the turbulence-based RHcrit formulation in Van Weverberg et al. (2016) (Figure282

4b). A variance of 10−6kg2kg−2 would roughly correspond to an RHcrit of about 40%. Further283

research will focus on the evaluation of the bimodal variances using aircraft and lidar data.284

An implicit feature of the bimodal scheme is its ability to produce skewed mixture distributions285

of SD, by applying variable weights to each of the two PDFs. Observed humidity profiles from286

lidar and aircraft (Turner et al. 2014; Wulfmeyer et al. 2016; Wood and Field 2000) typically287

show negatively skewed distributions just below the PBL top. Figure 5c shows the skewness288

associated with the mixture distribution in the bimodal scheme for 27 April. Consistent with the289

aforementioned observations, the stratocumulus cloud just below the inversion resides in a broad290

region of negative skewness, which is responsible for the much larger CF and LWC for a given291

environmental RH as noted in Figure 1g and n.292

b. Statistical Evaluation of MC3E293

1) VERTICAL PROFILES OF CLOUD PROPERTIES294

The previous section demonstrated the benefit of the bimodal cloud scheme for a single stratocu-295

mulus case, focusing on the physical mechanism leading to improved CF and LWC. This section296

explores whether these improvements can be confirmed for a wider range of conditions.297
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Figure 6 shows vertical profiles of observed and simulated non-precipitating, liquid cloud prop-298

erties, averaged over the entire MC3E period. Evaluation statistics are provided in Table 3. All299

model configurations underestimate the MC3E-averaged vertically distributed CF(Figure 6a), al-300

though there is considerable variability in their frequency of occurrence (FOO; Figure 6b) and the301

amount of cloud when present (AWP; Figure 6c).302

The NOCF underestimates the average CF (Figure 6a) to a similar degree than some configu-303

rations that do use a CF parameterization (Table 3). However, NOCF experiences a large com-304

pensating error between a too low FOO (Figure 6b), while by definition always having AWP= 1305

(Figure 6c). The average CF in NOEACF is closer to the observations than NOCF, although ex-306

hibits an opposite compensating error of too large FOO and too small AWP. The bias-adjustment307

in RA2M leads to increased FOO and AWP compared to NOEACF (Figure 6b and c), yielding308

the best-captured average CF (Figure 6a). However, while the RA2M AWP is improved (yet still309

underestimated), the FOO becomes even more overestimated, particularly for very low clouds.310

The BM produces similar average CF than NOEACF (Figure 6a), but captures the observed FOO311

better than any other configuration (Figure 6b). The AWP in BM is comparable to RA2M (Fig-312

ure 6c). Interestingly, the two configurations using the turbulence-based RHcrit (SMITH-TKE313

and PC2-TKE) produce similar average CF (Figure 6a), despite the greater complexity in the314

PC2-TKE cloud scheme. Their small average CF is mainly due to the underestimated FOO. The315

AWP in these two configurations is better captured than in all other configurations, particularly by316

SMITH-TKE. This is likely related to generally larger turbulence-based RHcrit in SMITH-TKE317

than e.g. the constant RHcrit in NOEACF.318

Average LWC profiles are provided in Figure 6d. Similar to the CF , average LWC in all simu-319

lations is biased low, although there is considerable difference between the model configurations320

(Table 3). The average LWC in NOCF is the smallest of all configurations (Figure 6d). However,321
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given that the CF is also significantly underestimated (Figure 6a), the in-cloud LWC is fairly well322

captured (Figure 6e). The NOEACF and RA2M exhibit similarly underestimated LWC (Figure323

6d). However, given the larger CF in RA2M than in NOEACF (Figure 6a), the in-cloud LWC in324

RA2M is lower and significantly underestimated (Figure 6e). The BM average and in-cloud LWC325

are fairly well-captured (Figure 6d), which is an improvement compared to RA2M and NOEACF.326

Note that the microphysics and radiation schemes use in-cloud LWC rather than the grid-box mean327

LWC. The SMITH-TKE and PC2-TKE have too small average LWC (Figure 6d and Table 3), al-328

though the in-cloud LWC (Figure 6e) is overestimated in PC2-TKE.329

Figure 6f shows the simulated and observed RH profiles for the morning (0630 LT; dashed330

lines) and evening (1830 LT; solid lines) radiosonde launches at the SGP, averaged over the MC3E331

period. The triangles denote the average PBL heights at the times of the soundings. The impact332

of the different cloud schemes on the RH profiles is surprisingly small, although note that these333

profiles include all MC3E days, many of which were non-cloudy. While RH is only slightly334

too dry in the morning, the simulated afternoon boundary-layer RH is much drier than observed.335

This could indicate excessive entrainment of dry free-tropospheric air into the boundary layer.336

Furthermore, the model dry bias might be a consequence of the lack of cloud, but could also be the337

origin of the cloud biases. The dry, warm bias in the U.S. Great Plains (Morcrette et al. 2018) has338

been shown before to be related more to land-surface and precipitation deficiencies, rather than to339

clouds (Van Weverberg et al. 2018). It is beyond the scope of this paper to investigate the complex340

interactions between land surface, precipitation and clouds and their role in the warm, dry bias341

over the SGP, but this bias should be borne in mind when analyzing the results shown here.342

17



2) DIURNAL CYCLES OF CLOUD PROPERTIES343

Figure 7 provides diurnal cycles of non-precipitating cloud properties, averaged over the MC3E344

period. Evaluation statistics are provided in Table 3. Simulated and observed vertically integrated345

cloud cover (CC) is derived assuming a maximum-random overlap. Note that, in contrast to the346

analysis so far, mixed-phase clouds are included here, since the following analysis does not rely347

on the uncertain Microbase LWC. The boundary between low- and mid-level cloud and mid- and348

high-level cloud is defined as 3000 and 6000 m altitude, respectively.349

The observed diurnal cycle of low-level cloud exhibits a clear diurnal cycle, peaking near 1200350

LT and reaching a minimum near local midnight (Figure 7a). All model configurations reproduce351

this diurnal cycle, although with an earlier-than-observed peak and too small low CC in general,352

most notably in the NOCF. The bias is particuarly large in all simulations in the afternoon, with353

BM and RA2M outperforming the other configurations (Table 3).354

The observed FOO of low CC peaks in the afternoon, while the AWP is fairly large throughout355

the diurnal cycle and drops to about 80% around noon (Figure 7b an c). Most experiments appear356

to have too frequent low cloud in the morning, in particular the RA2M and NOEACF, while the357

afternoon FOO is reasonably captured by most configurations (Figure 7b). The NOCF, however,358

only generates cloud half as frequently as observed throughout the entire diurnal cycle. All simu-359

lations, apart from the binary NOCF, underestimate the low CC AWP throughout the entire diurnal360

cycle (Figure 7c). In the afternoon, this is true in particular for PC2-TKE, while the RA2M and361

BM are slightly outperforming the other configurations.362

While the focus of this paper in on low-level clouds, the surface radiation and satellite evaluation363

in the next sections is also affected by mid- and high-level clouds. Hence, Figure 7d-i shows the364

diurnal cycle of mid- and high-level CC. There is less mid-level than low-level observed cloud with365
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limited diurnal variation (Figure 7d). The weak maxima in the morning and the evening coincide366

with maxima in the surface precipitation, shown later. The models underestimate the mid-level CC367

(Table 3), mainly during the observed maxima, and hardly show any diurnal variability (Figure 7d).368

The only exceptions are NOCF and PC2-TKE, showing enhanced mid-level CC in the afternoon.369

As for the low CC, the underestimation in the mid-level CC is almost entirely due to the very low370

AWP (Figure 7f), since the FOO is well-captured in all models (Figure 7e). The notable exception371

is PC2-TKE, showing a too large FOO of mid-level CC in the afternoon, causing the afternoon372

peak in average mid-level CC seen in Figure 7d.373

The observed high-level CC again shows peaks in the morning and evening, coinciding with374

maxima in the surface precipitation as shown later (Figure 7g). High-level CC is well-captured by375

PC2-TKE and NOCF, but largely underestimated by all other configurations (Figure 7g and Table376

3). Note that all diagnostic cloud schemes presented here calculate ice CF as a simple diagnostic377

function of ice water content, produced by the microphysics, following e.g. Abel et al. (2017).378

Apparently, this simple treatment leads to significantly underestimated AWP (Figure 7i), while the379

FOO is well captured (Figure 7h). For ice clouds, the more advanced PC2 scheme in PC2-TKE380

outperforms the other configurations.381

Some additional diurnal cycle diagnostics are provided in Figure 8. The observed liquid water382

path (LWP) of non-precipitating clouds shows a very limited diurnal cycle (Figure 8a). All sim-383

ulations produce a more distinct diurnal cycle than observed, underestimating LWP at night, but384

better capturing or overestimating LWP around noon. The smallest LWP is produced by NOCF385

throughout most of the diurnal cycle, consistent with the analysis so far (Table 3). The BM en-386

hances the LWP compared to RA2M and NOEACF mainly in the afternoon, when the PBL and387

hence the EZ are deeper. Arguably, the late afternoon LWP is somewhat better captured by BM388

than the other configurations.389
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From Figure 6a and b, RA2M and NOEACF showed a significant overestimation of the CF at390

very low levels, below 1000 m. This seems to be related to their too low cloud bases (Figure 8b),391

mainly at night and in the evening. Cloud bases are better represented by the other configurations392

(Table 3).393

Interestingly, the low CC shown in Figure 7a displays a smaller difference between RA2M and394

BM than the vertical CF profile in the previous section (Figure 6a). The physical low-cloud depth395

explains some of these discrepancies (Figure 8c and Table 3). Indeed, throughout the entire day,396

clouds in the RA2M and NOEACF are deeper than in all other configurations and the observations.397

Hence, the reason the vertical cloud fraction profiles in RA2M (Figure 6a) are better captured than398

in all other configurations, is mainly due to a compensation between excessively deep clouds,399

whilst having a too small AWP. Cloud depth is well captured in all configurations with turbulence-400

based variances.401

3) DIURNAL CYCLE OF SURFACE PRECIPITATION402

The parameterization of CF matters for the simulated radiative transfer, but also for the precipi-403

tation microphysics. While not the principal focus of this paper, it is interesting to cast a glance at404

the diurnal cycle of precipitation to verify its behavior in the various cloud configurations. From405

Figure 9, the observed domain-average diurnal cycle of precipitation shows the often reported406

double peak in the morning and evening (Klein et al. 2006; Van Weverberg et al. 2018). Con-407

sistent with earlier studies, all configurations struggle to simulate this double peak and produce408

a single mid-afternoon peak, with very limited impact of the CF parameterization. However, the409

domain-average precipitation is reduced and closer to the observations in the BM (Table 4 and410

Figure 9).411
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4) SATELLITE-BASED EVALUATION412

Figure 10 shows histograms of COT and WP, including all MODIS overpasses over the SGP413

(between 1400 and 1600 LT). Note that all diurnal cycle figures in this paper denote this MODIS414

overpass window using gray shading. While MODIS only constitutes a snapshot in the diurnal cy-415

cle, it provides additional evidence for model biases shown in the previous sections. Uncertainties416

in the MODIS COT and WP are provided on a per-pixel basis and are shown here by assessing the417

(Gaussian) probability that any individual pixel belongs to a particular bin, given the pixel-level418

mean and standard error, and are indicated with the gray-shaded areas in Figure 10.419

Consistent with the previous sections, the COT and WP in NOCF is underestimated throughout420

the entire range of values (Figure 10a and b). A smaller underestimation across the range of COT421

and WP values is present in RA2M and NOEACF. Note that the COSP diagnostics shown here are422

fairly similar for RA2M and NOEACF, given that the LWC is unaffected by the operational cloud423

adjustments in RA2M. Consistent with the ground-based retrievals in Figure 8a at the MODIS424

overpass time, BM most accurately reproduces the observed COT and WP histograms (Figure425

10). PC2-TKE has too frequent small and too infrequent large values of COT and WP. Note426

that PC2-TKE has the largest low- and mid-level CC frequency (Figure 8b and e) at the MODIS427

overpass time. COT and WP are underestimated for the entire value range in SMITH-TKE.428

Simulated and observed COT and WP statistics are provided in Table 5 for the full domain429

(including clear-sky), and for liquid-phase and ice-phase grid points only. Frequencies are based430

on any grid point with COT exceeding 0.3, which is typically considered the satellite’s lower431

detection limit.432
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For COT both the arithmetic (arCOT ) and the extinction-weighted mean (exCOT ) are shown.433

The latter is more relevant for surface radiation. Transmission-weighted mean COT is calculated434

as follows:435

exCOT =−µlog(
1
N ∑exp(

−τi

µi
)) (6)

where µ is the arithmetic mean of the solar zenith angle cosines, τi is the COT for grid point i,436

µi is the solar zenith angle cosine of grid point i and N is the number of grid points.437

The liquid-cloud frequencies shown in Table 5 correlate well with the ground-based low and438

mid-cloud frequencies at the MODIS overpass time (Table 5 and Figure 7b and e), with a severe439

lack of cloud in NOCF, too frequent cloud in PC2-TKE and fairly well-captured frequencies in440

RA2M and BM. Continuing to focus on the liquid phase LWP and COT , note that statistics in441

Table 5 are for grid points that at are least partially cloudy. As all cloudy grid points in NOCF442

are completely overcast, their average LWP and COT are larger than for any other configuration443

and the observations. While the liquid-phase WP and arCOT are too small in PC2-TKE, its liquid444

exCOT is much better captured (Table 5). This hints at persistent substantial broken cloud, always445

reflecting much of the incoming SW, while overcast conditions or very small cloud cover occur446

rather infrequently. The liquid-phase WP and COT are very similar for the other configurations,447

with a tendency to underestimate the average WP and exCOT .448

All configurations overestimate the frequency, WP and COT of ice-phase clouds (Table 5), con-449

sistent with the mid- and high-level clouds in Figures 7e and h, at the MODIS overpass time (note450

the dip in the observed CC at this time). The ice-phase arCOT is largest in RA2M, PC2-TKE451

and BM, while exCOT is smaller in RA2M and BM than in PC2-TKE. This is consistent with452

the relatively larger influence of more broken cloud on exCOT than on arCOT for a given water453
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content. Indeed, recall that PC2-TKE captured the large AWP for high clouds considerably better454

than the diagnostic cloud scheme configurations. The focus of this paper is on low-level cloud, but455

this finding suggests ample room for improving ice CF parameterizations.456

Combining liquid-phase, ice-phase and clear-sky grid points, arCOT and WP at the MODIS457

overpass time are overestimated in all configurations (Table 5). In contrast, exCOT is under-458

estimated in all configurations, apart from PC2-TKE. The discrepancy between underestimated459

exCOT and overestimated arCOT reflects the typically too small AWP in most cloud configu-460

rations. If the excessive total water contents in all configurations (Table 5) are associated with461

partial cloudiness, rather than overcast conditions, their impact on the radiative transfer will be462

comparatively limited.463

5) SURFACE RADIATION464

One of the principal advantages CF parameterizations in coarser-scale models is the benefit for465

surface radiation statistics. Figure 11 shows simulated and observed diurnal cycles of downwelling466

SW and LW radiation averaged for the MC3E period. Table 6 provides surface radiation statistics.467

Note that the radiation data were not screened for the occurrence of precipitation. Furthermore,468

the radiation scheme assumes some in-cloud heterogeneity for liquid clouds (Cahalan et al. 1994)469

that is not seen by the COSP diagnostics. This somewhat complicates a direct one-to-one compar-470

ison with the cloud properties in Figure 7.471

Nevertheless, in combination with the ground-based and satellite-based analysis so far, a con-472

sistent picture emerges that there is considerable benefit in using a CF parameterization at473

convection-permitting scales. The NOCF, significantly lacking cloud and liquid water, unsurpris-474

ingly overestimates the downwelling SW (Figure 11a and Table 6) and performs worse than other475

configurations using a CF parameterization. All other configurations also experience too large476
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downwelling SW, consistent with their lack of cloud. Unsurprisingly, schemes performing better477

in terms of cloud cover, also exhibit better radiation characteristics. The RA2M has the largest478

cloud cover, and hence smallest SW bias in the morning (Figure 11a). The BM performs best for479

low CF and LWP, and hence SW radiation in the afternoon (Figure 11a). These two configurations480

overall show the smallest SW bias of all simulations (Table 6)481

A negative bias in the downwelling LW emerges in the afternoon and at night in all simulations482

(Figure 11b), consistent with lack of cloud at these times (Figure 7). Again, RA2M and BM483

perform better than the other configurations for the LW bias (Table 6).484

c. Sensitivity to Horizontal and Vertical Resolution485

All analysis so far has been concerned with the 1 km grid-spacing simulations. As models are486

run at increasingly fine resolution, the need for scale-aware cloud parameterizations becomes ever487

more pressing (e.g. Tompkins (2003)). Moreover, operationally at the Met Office, convection-488

permitting ensembles use similar physics as the deterministic regional simulations, but with a489

slightly larger grid spacing of about 2 km (Bush et al. 2019; Hagelin et al. 2017). It is important490

that no systematic biases are introduced by lowering the resolution.491

This section explores the scale-awareness of all model configurations, using the domains with492

0.5, 1, 2 and 4 km grid spacing. The same time- and space invariant vertical profile of RHcrit was493

applied across these resolutions for RA2M and NOEACF. The BM, SMITH-TKE and PC2-TKE494

all use variances in their subgrid saturation-departure distributions that are linked with scale-aware495

turbulence diagnostics (see section 3).496

Figure 12 provides vertical profiles of average CF , FOO and AWP, averaged over the entire497

MC3E period for all non-precipitating, liquid clouds. ARSCL observations have been regridded498

to assumed grid lengths of 0.5, 1, 2 and 4 km. While observed average CF is insensitive to499
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the resolution (as expected), the FOO becomes larger and the AWP smaller as the grid spacing500

increases (Figure 12a, d and g). Hence, the observed CF exhibits more binary behavior as the501

grid spacing decreases. However, even at 500m grid spacing, considerable subgrid variability is502

observed.503

All model configurations using a constant variability profile (NOCF, RA2M and NOEACF) have504

similar average CF profiles across the different resolutions (Figure 12b). However, the observed505

tendency towards more binary CF with decreasing grid spacing is absent in these configurations506

(evident from the FOO and AWP in Figure 12e and h). As such, without re-tuning of RHcrit for507

each grid spacing, their bias in the FOO and AWP will be resolution-dependent.508

Model configurations with scale-aware variability in the CF parameterization also show limited509

resolution sensitivity in the average CF (Figure 12c). However, these configurations do exhibit510

considerable variability in terms of their FOO and AWP with varying resolution (Figure 12f and511

i). BM scales too much with resolution, showing more variability between the 0.5 and 2 km FOO512

and AWP than the observations. Moreover, the 4 km simulation appears to have reduced FOO and513

enhanced AWP compared to the 2 km simulation, unlike the observations. The PC2-TKE on the514

other hand barely scales with resolution, while SMITH-TKE scales much more analogous to the515

observations.516

A caveat to be made with the scale-awareness analysis shown here, is that the UM is a rather517

diffusive model. Indeed, Klaver et al. (2019) have shown that at least for the global version of518

the UM, the effective resolution is close to four times the grid spacing. For regional simulations519

the effective resolution might be even lower, as suggested by the power spectra in Boutle et al.520

(2014), showing poorly represented energy cascades for scales smaller than about 10 times the521

grid spacing. This might explain some of the poor performance of the simulations in terms of522
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AWP in this paper, although there is a large discrepancy even between the 2 km observed and the523

0.5 km simulated FOO and AWP (Figure 12) for the scale-aware simulations.524

To better understand the origin of the resolution-dependent FOO and AWP in BM, vertical pro-525

files of several scale-aware diagnostics for the different resolutions are provided in Figure 13.526

The turbulence-based unimodal saturation-departure variance, calculated following Equation 13527

in Part I, relies on two scale-aware diagnostics, the mixing length (lbl) and the vertical velocity528

variance (σw
2). Recall that lbl is the blended mixing length (Boutle et al. 2014), combining the529

mixing length from a 1D boundary-layer scheme (l1D, Lock et al. (2000)) and a 3D Smagorinsky530

scheme (lsmag, Smagorinsky (1963)). The σw
2 is parameterized following Walters et al. (2019) as531

σw
2 = Kmτturb

−1 where τturb is a turbulence time scale and Km is the eddy diffusivity for momen-532

tum.533

The scale-awareness of the low-cloud FOO (Figure 12e) predominantly carries the footprint of534

the lbl scaling with resolution (Figure 13a). Of the two mixing lengths that are blended in the535

Boutle et al. (2014) parameterization, it is the lsmag that scales with resolution, growing larger536

with increasing grid spacing. At the same time, the blending of lsmag and l1D is itself resolution-537

dependent within the PBL. For grid spacings larger than 1 km, lsmag becomes larger than l1D, but538

at the same time the weight of lsmag becomes smaller. Hence, the 2 km lbl is smaller than the 1539

and 0.5 km lbl within the boundary layer. This effect becomes even more obvious for the 4 km540

lbl , which is smaller than any other lbl below 1.5 km altitude. This is the principal reason for the541

slightly odd behavior of the 4 km simulation in terms of FOO and AWP. Hence, this is not an542

inherent characteristic of the bimodal cloud scheme, but rather of the mixing length blending.543

The σw
2 scales more uniformly across the vertical profile and increases with increasing grid544

length (Figure 13b), even for the 4 km simulation.545
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As the lbl increases with height, and the σw
2 is maximized near the surface, the unimodal546

saturation-departure variance profile in Figure 13c emerges (solid lines). The subgrid variance547

increases as the grid spacing increases, as expected, except for the 4 km simulation, due to the548

inverse scaling of lbl for this resolution. However, the variance maximum also moves higher in549

the atmosphere as the resolution decreases, also reflected in the low-cloud FOO scaling (Figure550

12e). This is probably not desirable and suggests room for improvement in the way the lbl scales551

with resolution, at least for relatively coarse grid spacing. Note that the mixing-length blending552

provides large improvements across the turbulent gray-zone (100 m - 1 km) (Boutle et al. 2014).553

For grid points encompassed by an EZ, the bimodal scheme diagnoses cloud by combining554

modes from the bottom and the top of the EZ. Hence, the variance of the mixture of these two555

PDFs can be calculated (Equation 30 in Part I). As expected, this mixture variance tends to be556

larger, and scales similarly compared to the local unimodal variances of the individual modes557

(Figure 13c).558

Furthermore, skewness of the mixture distribution in the bimodal scheme can be calculated from559

Equation 31 in Part I and is shown for the different resolutions in Figure 13d. Skewness remains560

fairly constant with changing resolution, which is desirable, since the depth of the EZ and the561

presence of a mixture distribution should be independent of the horizontal resolution, at least as562

long as the grid spacing is larger than the length scale of free-tropospheric intrusions into the563

mixed layer (< 100m as evident from lidar observations, e.g. Wulfmeyer et al. (2016)).564

Many of the processes relevant to cloud processes, such as dry air entrainment at the boundary-565

layer top, are sensitive to the vertical resolution as well. Hence, Figure 14 shows the observed and566

simulated profiles of average cloud fraction, FOO and AWP, assuming two vertical level sets, and567

using a horizontal grid spacing of 1 km. The L70 level set has been used for all analysis discussed568

so far, and has a vertical grid spacing decreasing from 20m near the surface to about 200 m near 3569
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km altitude. The L140 level set has twice as many vertical levels and hence double the resolution570

of the L70 level set.571

Only the RA2M and BM simulations are shown in this figure. The vertical resolution at L70572

is clearly high enough to capture most subgrid variability relevant for cloud formation, as the573

sensitivity of RA2M and BM to the vertical resolution is very limited, consistent with observations.574

This also highlights that cloud deficiencies in all configurations, i.e. the general lack of cloudiness,575

are not primarily a vertical resolution problem, but point to more fundamental issues of the cloud576

and boundary-layer parameterizations.577

5. Discussion and Conclusions578

This second of two papers presents an in-depth evaluation of different approaches to represent579

subgrid cloud variability in numerical weather prediction models at convection-permitting scales.580

A wide range of observations, including ground-based remote sensing, satellite-based retrievals581

and surface observations are used in this evaluation, gathered during the Midlatitude Continental582

Convective Clouds Experiment (MC3E) at the US Southern Great Plains.583

Simulations are performed using an operational regional model configuration, with 6 permuta-584

tions to its cloud fraction (CF) parameterization and with a range of horizontal and vertical grid585

spacings. A first set of simulations ignores any subgrid cloud variability. Three configurations use586

the Smith (1990) diagnostic cloud scheme, each with variations to its subgrid saturation-departure587

PDF: using a constant variability profile, using the same constant variability profile, but addi-588

tionally using operationally-used bias-adjustment techniques, and using more realistic turbulence-589

based and scale-aware subgrid variability. A more advanced prognostic CF scheme is used in a590

fifth configuration, and a sixth configuration uses a newly developed diagnostic cloud scheme, in-591
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troduced in Part I. This schemes assumes a mixture of PDFs in the entrainment zone, a dry mode592

from the free troposphere and a moist mixed-layer mode.593

Revisiting the first of three research questions asked in the introduction, it is shown that low-594

cloud simulations still benefit from the use of a CF parameterization at convection-permitting595

scales. The omission of subgrid cloud variability leads to less than half the observed frequency of596

low cloud and correspondingly small domain-average WP. Consequently, cloud optical thickness597

is largely underestimated and the surface shortwave radiation overestimated. Even for a stratocu-598

mulus case, the omission of a CF scheme leads to underestimated water contents and excessive599

surface shortwave radiation, despite maintaining full cloud cover.600

However, including a diagnostic or prognostic CF scheme does not automatically lead to large601

improvements and the simulations proved to be sensitive to the choice of the specific CF scheme.602

A diagnostic CF scheme with prescribed, constant variance profiles (through a critical relative hu-603

midity) only manages to produce good cloud cover when operational bias-adjustment techniques604

are applied. However, this configuration is only able to do so through a compensating error be-605

tween too large cloud frequency and too deep clouds, but a too small cloud amount when present.606

The combination of too frequent clouds with too small WP results in well-captured surface radia-607

tion and optical thickness.608

A diagnostic CF scheme that assumes a turbulence-based, but symmetric subgrid variability609

PDF, does not perform well for most metrics shown. This configuration exhibits negative biases610

in its low cloud cover, liquid water path and liquid cloud optical thickness.611

The new diagnostic bimodal CF parameterization, introduced in Part I, outperforms the other612

configurations in this paper for a number of metrics. The scheme produces the largest cloud cover613

in the afternoon, with well-captured frequency and larger cloud amount when present than the614

other CF parameterizations. The bimodal scheme exhibits the best liquid cloud optical thick-615
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ness and water path and its surface radiation biases smaller than in any other configuration, bar-616

ring the operational configuration. The improvements manifest themselves via clouds near the617

boundary-layer top being able to experience negatively-skewed saturation-departure distributions.618

This brings a larger portion of the grid box in a supersaturated state than an un-skewed distribution619

with identical variance and mean conditions.620

The simulation with a prognostic CF scheme produces frequent low- and mid-level clouds in the621

afternoon, but underestimates the cloud amount when present. This scheme produces the largest,622

and overestimated, in-cloud water contents, while still overestimating the downwelling shortwave623

radiation. This advanced scheme does not outperform simpler schemes for the diagnostics shown624

here. Despite the complexity and memory of the cloud state in this scheme, there is still an implicit625

assumption of symmetric subgrid variability. Hence, the inclusion of time-variable higher-order626

moments of the distribution such as skewness, appears to matter more for the model performance627

than whether the cloud scheme is prognostic or diagnostic. It will be further investigated whether628

some of the bimodal cloud scheme concepts can be used in a prognostic framework as well.629

The cloud frequency and the cloud amount when present is insensitive to the horizontal grid630

spacing in configurations relying on a constant variance profile, such as the operational config-631

uration. Observed clouds, in contrast, clearly become more binary as the assumed grid spacing632

decreases. The schemes using scale-aware variance, linked to the turbulence scheme, display the633

observed increase in cloud frequency and decrease in cloud amount when present with increas-634

ing grid spacing. However, the cloud frequency in the bimodal scheme seems to vary more with635

resolution than the observed frequency. This appears to be related to the large variability of the636

blended turbulence mixing length, parameterized for gray-zone turbulence.637

The analysis in this paper was not restricted to low clouds alone and revealed some interesting638

model deficiencies in high-cloud cover that are worth investigating in more detail in future studies.639
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All simulations with a diagnostic CF parameterization underestimate the average high-level CF , as640

their high-level clouds are often broken when overcast conditions are observed. At the same time641

all configurations have excessive ice water contents in the afternoon, regardless of their CF bias.642

The former issue is indicative of excessive variability imposed on high clouds in all diagnostic643

CF parameterizations. The excessive ice water content on the other hand is likely related to the644

parameterization of ice microphysics.645

Furthermore, all simulations produce too little cloud and excessive surface SW radiation, while646

the boundary layer tended to be too dry. It is hard to tell which of these two issues is the cause647

or the effect, but the area of the U.S. Great Plains has been known for its difficulties in terms of648

the simulated surface-energy balance (Koster et al. 2004; Klein et al. 2006; Ma et al. 2018; Van649

Weverberg et al. 2018). The wealth of observations at the SGP ARM site still warrants its use for650

in-depth model evaluation, but it would be worth repeating the analysis in other regions with better651

captured climatology. Another reason for repeating this exercise for very different environments652

is inspired by the need for different cloud configurations over the tropics and mid-latitudes for653

regional forecasts at the Met Office (Bush et al. 2019). As such, the bimodal cloud scheme could654

be a step towards unification of these different configurations.655

Last, while a broad range of observations was used to evaluate the cloud schemes in this paper,656

an evaluation of the higher-order moments of the subgrid saturation-departure distribution and the657

assumptions of the new bimodal scheme is desirable. This will be the focus of future research,658

using large eddy simulations, aircraft and lidar observations.659
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TABLE 1. Experiment overview. Apart from the cloud scheme configuration, these experiments have identical

settings as indicated in the text.

852

853

Experiment Cloud Scheme Configuration

NOCF No cloud fraction scheme

NOEACF Smith cloud fraction scheme

RA2M Smith cloud fraction scheme + operational adjustments (EACF + ACF)

SMITH-TKE Smith cloud fraction scheme + turbulence-based variances

PC2-TKE PC2 cloud fraction scheme + turbulence-based variances

BM Bimodal cloud fraction scheme
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TABLE 2. Surface radiation statistics averaged over the 27 April case in all 6 model configurations. Shown

are the Root-mean Squared Error (RMSE) and bias for the downwelling shortwave and downwelling longwave

radiation. The best and worst statistic values for each variable are highlighted in boldface and italic respectively.

854

855

856

Experiment SW Bias SW RMSE LW Bias LW RMSE

W m−2 W m−2 W m−2 W m−2

NOCF 96.4 196.0 -21.0 38.7

NOEACF 87.4 212.6 -17.3 25.1

RA2M 57.9 192.3 -13.0 20.5

SMITH-TKE 79.8 194.2 -17.5 26.6

PC2-TKE 95.6 205.4 -23.1 33.5

BM 16.9 13.2 -8.8 19.5
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TABLE 3. Cloud evaluation statistics for the entire MC3E period and for all 6 model configurations. Shown

are the Root-mean Squared Error (RMSE) and bias for the 3D cloud fraction (CF) and liquid water content

(LWC), 2D low- (LOW CLD), mid- (MID CLD) and high-level (HIGH CLD) cloud cover, total cloud cover

(TOTAL CLD), liquid water path (LWP), cloud base height (CLD BASE), and low cloud depth (CLD DEPTH).

Note that 3D cloud fraction statistics include all grid points that are cloudy in any of the 6 configurations

or the observations. All data were filtered for the occurrence of precipitation in any of the simulations or

the observations. The best and worst statistic values for each variable are highlighted in boldface and italic

respectively.

857

858

859

860

861

862

863

864

Experiment NOCF NOEACF RA2M SMITH-TKE PC2-TKE BM

CF BIAS (%) -6.8 -4.5 -2.8 -5.7 -6.5 -4.3

CF RMSE (%) 28.9 27.0 27.4 27.5 27.4 27.9

LWC BIAS (10−6kgkg−1) -10.2 -3.0 -3.1 -7.6 -7.7 -0.1

LWC RMSE (10−6kgkg−1) 70.0 69.8 67.9 65.3 66.0 81.4

LOW CLD BIAS (%) -9.6 -6.7 -3.8 -7.8 -8.4 -3.3

LOW CLD RMSE (%) 38.1 33.2 33.3 34.7 34.5 33.3

MID CLD BIAS (%) 1.7 -5.1 -4.5 -4.0 -1.9 -3.3

MID CLD RMSE (%) 34.6 28.9 29.0 30.5 30.5 29.3

HIGH CLD BIAS (%) 3.0 -12.4 -10.7 -8.3 -2.0 -10.3

HIGH CLD RMSE (%) 46.4 42.3 41.9 42.6 43.1 41.6

TOTAL CLD BIAS (%) -5.9 -15.9 -12.3 -14.3 -9.0 -12.3

TOTAL CLD RMSE (%) 44.8 45.0 44.0 45.8 45.7 44.0

LWP BIAS (10−3kgm−2) -16.9 -5.3 -5.1 -13.6 -12.4 -0.7

LWP RMSE (10−3kgm−2) 105.1 72.2 74.9 72.5 70.3 90.8

CLD BASE BIAS (m) 149.9 -389.1 -422.8 -151.5 -109.3 -297.9

CLD BASE RMSE (m) 590.3 762.0 792.1 664.4 627.9 712.9

CLD DEPTH BIAS (m) -489.5 397.1 466.9 -181.2 -169.3 -50.2

CLD DEPTH RMSE (m) 768.4 885.7 942.7 639.3 624.3 683.8
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TABLE 4. Domain-average diurnal precipitation for the 1 km domain for NCEP Stage IV observations and

the 6 model configurations for the entire simulation period.

865

866

Experiment Daily Precipitation (mm day−1)

OBS 3.36

NOCF 3.69

NOEACF 3.82

RA2M 3.76

SMITH-TKE 3.70

PC2-TKE 3.84

BM 3.38
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TABLE 5. Statistics of the Cloud Optical Thickness (COT ) and Water Path (WP) for MODIS and the 6

model configurations for each of the MODIS overpasses during the 6-week MC3E period. Data for the full

domain was included and simulated COT and WP were obtained through the COSP diagnostics. Shown are the

frequency of occurrence (FOO) of all cloud (COT > 0.3), liquid-phase cloud and ice-phase cloud, the arithmetic

domain-averaged COT , liquid-phase COT and ice-phase COT , the extinction-weighted domain averaged COT ,

liquid-phase COT and ice-phase COT and the domain-averaged WP, liquid-phase WP and ice-phase WP. The

largest and smallest values for each variable is highlighted in boldface and italic respectively. Observational

uncertainty is provided for the COT and WP.

867

868

869

870

871

872

873

874

Experiment FOO FOO FOO WP WP WP

all liq ice all liq ice

% % % kg m−2 kg m−2 kg m−2

observations 46.1 28.3 17.8 0.11 ±0.04 0.12 ±0.03 0.36 ±0.17

NOCF 31.8 8.6 23.2 0.18 0.13 0.74

NOEACF 49.1 25.8 23.3 0.20 0.09 0.75

RA2M 49.2 27.1 22.1 0.20 0.09 0.80

SMITH-TKE 43.1 18.7 24.4 0.19 0.08 0.71

PC2-TKE 58.0 36.7 21.3 0.19 0.06 0.77

BM 50.2 27.5 22.7 0.22 0.11 1.02

Experiment arCOT arCOT arCOT exCOT exCOT exCOT

all liq ice all liq ice

observations 10.2 ±2.1 18.6 ±2.3 23.1 ±7.3 0.53 1.99 1.91

NOCF 10.3 25.6 34.2 0.33 3.68 2.11

NOEACF 13.1 17.9 35.9 0.48 1.67 1.53

RA2M 13.6 18.8 38.1 0.48 1.58 1.68

SMITH-TKE 11.6 17.5 34.2 0.41 1.65 1.66

PC2-TKE 12.2 11.7 37.5 0.63 1.71 2.18

BM 13.0 17.4 36.3 0.50 1.72 1.70
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TABLE 6. Surface radiation statistics averaged over the entire 6 week MC3E period in all 6 model configu-

rations. Shown are the Root-mean Squared Error (RMSE) and bias for the downwelling shortwave and down-

welling longwave radiation. The best and worst statistic values for each variable are highlighted in boldface and

italic respectively.

875

876

877

878

Experiment SW Bias SW RMSE LW Bias LW RMSE

W m−2 W m−2 W m−2 W m−2

NOCF 24.4 137.0 -7.6 22.2

NOEACF 12.4 126.3 -5.4 20.5

RA2M 5.2 126.1 -3.2 21.4

SMITH-TKE 16.1 127.9 -5.7 21.2

PC2-TKE 15.6 126.8 -6.4 21.5

BM 6.9 127.6 -3.8 20.8
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observations and the simulations to filter out small-scale noise. . . . . . . . . . 57946
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rain gauge radar merged product, and as simulated by the 6 model configurations, averaged948
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denote the observational uncertainty. Observations and simulations were available with a950

10 min frequency for the entire 6 week period. The gray shaded vertical band in each plot951

denotes the time-range of the MODIS overpasses. . . . . . . . . . . . . . 58952

Fig. 10. Histograms of the liquid cloud optical thickness (a) and liquid water path (b) for the entire953

1-km domain from MODIS (regridded to the model grid) and the 6 model configurations.954

Simulated values are obtained using the COSP algorithm to simulate how the model fields955

would be perceived from MODIS. Histograms only include cloud areas identified as liquid956

cloud phase by the MODIS/COSP retrieval algorithm and contain all MODIS overpasses957
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Fig. 11. Diurnal cycle of observed (ARM Best-Estimate; black) and simulated downwelling short-962

wave (a) and longwave (b) surface radiation averaged over the 6 weeks of the MC3E cam-963

paign at the SGP Central Facility. Also shown is the absolute bias of the downwelling radia-964

tion against the observations. The gray shading denotes the uncertainty in the observations.965

Observed and simulated data have a 15 min frequency and a Gaussian filter was applied to966

the observations and the simulations to filter out small-scale noise. The gray shaded vertical967

band in each plot denotes the time-range of the MODIS overpasses. . . . . . . . . 60968

Fig. 12. Averaged vertical profiles of CF (top), frequency of cloud occurrence (middle) and amount969

of cloud when present (bottom), as observed (derived from ARSCL; left), as simulated by970

the NOCF, NOEACF and RA2M configurations (middle) and as simulated by the SMITH-971

TKE, PC2-TKE and BM configurations (right). Profiles are averaged over all non-rainy972

output times (10 min frequency) for the entire 6 weeks of the MC3E campaign at the location973
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of the SGP Central Facility. Profiles are shown for the 4 km (thick dashed line), 2 km (thick974

solid line), 1 km (intermediate thick line) and 0.5 km (thin line) grid spacings. . . . . . 61975

Fig. 13. Averaged vertical profiles of the blended mixing length (a), turbulent kinetic energy (b),976

local turbulence-based unimodal variance (black lines; c) and the bimodal mixture variance977

(gray lines; c) and bimodal mixture skewness (d) as simulated in the BM configuration.978

Profiles are averaged over all output times (10 min frequency) for the entire 6 weeks of the979

MC3E campaign at the location of the SGP Central Facility. Profiles are shown for the 4 km980

(thick dashed line), 2 km (thick solid line), 1 km (intermediate thick line) and 0.5 km (thin981

line) grid spacings. . . . . . . . . . . . . . . . . . . . . . 62982

Fig. 14. Averaged vertical profiles of CF (left), frequency of cloud occurrence (middle) and amount983

of cloud when present (right), as observed (derived from ARSCL; black) and as simulated984

by the RA2M and BM. Profiles are averaged over all non-rainy output times (10 min fre-985

quency) for the entire 6 weeks of the MC3E campaign at the location of the SGP Central986

Facility. Profiles are shown for the L140 (thin line), and the L70 (thick line) vertical level987

sets. Horizontal grid spacing for all profiles is 1 km. . . . . . . . . . . . . 63988
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FIG. 1. Time-height cross sections of CF (left) and water content (right) as observed (a and h) and simulated

using the NOCF (b and i), NOEACF (c and j), RA2M (d and k), SMITH-TKE (e and l), PC2-TKE (f and m)

and BM (g and n) configurations for the stratocumulus case of 27 April 2011 at the location of the Southern

Great Plains Central Facility in Oklahoma. Also plotted are the observed (from the interpolated soundings) and

simulated relative humidity using blue shading in the background. The red lines provide the boundary-layer

height as observed (average of four methods for the observations, with variability between the methods provided

as error bars) and as simulated by all experiments. The gray dashed vertical line indicates the time of the MODIS

overpass shown in Figure 2. The CF in panel a is derived from ARSCL, and the LWC in panel h is obtained

from Microbase.
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FIG. 2. Cloud optical thickness (left), cloud water path (middle) and cloud top pressure (right) at 1500 LT

as observed by Aqua MODIS (a, h and o) and as a simulated using the NOCF (b, i and p), NOEACF (c, j and

q), RA2M (d, k and r), SMITH-TKE (e, l and s), PC2-TKE (f, m and t) and BM (g, n and u) configurations for

the stratocumulus case of 27 April 2011 for the entire 1-km grid-spacing domain. State boundaries are denoted

by gray solid lines, and the location of the Southern Great Plains Central Facility is highlighted with the yellow

diamond. Simulations have been run through COSP to provide synthetic optical thickness and water paths as

would be observed by MODIS.
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FIG. 3. Diurnal cycle of observed (ARM Best-Estimate, black) and simulated downwelling shortwave (a)

and longwave (b) surface radiation for the stratocumulus case of 27 April 2011 at the Southern Great Plains

Central Facility. Also shown is the absolute bias of the downwelling radiation against the observations. The

gray shading denotes the uncertainty in the observations. Observed and simulated data have a 15 min frequency

and a Gaussian filter was applied to the observations and the simulations to filter out small-scale noise. The gray

dashed vertical line indicates the time of the MODIS overpass shown in Figure 2.
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FIG. 4. Time-height cross section of the critical relative humidity (a) and s-variance (b) for the SMITH-TKE

configuration for the stratocumulus case of 27 April 2011. The dotted shaded area denotes CF larger than 1%

and red solid line indicates the top of the mixed-layer. The gray dashed vertical line indicates the time of the

MODIS overpass shown in Figure 2.
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FIG. 5. Time-height cross section of the local turbulence-based unimodal variance (a), the bimodal mixture

variance (b) and bimodal mixture skewness (c) for the BM configuration for the stratocumulus case of 27 April

2011. The solid gray contour in panels b and c shows the diagnosed entrainment zone, while the dotted shaded

areas denote CF larger than 1%. The red solid line indicates the top of the mixed-layer and the gray dashed

vertical line indicates the time of the MODIS overpass shown in Figure 2.
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FIG. 6. Average vertical profiles of CF (a), frequency of cloud occurrence (FOO; b), amount of cloud when

present (AWP; c), liquid water content (d) and in-cloud liquid water content (e) averaged over the entire 6

weeks of the MC3E campaign for rain-free times at the location of the Southern Great Plains Central Facility,

as retrieved from ARSCL and Microbase (black lines) and as simulated by all model experiments. FOO and

AWP are calculated based on any non-zero cloud occurrence. Panel (f) denotes vertical profiles of total relative

humidity around 0630 LT (dashed lines) and 1830 LT (solid lines) as observed from soundings and as simulated,

averaged over all balloon launch times during the MC3E campaign. Downward and upward triangles denote

the average boundary layer height for the 1830 and 0630 LT profile respectively. The gray shading in the water

content and the relative humidity profiles represents the observational uncertainty.
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FIG. 7. Diurnal cycles of average (top), frequency (FOO; middle) and amount when present (AWP; bottom) of

low cloud (left), mid-level cloud (middle) and high-level cloud (right) averaged over all rain-free times during the

6 weeks of the MC3E campaign for the observations and the 6 model configurations. Cloud cover is calculated

from ARSCL cloud locations regridded to the model levels for the observations and from the bulk CF in the

simulations, assuming random-maximum overlap. The boundary between low and mid-level cloud is 3000 m

and the boundary between mid- and high-level cloud is 6000 m. FOO and AWP are calculated based on any

non-zero cloud occurrence. Observations and simulations were available with a 10 min frequency for the entire

6 week period. The gray shaded vertical band in each plot denotes the time-range of the MODIS overpasses. A

Gaussian filter was applied to the observations and the simulations to filter out small-scale noise.
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FIG. 8. Diurnal cycles of liquid water path (LWP; a), low cloud base height (b), and low cloud depth (c),

averaged over all rain-free times during the 6 weeks of the MC3E campaign for the observations and the 6 model

configurations. Cloud base and and cloud depth are based on any non-zero cloud occurrence and are averaged

for clouds with a cloud base lower than 3000 m only. The LWP is obtained from the Microwave Radiometer

(MWR) and vertical error bars denote the observational uncertainty. Cloud base height and cloud depth are

obtained from ARSCL cloud locations. Observations and simulations were available with a 10 min frequency

for the entire 6 week period. The gray shaded vertical band in each plot denotes the time-range of the MODIS

overpasses. A Gaussian filter was applied to the observations and the simulations to filter out small-scale noise.
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FIG. 9. Diurnal cycles of domain-average surface precipitation as observed from the NCEP Stage IV rain

gauge radar merged product, and as simulated by the 6 model configurations, averaged over the 6 weeks of

the MC3E campaign. Vertical error bars on the observed diurnal cycle denote the observational uncertainty.

Observations and simulations were available with a 10 min frequency for the entire 6 week period. The gray

shaded vertical band in each plot denotes the time-range of the MODIS overpasses.
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FIG. 10. Histograms of the liquid cloud optical thickness (a) and liquid water path (b) for the entire 1-

km domain from MODIS (regridded to the model grid) and the 6 model configurations. Simulated values

are obtained using the COSP algorithm to simulate how the model fields would be perceived from MODIS.

Histograms only include cloud areas identified as liquid cloud phase by the MODIS/COSP retrieval algorithm

and contain all MODIS overpasses over the SGP that occurred during the 6-weeks of the MC3E campaign, once

a day, typically between 1400 and 1500 LT. Shown are the absolute frequencies of the histograms (top) as well

as the relative bias of the simulations compared to the observations (bottom). The gray shaded area denotes the

observational uncertainty, obtained as explained in the text.
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FIG. 11. Diurnal cycle of observed (ARM Best-Estimate; black) and simulated downwelling shortwave (a)

and longwave (b) surface radiation averaged over the 6 weeks of the MC3E campaign at the SGP Central Facility.

Also shown is the absolute bias of the downwelling radiation against the observations. The gray shading denotes

the uncertainty in the observations. Observed and simulated data have a 15 min frequency and a Gaussian filter

was applied to the observations and the simulations to filter out small-scale noise. The gray shaded vertical band

in each plot denotes the time-range of the MODIS overpasses.
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FIG. 12. Averaged vertical profiles of CF (top), frequency of cloud occurrence (middle) and amount of cloud

when present (bottom), as observed (derived from ARSCL; left), as simulated by the NOCF, NOEACF and

RA2M configurations (middle) and as simulated by the SMITH-TKE, PC2-TKE and BM configurations (right).

Profiles are averaged over all non-rainy output times (10 min frequency) for the entire 6 weeks of the MC3E

campaign at the location of the SGP Central Facility. Profiles are shown for the 4 km (thick dashed line), 2 km

(thick solid line), 1 km (intermediate thick line) and 0.5 km (thin line) grid spacings.
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FIG. 13. Averaged vertical profiles of the blended mixing length (a), turbulent kinetic energy (b), local

turbulence-based unimodal variance (black lines; c) and the bimodal mixture variance (gray lines; c) and bi-

modal mixture skewness (d) as simulated in the BM configuration. Profiles are averaged over all output times

(10 min frequency) for the entire 6 weeks of the MC3E campaign at the location of the SGP Central Facility.

Profiles are shown for the 4 km (thick dashed line), 2 km (thick solid line), 1 km (intermediate thick line) and

0.5 km (thin line) grid spacings.
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FIG. 14. Averaged vertical profiles of CF (left), frequency of cloud occurrence (middle) and amount of cloud

when present (right), as observed (derived from ARSCL; black) and as simulated by the RA2M and BM. Profiles

are averaged over all non-rainy output times (10 min frequency) for the entire 6 weeks of the MC3E campaign

at the location of the SGP Central Facility. Profiles are shown for the L140 (thin line), and the L70 (thick line)

vertical level sets. Horizontal grid spacing for all profiles is 1 km.
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