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Abstract

In this study, Gaussian mixture model clusteringalgsis was carried out to examine
characteristics of Global Precipitation Measurem(@®M) Dual-frequency Precipitation Radar
(DPR)-retrieved mass-weighted mean diametey) @d normalized intercept parameteg, ) f
the drop size distribution (DSD) for heavy raindalt> 10 mm H) for six years (2014-19). Three
objective DSD types continental, oceanic deep, and oceanic shallowextiwe types-emerged.
The means and standard deviations af @&hd N, obtained for the three types are in good
agreement with various ground-based observationdicating that global view of DSD
characteristics can be obtained from DPR-derived OQfarameters. Global distributions of
occurrence and contribution of each DSD type taltbeavy rainfall are produced for the first
time, which will help examine the dominant DSD tyfie contribution to total heavy rainfall, and

composition of different convective types in thanfall system at a given location.

Plain L anguage Summary

The surface rainfall is composed of a variety oécdpum of raindrops, which can be best
represented by mean drop size and number condentadtdroplets. Thus, those magnitude and
shape may well describe rainfall-related featurashsas convective type and associated
atmospheric environments. Thus, information onrtie drop size distribution is important for
improving the remote sensing capability or modetimgrainfall phenomena. From the analysis of
satellite-derived rain drop size distribution, st moted that the heavy rainfall can be largely
classified into three types continental, oceanic deep, and oceanic shallowaexdive types.
Satellite-derived mean diameter and drop sizeibigion for heavy rain are found to be very

consistent with ground observations from limiteddbareas, indicating that the global view of
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drop size distributions can be synthesized fromdiuwellite observations. The newly obtained
global features overcome the spatial limitations existing studies using ground-based
observations. Furthermore, estimated contributiothé heavy rainfall from each classified type
shows that a largest portion is from the oceangpd®nvective type, and the oceanic shallow

convective type contributes as much as the cortahéype.

1. Introduction

The drop size distribution (DSD) of rainfall is imnpant for estimating rain intensity and
latent heating profiles using remote sensing dakapon et al., 2008; Liao et al., 2014; Nelson et
al., 2016) and for parameterizing rain microphysicsumerical weather forecasting models (Lim
& Hong, 2010; Zhang et al., 2006, 2008). It alstphén understanding and interpreting physical
processes related to rain development (Chen éCdll). Thus, better understanding of its global

characteristics can significantly advance our nrelegical knowledge.

Previous DSD-related studies mainly used groun@miasions where the regional DSD
characteristics were examined (Bringi et al., 2dD3lan et al., 2018; Gatlin et al., 2015; Tang et
al., 2014; Thompson et al., 2015; Ulbrich & Atl&§07; Zhang et al., 2020). Although these
studies provided fundamental results by identifyid§D characteristics in various precipitation
regimes, certain limitations exist when charactiessat any particular region is concerned,
especially with regard to the understanding of paocesses over remote areas, such as in an open
ocean. Furthermore, generalizing DSD charactesistias been challenging owing to the
differences in the measuring instruments, studioresy time periods, and methodologies used in

various studies. Thus, acquiring general charastiesi applicable to any local area is necessary.
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Satellite measurements seem to be an appropritddosofor examining such spatially and

temporally varying DSD behaviors across diverseipiation regimes.

Tropical Rainfall Measuring Mission (TRMM) was thest space-borne radar dedicated
to rainfall measurement. The diameter parameteDfD was retrieved using the precipitation
radar (PR) measurements of reflectivity at a sitgleband (13.8 GHz), assuming that the DSD
can be characterized by the diameter parametdf ftgachi et al., 2000). However, as DSD
variations cannot be fully expressed as a singlampeter, rain rates (RRs) retrieved from single
frequency radar measurements have often been touymbne to errors and biases (lguchi et al.,

2010).

Global Precipitation Measurement (GPM) satellitesuacessor to TRMM, launched on
February 27, 2014, carries a dual-frequency pretipn radar (DPR) and is much better at
detecting DSDs as compared to the single band approf PR (Iguchi et al., 2010). Difference
between the radar reflectivities of the two frequies (Ku-band: 13.60 GHz, Ka-band: 35.55 GHz)
enables the retrieval of the two DSD parametersssmeeighted mean diameter {Dand
normalized intercept parameter (or normalized sggtiarameter for concentration,NThis has
enabled applications in different types of studfes,example, in the study of vertical structures
of DSDs for stratiform and convective precipitati@un et al., 2020), microphysical features of
tropical cyclones (Huang & Chen, 2019), and differBSD features between land and ocean
(Kumar & Silva, 2019, Radhakrishna et al., 201&®0Well-known features, such as difference
between [x of continental area and oceanic region was coefirimsing globally retrieved DSD
data (Seto et al., 2016; Yamaji et al., 2020). Viarige amount of accumulated data, comparing
DPR-retrieved DSDs with in situ ground observatiamsl understanding the comprehensive

features of DSD across various rainfall regimesmaoee plausible. In particular, examining the
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behavior of DSD characteristics in two-dimensiomnriea significant importance. Note that in
remote areas, such as open oceans or rain foress, avhich are presumably under different
atmospheric environments, DSD features are difftoubbtain using the conventional disdrometer

and polarimetric approaches.

In this study, we analyze the global DSD charasties of heavy rainfall using multi-year
DPR-retrieved DSDs and evaluate the remote semsialysis results against ground observations
provided in the literature. The obtained result® ¢mprove our understanding of cloud
development and rain formation microphysics acgbsisal convection and rainfall regimes. This
study can also further improve microphysical par@meations needed for numerical models

owing to the understanding of regionally differéevy rainfall microphysics.

2. Data and M ethodology

In this study, GPM DPR-retrieved near-surface RR, Nw at clutter-free bottom level,
and attenuation-corrected radar reflectivity pesfilat the Ku-band (version 6) over the entire
observation domain (65° N-65° S) during 2014-20Eused (see Iguchi & Meneghini, 2016,
2017 for detailed DPR-retrieved parameters). Smiichixed precipitation is not considered as the
focus here is rain precipitation. We use the irswath data of the matched scan mode where

reflectivities are measured at both the Ku- andoaés.

For the initial version of DPR-retrieved DSD datdias been reported that the uncertainty
is high for RR > 8 mm fi cases, compared to the disdrometer measuremesit&adanki, India
(Radhakrishna et al., 2016). From the validationtleé updated version 4 data over the
Mediterranean region, D’Adderio et al. (2019) repdrthat probability distribution of DPR-

retrieved b is well matched with disdrometer measurementddgNy is subject to uncertainties.
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For the latest version (i.e., version 6), agreemergood between retrievals and disdrometer
measurements over the central China for Meiyu mom&vents; correlation coefficient is higher
than 0.6 with no significant mean bias (Sun et 2020), satisfying the DSD measurement
requirement of 0.5 mm error range for the GPM rois¢Skofronick-Jackson et al., 2017). Indirect
validation of was undertaken about the microphysassumption used for the DSD retrievals
(version 6), using disdrometer measurements fromanaus NASA’s Ground Validation (GV)
field campaign sites over the United States andaBeypent of Energy-Atmospheric Radiation
Measurement (DOE-ARM) mobile facility deploymentseothe globe (Chase et al., 2020). It was
demonstrated that employed microphysical assumptioain-drop size relationship for the rain
is in good agreement with disdrometer measuremént$er assuring the quality of version 6

DPR-retrieved DSD retrievals.

The DSD function for raindrops (N(D)) is normallgstribed by the gamma distribution

function (Ulbrich, 1983) and its normalized forme§iud et al., 2001) can be written as follows:

N(D) = N

6 (a+u)™ [ D

U
D
W T T () ij exp[““”’ ﬁ] @

wherey, D, and N(D) are the shape parameter, diametenkimm, and number concentration in
mn'm3, Dm is the mass-weighted mean diameter in mm, apdsNhe normalized intercept

parameter in mnim3. In this study, the shape paramaeter 3 is used as in other studies (Liao et
al., 2014, Seto et al., 2013). By using the vabfd3,, and N, retrieved from DPR measurements,

the corresponding number concentration N(D) isudated using Eq. (1).

The procedures for data construction needed fanexag the global DSD characteristics

are shown in Figure S1. We first define an equeka@rid, equivalent to the 5° x 5° grid area over
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an equatorial region such that the number of heaimpixels and corresponding.@nd N, values
can be saved at each equal-area tfrttiere exist more than one pixel showing the R&ater than

10 mm ht at a given equal-area grid (ab&(tx 5°area at the equatothe grid is considered to have
a heavy rain event. An RR of 10 mm bxhibits a threshold separating the stratiform tgpe
from the convective one (Tokay & Short, 1996). Suheently, the B, Nw, and RR data of all
heavy rain pixels at a given grid and time are troieted. After repeating the data constructing
procedure over the entire domain and analysis gevwe construct a raw dataset containing the
Dm, Nw, and RR of all the heavy rain pixels over the B5865° S observation domain and six year
period (2014-2019). However, considering the higlitimg frequency of the GPM satellite in
higher latitudes, the raw dataset will have a bifas®ore samplings in higher latitudes. Samplings
are therefore homogenized to construct the fintds#d that is used for the clustering analysis.
After counting the visiting frequency of the satelldepending on the latitude, the number of
samples for each latitude are scaled using the oétihe visiting frequency at each latitude to the
visiting frequency at the equator. Afterwards, heein events at a given latitude are randomly
selected to equate the scaled number at the latibtueduce uneven sampling problem. As a result,
328,391 heavy rain events (or number of grids shgwieavy rain) and 6,258,800 heavy rain
pixels over the study domain are collected for ysial Finally, heavy rain pixels within a grid are
averaged to yield meandand logN, for that specific grid. The constructed data efdhd logN,

for heavy rain events are used for classifying@&D types based on Gaussian mixture model
(GMM; Bishop, 2006). GMM is a statistical model tha used to group the sample data into
clusters assuming the presence of a certain nuof@aussian distributions in the sample data.

Thus, each classified type best satisfies its ownsSian distribution with associated mean and
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standard deviation. Details on how classificatioaswcarried using GMM are found in the

Supplementary Information.

3. Results
3.1. Three classified DSD types

For classifying the DSD types, we examine whetherdonstructed and logN, satisfy
the Gaussian distributions for estimating the ayallity of GMM. The distributions of B and
logNw were found be similar to Gaussian distributionst (eresented). The number of classified
types can be subjective, but the types must beistens with known meteorological features.
Three types appear most relevant when the DSD clesistics and associated geographical

features are estimated.

Figure 1a—c show the frequency distributions efddd logN for the three heavy rainfall
types classified using GMM. It can be seen that&luces from Type 1 to Type 3, whereas lggN
increases. The mean + standard deviations fofoDthe three types are 2.25 + 0.49, 1.62 + 0.34,
and 1.25 + 0.27 mm, respectively and corresponidiglyw mean * standard deviations are 3.49 +
0.49, 4.15 + 0.45, and 4.64 + 0.47°mn71%. Dn for Type 1 exhibits a high frequency at 3 mm
because the maximum value for, Betrieved from the DSD algorithm was set to 3 n8aetf et
al., 2016). As the DSD types of heavy rainfall deessified based on the frequency histograms of
the events, the range of one standard deviationdaet Type 1 (Type 2) and Type 2 (Type 3)

overlaps by 9.5% (17.0%).

To obtain the DSD distributions corresponding @ftiiree [»-logNw types, the respective
Dm and logN, values are inserted in Eq. (1), giver 3. Obtained results are given in Figure 1d—

f. As a form of gamma function, the number concaidn increases until a certain diameter (i.e.,
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an inflection point) and subsequently decreases.didmeters at the inflection points for the three

types are 1.0, 0.6, and 0.4 mm. The number coratemtraround these diameters appears lowest
for Type 1 and highest for Type 3. In contrast, doivthe larger diameter side (e.g., D > 3 mm),

Type 1 shows the highest number concentration, easFype 3 shows the lowest. However, Type

2 and Type 3 resemble each other. Geographicallbdisons of O, and logN, that support the

description provided in Figure 1 are displayed upementary Figure S2.

DSD at the surface should be closely linked toviertical structure of the cloud system.
In this study, we examine vertical structures otds for three DSD types. For this, the frequency
of Ku-band radar reflectivity is provided in theleetivity-height coordinates (Figure 1g-i). It is
indicated that the cloud develops highest for Typad lowest for Type 3, suggesting the strongest
convection intensity for Type 1 and weakest for @yp. Compared with the normalized
distributions of the storm height for three typEgy(re S3), showing the minimum reflectivity at
approximately 12—15 dBz (Hamada & Takayabu, 20ighést for Type 1 and lowest for Type 3,
the surface mean reflectivity seems to be propoatito the storm height as well as convection
strength. The vertical shapes of reflectivity fostftwo types given in Figure 1g-i are consistent
with the results of previous studies on precipitatcharacteristics representing continental and
oceanic types (Liu et al., 2007; Liu et al., 20BBmada et al., 2015; Sohn et al., 2013; Song &

Sohn, 2015; Xu & Zipser, 2012; Zipser et al., 2006)

The diurnal variations in convective rainfall halveen well-established to be distinctly
different between continents and oceans; maximuaipitation over continents and oceans occur
at 15-18 and 03-06 LST, respectively (Liu & Liu,1BQLiu & Zipser, 2008; Nesbitt and Zisper,
2003; Song & Sohn, 2015; Takayabu, 2002; Yang &Bn2i006; Zipser et al., 2006). The diurnal

variations for DSD Type 1 and Type 2 are similathimse noted for the continent and ocean (Figure
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S4). Thus, the DSD characteristics for Type 1 astiduld represent the continental and oceanic
types of heavy precipitation, respectively. TypshH®ws similar variations to Type 2, but with

smaller amplitudes.
3.2. Global distributions of three classified DSD types

The spatial distributions of occurrence frequencasl volumetric heavy rainfalls
associated with each DSD type can be drawn anddimnant DSD types can be examined from
this at any given location of the domain (Figure @pmpared to surface-based DSD studies
conducted at limited regions, which provided theshdmminant DSD features, this study provides
information related to a combination of DSD typestlee dominant DSD type at any given
location. Type 1 shows a relatively high frequemcifrica, Europe, US and South America, and
western Pacific maritime continent, thereby coniimgnthat Type 1 rainfall is mostly the

continental type (Figure 2a).

Type 2 shows the dominant occurrence frequencyh&avy rainfall over the tropical
oceanic regions. Southeast Asian and east Asiasaoorregions as well as north Atlantic Ocean
also show a prevalent Type 2 rainfall. Thus, Typa&nly represents the ocean type. It should
also be noted that the Amazon rainforests fall gdeanic Type 2, with a less frequent continental
Type 1 also evident in these forests. The domimaean type behaviors of rainfall over the

Amazon have been well recognized in previous studdlliams et al., 2002; Zipser et al., 2006).

Geographical distributions of Type 3 (Figure 2e)sthooverlap with Type 2, indicating
that oceanic convections causing heavy rainfallmige of deep as well as shallow convection.
Thus, heavy rainfall over the ocean regions maghagacterized by a bimodal distribution with
two main modes of Type 2 and Type 3, with Type thdpeghe dominant one. Despite the

overlapping tendency of Type 3 with Type 2, the mhaications for Type 3 are toward the

10
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subtropical high regions off the dominant regiomsType 2, except the equatorial eastern Pacific

region where Type 3 is also prevalent.

Obtained results of @and logN, for three DSD types are found to be consistenh wit
known microphysical processes of precipitationth@ continental regions where Type 1 occurs
most frequently, it is well known that abundant peeticles including graupel and hail are present
in clouds due to the strong convection. Such clogeiserally produce larger raindrops at the
surface, after experiencing the melting and calfistoalescence processes (Cecil, 2011; Cecil et
al., 2012; Liu et al., 2008; Sohn et al., 2015; &dipser, 2012; Zipser et al., 2006 among many
others). Thus, larger raindrop sizes (and smallenber concentration) found in this study are
consistent with general rain characteristics foawner the land. In tropical oceanic regions where
Type 2 is dominant, ice water content is relativedyall (Cecil, 2011; Sohn et al., 2015) while
liquid water content is abundant (Wood et al., 2002 comparison to the land type. With the
convection intensity weaker than the land typelisioh-coalescence processes are known to be
the main rain growing physics (Xu & Zipser, 201@®sulting in drop sizes smaller than the land
type. The Type 3 mostly found over the subtropmabsidence region and equatorial eastern
Pacific appears to be largely associated the waim processes under weaker and shallow
convection, giving relatively lower cloud top, siealdrop size, and larger number concentration

(Liu et al., 2008; Sekaranom & Masunaga, 2019; Xdigser, 2012).

In this study, we examine the rainfall amount athegrid contributed by each DSD type.
For this, the volumetric heavy rainfall is calceldtat each grid by summing all the selected pixel-
level RRs within the grid. Results are shown inufgy2b, d, and f. It can be seen that 63.5% of
the total rainfall is contributed by Type 2, whishpredominantly from oceans. Another 18.3% of

the total heavy rainfall is contributed by Typen®stly over the oceans as well, and the remaining

11
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18.2% of the total heavy rainfall is contributedype 1 mostly over the land regions. Again, the
eastern Pacific ITCZ area show nearly compatiblewarts of heavy rainfalls from both Type 2

and Type 3. Overall, the spatial distribution asasymentioned above brought a conclusion that
Type 1, Type 2, and Type 3 should be linked toic@ntal convection, oceanic deep convection,

and oceanic shallow convection, respectively.

We also examine the seasonally varying occurrerszpiéncies and volumetric rains for
the three aforementioned types. In the boreal sunoneurrence frequency and volumetric heavy
rainfall for the continental type occurred for moentinents in the Northern Hemisphere, except
Sahara and Arabia desert regions (Figure S5a—lgioRe showing oceanic deep and shallow
convective types move to the north compared tadtsibution of annual mean (Figure S5c—f).
Contrastingly, in the boreal winter, the continémtyae is most commonly found in the Southern
Hemispheric land regions, whereas the oceanicigypwst commonly found in the Indo-western
Pacific Oceans and Amazon area (Figure S6c—f). iBefipe seasonally varying geographical
distributions of occurrence frequencies and voluimeains, the results obtained for annual means

of DSD parameters, as depicted in Figure 1, aredda be persistent.
3.3. Comparison with ground-based DSD observations

These globally classified DSD types are importardomprehensively interpret the DSD
results of previous studies that have often repiteskelocal/regional characteristics. The global
mean s and logN, values for the three types (Figure 1) are comparttdthe results of previous
studies (Figure 3 and Table S1). Note that heawg i@ presented in Table S1 represent the cases
with rain rates stronger than 10 mm fas observed in this study), whereas convectiigsra
represent the cases with rain rates higher tham3whand standard deviations greater than 1.5

mm h? observed over a certain time period (Bringi et2003).

12
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The values of R and logN, of the continental convective type (2.25 + 0.49 amd 3.49
+ 0.49 n? mnt?, respectively) are consistent within a one stashdaviation, based on the results
obtained from Colorado US, Austria, Sydney Aussiiadind Puerto Rico (Bringi et al., 2003), the
United Kingdom and Greece (Montopoli et al., 2008)rthern China (Chen et al., 2016), and
Tibetan Plateau (Chen et al., 2017). Furthermbeeyalues of B and logN, of the oceanic deep
convective type (1.62 + 0.34 mm and 4.15 + 0.45mr?, respectively) are found to be in good
agreement with the results obtained from India fdraa et al., 2019; Radhakrishna et al., 2020),
Indonesia (Marzuki et al., 2013), southern Chinadldt al., 2019; Sun et al., 2020), Taiwan (Seela
et al., 2018), South Korea (Suh et al., 2016), ddpontopoli et al., 2008), Darwin Australia,
Papua New Guinea (Bringi et al., 2003), westernflea@ringi et al., 2003; Huang & Chen,
2019), and Amazon regions (Bringi et al., 2002)egdrmaritime and monsoon regions are located
in the areas showing features of the oceanic deapective type. Notably, thePand logN,
distributions for the oceanic deep convective tgperlap with those of the oceanic shallow
convective type (Figure 1b-c, and Figure 3). Howegeound-based results showing the oceanic
shallow convective type DSD distribution are raxeept for the DSD distributions of typhoons
that made landfalls in China (Wen et al., 2018) atla (Janapati et al., 2017; Janapati et al.,
2020). The typhoon generally shows features obtteanic shallow convective type, but seems to
depend on the location or development stage (Jéneipal., 2020). The lack of observations
associated with the oceanic shallow convective tyfikely due to the fact that this type is mostly
found over the open oceans near the subtropicalderice regions, equatorial eastern Pacific, and

equatorial Atlantic Ocean.

These classified types are also in good agreemignttivee DSD groups for convective

precipitation based on ground-based disdrometesunements covering diverse meteorological
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regimes from the tropics to the high latitudes @woét al., 2018); Type 1, 2, and 3 are very similar
to their ‘ice-based convection’, ‘warm rain withghiliquid water content’, and ‘weak convective
warm rain shower’ groups. Since the comparisonhef tlassified results with ground-based
measurements should be an indirect validation oRMFSD products, the close agreement of
classified rain types with results from ground-lmhseeasurements further assures the DPR-

retrieved data quality and obtained results.

4. Conclusions and discussion

In this study, we examined the global charactesstf two DSD parameters of heavy
rainfall (> 10 mm H), Dm, and N, for six years (2014-2019) of GPM DPR estimates ¢tie
65°N—-65°S observation domain. Three typical DSDesyprere identified in this study. The first
type (continental convective type) with the largBst and lowest logll mainly prevails over
continental regions, accounting for approximatey3% and 18.2% of the global heavy rain
events and total heavy rainfall, respectively. $Stxeyear mean and associated standard deviations
of Dm and logN, (2.25 + 0.49 mm and 3.49 + 0.493mnm?, respectively) obtained in this study
are in good agreement with the continental-likesidu found globally in ground-based
observations. The second type (oceanic deep canedgpe) showing medium values of,@nd
logNw is mostly found over tropical oceans and humid monsareas. Results indicate that
approximately 63.5% of the total heavy rainfall wamtributed by this type. The means and
standard deviations ofpand logN, (1.62 + 0.34 mm and 4.15 + 0.45°mn7?, respectively) are
also in good agreement with the surface observatdmaritime-like cluster reported. The third
type (oceanic shallow convective type) is also tbtmbe of the ocean type, but is associated with
shallow convection, covering 18.3% of the totahheainfall, approximately same as that in the

case of the continental convective type (18.2%)s{dlle the occurrence area being mostly

14
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overlapped with the second type, the maximum oeage regions are found along the ITCZ over
the equatorial Pacific and Atlantic Ocean and oegions near subtropical highs. The smallest
Dm and highest logiN (1.25 + 0.27 mm and 4.65 * 0.473mn?, respectively) are found in this

type of heavy precipitation.

Results from this study are important because BB Bharacteristics of heavy rainfall in
any region can be interpreted as a combinationiftérdnt DSD types with origins closely
associated with the cloud-scale processes andosmvents. Furthermore, the global distributions
of means and standard deviations efdhd logN, for the three types, associated distributions of
the occurrence of each type, and contribution ta teeavy rainfall will help in understanding the
physical processes of heavy rain formation, padrtyiover remote areas, such as open oceans

where conventional observations cannot be readigan

In spite of classification results compromising @leDSD features noted over the globe,
we admit caveats of statistically-based DSD clasgibns. The same resultant DSD type could
be attributed to many different physical reasonirggponsible for the rain. For example, if there
are dominant breakup processes over the contitmem DSD types without physical consideration
may be interpreted as an ocean type although dysiocesses responsible for the ocean type
can be quite different from the continental typbau3, more future studies are needed for better
understanding of the precipitation microphysicspeesally combined with regionally-based
physical processes such as collision and breakapepses, water vapor convergence, aerosol

loadings, and so on.

While main discussions in this study have been niad@aterpreting three classified DSD
types and their geographical distributions, obtairesults can further envision studying climate
change features, validating climate models, andaripg cloud microphysical parameterization.

15
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For example, results obtained in this study magvallis to examine how two oceanic types of
rainfall revealed in this study respond to changdsopical circulations over the Pacific such as
Walker circulation. And separated rain types arartbontributions to the total rainfall can be
used for the validation of climate model simulapwhich should be more useful than the simple
total rainfall comparison. The obtained results migp provide more insights on how specific rain
types are linked to specific cloud structures given area. It is because precipitation cannot be

separated from cloud microphysics.
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Figurel. (a, b, c) Joint histograms off&nd logN,, and (d, e, f) histogram of calculated number
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