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Abstract. Cloud condensation nuclei (CCN) number con-
centrations are an important aspect of aerosol–cloud inter-
actions and the subsequent climate effects; however, their
measurements are very limited. We use a machine learning
tool, random decision forests, to develop a random forest
regression model (RFRM) to derive CCN at 0.4 % super-
saturation ([CCN0.4]) from commonly available measure-
ments. The RFRM is trained on the long-term simulations
in a global size-resolved particle microphysics model. Us-
ing atmospheric state and composition variables as predic-
tors, through associations of their variabilities, the RFRM
is able to learn the underlying dependence of [CCN0.4] on
these predictors, which are as follows: eight fractions of
PM2.5 (NH4, SO4, NO3, secondary organic aerosol (SOA),
black carbon (BC), primary organic carbon (POC), dust, and
salt), seven gaseous species (NOx , NH3, O3, SO2, OH, iso-
prene, and monoterpene), and four meteorological variables
(temperature (T), relative humidity (RH), precipitation, and
solar radiation). The RFRM is highly robust: it has a me-
dian mean fractional bias (MFB) of 4.4% with ≈ 96.33%
of the derived [CCN0.4] within a good agreement range of
−60%<MFB<+60% and strong correlation of Kendall’s
τ coefficient ≈ 0.88. The RFRM demonstrates its robustness
over 4 orders of magnitude of [CCN0.4] over varying spatial
(such as continental to oceanic, clean to polluted, and near-
surface to upper troposphere) and temporal (from the hourly
to the decadal) scales. At the Atmospheric Radiation Mea-
surement Southern Great Plains observatory (ARM SGP) in
Lamont, Oklahoma, United States, long-term measurements
for PM2.5 speciation (NH4, SO4, NO3, and organic carbon
(OC)), NOx , O3, SO2, T, and RH, as well as [CCN0.4] are
available. We modify, optimize, and retrain the developed
RFRM to make predictions from 19 to 9 of these available

predictors. This retrained RFRM (RFRM-ShortVars) shows
a reduction in performance due to the unavailability and spar-
sity of measurements (predictors); it captures the [CCN0.4]
variability and magnitude at SGP with ≈ 67.02% of the de-
rived values in the good agreement range. This work shows
the potential of using the more commonly available measure-
ments of PM2.5 speciation to alleviate the sparsity of CCN
number concentrations’ measurements.

1 Introduction

Minute particles suspended in the atmosphere prove to be
the most nontrivial sources of uncertainty (variability across
modeling efforts) in our understanding of climate change
(IPCC AR5, 2013). These particles or aerosols, or rather
CCN (cloud condensation nuclei: aerosols capable of be-
ing imbibed in clouds and modifying their properties), have
direct and indirect sources. They can be directly emitted
into the atmosphere as sea salt, primary inorganic particu-
lates such as dust and carbon, or primary organic particu-
lates. Aqueous chemistry can modify the chemical species
in the cloud droplet, which on evaporation will result in
an aerosol size distribution capable of acting as CCN at
lower RH (Hoppel et al., 1994). In the air, emissions of
SO2/DMS (dimethyl sulfide), NOx , and organics can un-
dergo gas-phase (photo-)chemistry to form condensible va-
pors that may take part in new particle formation (nucleation)
that converts gas to particles; this process is an important
source of aerosols, especially from anthropogenic sources,
and subsequent growth contributes up to 50 % or more of
global CCN (e.g., Merikanto et al., 2009; Yu and Luo, 2009).
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Of the uncertainty in the effective radiative forcing (ERF)
in global climate models associated with aerosols, the
aerosol indirect effect primarily through aerosol–cloud inter-
actions (aci) is predominant (IPCC AR5, 2013): ERFaci =

−1.2 to 0 Wm−2. These aerosol–cloud interactions are me-
diated by CCN that affect cloud micro- and macrophysics
primarily through their interaction with water vapor to mod-
ify cloud droplet size and number. There are various such
indirect effects: the first indirect effect (Twomey, 1977), the
second indirect effect (Albrecht, 1989), and others such as
effects on cloud formation and precipitation dynamics (Sein-
feld et al., 2016, and the references therein), which affect the
atmospheric energy balance.

The numerous physical and chemical effects of and on
CCN and their nonlinear interactions as detailed above pro-
vide a glimpse into the complexities and challenges associ-
ated with developing a valid physical description of aerosol
processes in global climate models. A major problem is
the accurate characterization of CCN number concentrations
([CCN]) in the atmosphere and quantification of their ef-
fects on Earth’s radiative budget. Extensive measurements
of [CCN] would help in this regard, towards reducing the
uncertainties in modeling aerosol–cloud interactions. Unfor-
tunately, these are sparse; there are some in situ measure-
ments available during short campaigns and for a few sites
from networks such as the Atmospheric Radiation Measure-
ment Climate Research Facility (ARM), the Aerosol, Clouds
and Trace Gases Research Infrastructure (ACTRIS), and the
Global Atmosphere Watch (GAW), while satellite inference
of [CCN] is not yet robust, suffering from missing data and
coarse resolution. In contrast, particle mass concentration
and speciation have been routinely measured in a large num-
ber of networks, such as the Interagency Monitoring of Pro-
tected Visual Environments (IMPROVE), the Chemical Spe-
ciation Network (CSN/STN), and the Clean Air Status and
Trends Network (CASTNET) in the United States; the Cam-
paign on Atmospheric Aerosol Research network of China
(CARE-China); the National Air Quality Monitoring Pro-
gramme (NAMP) in India; and AirBase and the EMEP (Eu-
ropean Monitoring and Evaluation Programme) networks in
the European Union, with some of the earliest measurements
from the 1980s.

We investigate the possibility of using machine learning
techniques to obtain CCN number concentrations from these
measurements. Machine learning is a statistical learning
branch of artificial intelligence where computers learn with-
out being explicitly programmed to generalize from knowl-
edge acquired by being trained on a huge number of spe-
cific scenarios. The development and use of machine learn-
ing to develop predictive models has been burgeoning over
the last couple of decades, with recent applications in the at-
mospheric sciences such as in atmospheric new particle for-
mation (e.g., Joutsensaari et al., 2018; Zaidan et al., 2018),
mixing state (e.g., Christopoulos et al., 2018; Hughes et al.,
2018), air quality (e.g., Huttunen et al., 2016; Grange et al.,

2018), remote sensing (e.g., Fuchs et al., 2018; Mauceri et al.,
2019; Okamura et al., 2017), and other aspects (e.g., Dou and
Yang, 2018; Jin et al., 2019). These and other studies show
the power of machine learning as a tool to account for the
high nonlinearities in the associations between atmospheric
states and compositions towards predictive modeling.

The goal of the present study is to explore the possibil-
ity of deriving the number concentrations of CCN at 0.4 %
supersaturation ([CCN0.4]) through more ubiquitous mea-
surements of atmospheric state and composition. For this, we
develop a random forest regression model (RFRM). The ma-
chine learning model is trained on 30 years’ (1989–2018)
simulations from a chemical transport model incorporating
a size-resolved particle microphysics model. The expecta-
tion is that the RFRM is able to learn the associations be-
tween atmospheric state and composition predictors and the
[CCN0.4] (outcome).

The remainder of this paper is organized as follows: Sect. 2
details the data, techniques, and statistical performance met-
rics used in this study; Sect. 3 details the development of the
RFRM, validation of its performance, and evaluation with
empirical data; Sect. 4 summarizes the major findings of this
study; and Sect. 4.1 discusses some of the implications of
this work and the avenues it opens up.

2 Data and methods

2.1 GEOS-Chem-APM model (GCAPM)

GEOS-Chem is a global 3D chemical transport model (CTM)
driven by assimilated meteorological observations from the
Goddard Earth Observing System (GEOS) of the NASA
Global Modeling and Assimilation Office (GMAO). Several
research groups develop and use this model, which contains
numerous state-of-the-art modules treating emissions (van
Donkelaar et al., 2008; Keller et al., 2014) and various chem-
ical and aerosol processes (e.g., Bey et al., 2001; Evans and
Jacob, 2005; Martin et al., 2003; Murray et al., 2012; Park,
2004; Pye and Seinfeld, 2010) for solving a variety of at-
mospheric composition research problems. The ISORROPIA
II scheme (Fountoukis and Nenes, 2007) is used to calcu-
late the thermodynamic equilibrium of inorganic aerosols.
Secondary organic aerosol formation and aging are based
on the mechanisms developed by Pye and Seinfeld (2010)
and Yu (2011). MEGAN v2.1 (Model of Emissions of Gases
and Aerosols from Nature; Guenther et al., 2012) imple-
ments biogenic emissions and GFED4 (Global Fire Emis-
sions Database; Giglio et al., 2013) implements biomass
burning emissions in GEOS-Chem.

The present study uses GEOS-Chem version 10-01 with
the implementation of the Advanced Particle Microphysics
(APM) package (Yu and Luo, 2009), henceforth referred
to as GCAPM. The APM model has the following fea-
tures of relevance towards accurate simulation of CCN num-
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ber concentrations: (1) 40 bins to represent secondary par-
ticles with a high size resolution for the size range impor-
tant for growth of nucleated particles to CCN sizes (Yu and
Luo, 2009); (2) a state-of-the-art ternary ion-mediated nucle-
ation (TIMN) mechanism (Yu et al., 2018) and temperature-
dependent organic nucleation parameterization (Yu et al.,
2017); (3) calculation of H2SO4 condensation and the suc-
cessive oxidation aging of secondary organic gases (SOGs)
and explicit kinetic condensation of low-volatility SOGs onto
particles (Yu, 2011); (4) contributions of nitrate and am-
monium via equilibrium uptake and semi-volatile organ-
ics through partitioning to particle growth considered (Yu,
2011). CCN number concentrations simulated by GCAPM
have previously been shown to agree well with measure-
ments (Yu and Luo, 2009; Yu, 2011; Yu et al., 2013).

The horizontal resolution of GCAPM in this study is
2◦× 2.5◦, with 47 vertical layers (14 layers from the surface
to 2 km above the surface). The period of global simulation
is 30 years from 1989 to 2018. For 47 sites spread across
the globe, co-located GCAPM data are output at the half-
hourly time step for all model layers in the troposphere. In
the present application, we use those at six selected vertical
heights: surface, ≈ 1, ≈ 2, ≈ 4, ≈ 6, and ≈ 8 km.

2.2 Random forest regression modeling

In the present study, we choose to use the random forest (RF)
technique (Breiman, 2001) from the large suite of machine
learning techniques, for the following reasons: (a) our ob-
jective of predicting (regressing) values of [CCN0.4], (b) the
ease of physical interpretability of RF models, (c) ease of
implementation, and (d) the ability to tune this supervised
machine learning, which is learning by example.

A random forest (Breiman, 2001) is an ensemble of de-
cision trees. A decision tree (Breiman et al., 1984) is a su-
pervised machine learning algorithm that recursively splits
the data into subsets based on the input variables that best
split the data into homogeneous sets. This is a top-down
“greedy” approach called recursive binary splitting. Deci-
sion trees are easy to visualize, are not influenced by missing
data or outliers, and are nonparametric. They can, however,
overfit on the data. Random forest modeling is an ensemble
technique of growing numerous decision trees from subsets
(bags) of the training data and then using all the decision
trees to make an aggregated (typically mean) prediction. This
approach corrects for the overfitting of single decision trees.
Additionally, the bootstrap aggregating (bagging; Breiman,
1996) allows for model validation during training, by evalu-
ating each component tree of the random forest with the out-
of-bag training examples (training data that were not subset-
ted in growing the decision tree). Random forest models are
advantageous due to the component decision trees being able
to resolve complex nonlinear relationships between predic-
tor variables regardless of their interdependencies or cross
correlations and the outcome to be predicted. Further, they

are relatively easier to visualize and interpret as compared to
black-box neural network or deep-learning methods. For the
purpose of predictions, random forest models are one of the
most accurate machine learning models with the ability to be
trained fast due to the parallelizability of the growth of de-
cision trees. For these reasons, random forest is our chosen
machine learning tool.

We utilize a fast implementation (Wright and Ziegler,
2017) of random forest models (Breiman, 2001) in R (R Core
Team, 2020) trained on the GCAPM modeled [CCN0.4] de-
tailed in Sect. 2.1. Further details of model development and
applications are in Sect. 3.1.

2.3 Statistical estimators of model performance

In this study, we use the Kendall rank correlation coefficient
(τ ) and mean fractional bias (MFB) as statistical estimators
of correlation and deviation, respectively. These statistical
parameters are more robust (as discussed later in this sec-
tion) than the conventionally used Pearson product-moment
correlation coefficient (r) and mean normalized error (MNE)
(or similar parameters).

Pearson product-moment correlation coefficient (r) is as
follows:
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where n is the sample size, C is the value, t is the number
of ties in the ith group of ties, and [ ]m denotes modeled and
[ ]

o denotes observed values.
As noted in Nair et al. (2019):

In the use of Pearson’s r are the following assump-
tions: (1) continuous measurements with pairwise
complete observations for the two samples being
compared (2) absence of outliers (3) Gaussian dis-
tribution of values (4) linearity between the two
distributions, with minimal and homogenous vari-
ation about the linear fit (homoscedasticity).

Kendall’s τ is a nonparametric rank correlation
coefficient that is not constrained by the assump-
tions in the use of Pearson’s r . This parameter
is also intuitive and simpler to interpret due to
(a) the maximum possible value of +1 indicative
of complete concordance and the minimum possi-
ble value of−1 indicative of complete discordance
and (b) the ratio of concordance to discordance be-
ing (1+τ)/(1−τ) (Kendall, 1970; Noether, 1981).
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MNE and MFB are defined as
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where n is the sample size, C is the value, [ ]m denotes mod-
eled and [ ]o denotes observed values, and i is the ith of their
n pairs.

As noted in Nair et al. (2019):

In the use of MNE, it is assumed that observed val-
ues are true values and not just estimates. MNE can
easily blow up to∞when observed values are very
small. Further, positive bias is weighted more than
negative bias. Related parameters such as Nor-
malised Mean Bias and Error (NMB and NME)
also suffer from these deficiencies. Mean Frac-
tional Bias (MFB) is not limited by the issues in
the use of MNE. As a measure of deviation, Mean
Fractional Bias (MFB), ranging from [−2,+2], is
symmetric about 0 and also not skewed by extreme
differences in the compared values.

The following quantitative ranges are provided (arbi-
trarily) to qualitatively describe the degree of correlation:
(1) poor agreement – τ ≤ 0.2; (2) fair agreement – 0.2< τ ≤
0.4; (3) moderate agreement – 0.4< τ ≤ 0.6; (4) good agree-
ment – 0.6< τ ≤ 0.8); and (5) excellent agreement – 0.8<
τ ≤ 1.0. Additionally, it is defined (arbitrarily; factor of 1.86
deviation) that there is good agreement between derived and
expected values when the MFB is within [−0.6,+0.6].

Statistical analyses are performed using R: a freely avail-
able language and environment for statistical computing and
graphics (R Core Team, 2020) and with the aid of the
“Kendall” (McLeod, 2011) and “pcaPP” (Filzmoser et al.,
2018) packages.

2.4 Observational data

For validation of the developed RFRM, we use in situ mea-
surements of atmospheric state and composition as inputs to
the RFRM and compare the output [CCN0.4] with its mea-
surements. The U.S. Department of Energy’s (DOE) ARM
Southern Great Plains (SGP) Central Facility located in La-
mont, Oklahoma (36◦36′18′′ N, 97◦29′6′′W; 318 m; Fig. 1)
was established with the mission statement of “provid[ing]
the climate research community with strategically located in
situ and remote-sensing observatories designed to improve
the understanding and representation, in climate and earth
system models, of clouds and aerosols as well as their inter-
actions and coupling with the Earth’s surface”. We use data
from this facility, which has the longest record of [CCN0.4]
at the hourly resolution.

Figure 1. The ARM SGP site in Lamont, Oklahoma, USA, with
marked locations of the instruments. Legend: meteorology – tem-
perature and relative humidity measurements from the ARM Sur-
face Meteorology Systems (MET) (Holdridge and Kyrouac, 1993;
Chen and Xie, 1994); ACSM – Aerodyne Aerosol Chemical Spe-
ciation Monitor (Ng et al., 2011); [SO2] – concentrations of SO2
measured by the ARM Aerosol Observing System (AOS; Hageman
et al., 1996); CCNc – cloud condensation nuclei particle counter
(CCNc) (Shi and Flynn, 2007; Smith et al., 2011a,b; Hageman et al.,
2017). This image is adapted from satellite imagery © 2020 Maxar
Technologies, USDA Farm Service Agency obtained through the
Google Maps Static API.

2.4.1 [CCN0.4] measurements

[CCN0.4] measurements at this SGP site have been made
from 2007 to the present using a cloud condensation nuclei
particle counter (CCNc) developed by Roberts and Nenes
(2005) with technical details in Uin (2016). The CCNc is
a continuous-flow thermal-gradient diffusion chamber for
measuring aerosols that can act as CCN. To measure these,
aerosol is drawn into a column, where well-controlled and
quasi-uniform centerline supersaturation is created. Through
software controls, the temperature gradient and flow rate are
modified to vary (0.1 %–3 %) supersaturations and obtain
CCN spectra. Water vapor condenses on CCN in the sam-
pled air to form droplets, just as cloud drops form in the at-
mosphere; these activated droplets are counted and sized by
an optical particle counter (OPC).

We integrate the quality-checked data (Shi and Flynn,
2007; Smith et al., 2011a,b; Hageman et al., 2017) made pub-
licly available through ARM from co-located instruments at
the SGP site to form a long-term record of [CCN0.4] as in
Fig. 2 and for later analysis and validation of the RFRM.
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Figure 2. Hourly [CCN0.4] measurements at Lamont, Oklahoma,
from 2007 to 2020. The orange circles show the data for [CCN0.4]
measured here. The purple circles show the data for [CCN0.4] de-
rived from [CCN0.2–0.6] according to the method described in
Sect. 2.4.2.

2.4.2 Filling the [CCN0.4] measurement gaps

The temporal range of available observations for [CCN0.4]
at the SGP site is 19 May 2007 17:00:00 to 29 January 2020
23:00:00. For this period of 111 319 h, there is only ≈ 42%
data completeness. To improve the data coverage, we exam-
ine the possibility of using [CCN] for other reported super-
saturation ratios (0.2 %–0.6 %).

In a sneak preview of the efficacy of random forest
for regression, we train random forest models that output
[CCN0.4] from [CCN0.2–0.6]. These models are listed in
Table 1, with the notation rf_n, where n denotes the su-
persaturations used as input (for instance, rf_356 indicates
[CCN0.3], [CCN0.5], and [CCN0.6] were used as inputs to
derive [CCN0.4]). The approach works exceptionally well
and shows the potential for application with other datasets
to fill in such gaps as well as to perform sanity checks on
available data. As reported in Table 1, there is high correla-
tion (Kendall’s τ ) and minimal deviation (interquartile range
of mean fractional bias (IQR(MFB)) between random forest
derived [CCN0.4] and measured [CCN0.4], when simultane-
ous data for [CCN0.4] are available.

Using this approach, we fill in the missing observations
and improve data completeness from ≈ 42% to ≈ 66%, an
increase of ≈ 54%, for [CCN0.4] during this period (see
Fig. 2).

2.4.3 Atmospheric state and composition
measurements

Meteorological data are sourced from the ARM Surface Me-
teorology Systems (MET) (Holdridge and Kyrouac, 1993)
with technical details in Ritsche (2011). We use the ARM
Best Estimate Data Products (ARMBEATM; Chen and Xie,
1994) derived from Holdridge and Kyrouac (1993) when
available (1994–2016).

Table 1. Evaluation metrics of the random forest models developed
to derive [CCN0.4] from other supersaturations.

RF model IQR(MFB) τ

rf_2356 0.05 0.93
rf_235 0.06 0.92
rf_256 0.08 0.91
rf_236 0.09 0.91
rf_356 0.10 0.90
rf_25 0.11 0.88
rf_26 0.11 0.89
rf_35 0.11 0.88
rf_56 0.11 0.89
rf_36 0.15 0.87
rf_23 0.25 0.74

Trace gas concentrations are obtained from the ARM
Aerosol Observing System (AOS; Hageman et al., 1996)
with technical details in Jefferson (2011). Unfortunately, at
the SGP site, measurements (Springston, 2012) are available
only for [SO2] from 2016 to the present. To compensate for
this, we use data from the United States Environmental Pro-
tection Agency (EPA) Air Quality System (AQS) made pub-
licly available at https://www.epa.gov/air-data (last access:
20 August 2020) from monitors in the vicinity (< 100 km)
of the SGP site.

Real-time aerosol mass loadings and their chemical com-
position measurements have been made from 2010 to the
present using an Aerodyne aerosol chemical speciation mon-
itor (ACSM; Ng et al., 2011) with technical details in Watson
(2017). We use the aerosol chemical speciation data (Watson
et al., 2018; Kulkarni, 2019; Behrens et al., 1990), which are
publicly available through ARM.

For observation–model simultaneity, all data (atmospheric
state, composition, and [CCN0.4]) are integrated to the
hourly resolution with their geometric mean.

3 Results and discussion

3.1 RFRM: training, testing, and optimizing

The GCAPM output for 47 sites across the globe, for six se-
lected vertical levels from surface to≈ 8 km and for 30 years
(1989–2018) at the half-hour time step (≈ 150 million rows,
i.e., sets of predictors and [CCN0.4]) is considered in train-
ing the RFRM. The predictors of importance in controlling
[CCN0.4] are listed in Table 2. The RFRM is trained on a
subset of this data. First, the ARM SGP site is ignored; this is
to establish a completely independent analysis with available
observational data in Sect. 3.2.2. The remaining GCAPM
data for 46 sites and six vertical levels each are partitioned
into training (≈ 101 million rows) and testing sets (≈ 44 mil-
lion rows) in a 7 : 3 ratio. Due to the large number of training
and testing examples, these sets are reduced to a 1 % random
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Table 2. Selected atmospheric state and composition variables as
RFRM predictors for [CCN0.4].

Meteorological

Temperature Precipitation RH Solar radiation

Chemical species

[NOx ] [NH3] [OH] [Isoprene]
[SO2] [O3] [Monoterpene]

PM2.5 speciated mass fraction

SO4 NO3 NH4 BC
POC SOA Dust Salt

Figure 3. Scaled Gaussian kernel density estimate for [CCN0.4]
for the training set (dark purple) and each of its subsets (10 %: light
purple; 1 %: light orange; 0.1 %: dark orange). The distributions are
almost identical. A 1 % randomly sampled subset is used to train
the RFRM.

subset; it is ensured to be representative, with almost identi-
cal statistical properties, of the training datasets (Fig. 3).

Once the data have been selected to train the RFRM,
we tune the hyperparameters, which govern the training of
the machine learning model. The default implementation of
Wright and Ziegler (2017) comes with reasonable (balanc-
ing speed and accuracy) choices for these. Based on litera-
ture review (Probst et al., 2019, and references therein) as
well as our preliminary examination of RFRMs with vary-
ing hyperparameters, we identify the following as most im-
portant to optimize: numtrees – number of trees in the for-
est; mtry – the minimum number of variables to consider for
each split; and min.node.size – the minimum node size, i.e.,
the minimum size of homogeneous data to prevent overfit-
ting. By setting the minimum number of training examples
in the terminal nodes of the component trees of the RF, the
individual tree depth is controlled, which further mitigates
the overfitting associated with decision tree algorithms (dis-

cussed in Sect. 2.2). The default hyperparameter values in
Wright and Ziegler (2017) are as follows: numtrees= 500,
mtry= rounded-down square root of the number of variables,
and min.node.size= 5. We verify whether these hyperparam-
eter choices are optimal by performing a grid search of the
hyperparameters and training multiple random forest models
and not just examining their performance with the training
set but also additionally with the test set. By evaluating the
RFRMs with the test set (data that the machine learning al-
gorithm was not exposed to during its training), additional
mitigation of possible overfitting is achieved. Figures 4 and
5 show the results of this exercise.

Figure 4 has nine panels, as follows from top to bottom:

– the top three are for varying number of trees in the ran-
dom forest: numtrees from 1 (a single decision tree)
to 1800, through the default choice of 500 (marked with
vertical black dotted line);

– the middle three are for varying number of variables
considered at each split point: mtry from 1 to 19,
through the default choice of 4 (marked with vertical
black dotted line); and

– the bottom three are for varying minimum size of the
terminal nodes: min.node.size from 1 to 10, through the
default choice of 5 (marked with vertical black dotted
line).

From left to right, the panels are as follows:

– the left three (green) show the overall out-of-bag error,
i.e., the mean square error for the entire random for-
est computed using the complement of the bootstrapped
data used to train each tree;

– the middle three (orange) show the R2 values indicating
the explained variance by the random forest; and

– the right three (purple) show the interquartile range of
the mean fractional bias of the random forest model
when applied to the test set.

A single decision tree (left-most point in each of the top
three panels of Fig. 4) is able to explain the variance (R2

≈

0.81) in [CCN0.4] through the predictors’ variabilities and
has an interquartile range in the MFB (which has a median
of ≈ 0.004: not pictured as the symmetry of MFB means the
median→ 0) of 0.41, which corresponds to a deviation of
≈±20%. However, this is drastically improved when mov-
ing beyond a simple decision tree to even a small ensemble
of 30 trees (R2

≈ 0.91; IQR(MFB) ≈ 0.27), which plateaus
(within a range of ± 0.0005) after ≈ 500 trees. The out-of-
bag (OOB) error shows a similar trend. Growing a random
forest of 500 trees with a min.node.size of 5, we see the
effect of varying mtry in the middle three panels. Instead,
keeping the mtry fixed at the default value of 4; the rounded
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Figure 4. RFRM evaluation through OOB error (green), R2 (orange), and IQR(MFB) (purple) with varying hyperparameters. The hyper-
parameters are (from top to bottom): numtrees, mtry, and min.node.size. Default hyperparameters for each trained model are as follows:
numtrees= 500, mtry= 4, and min.node.size= 5 – also shown with the vertical black dotted lines when the corresponding default value has
been varied.

down square root of the 19 predictor variables and the ran-
dom forest performance metrics with varying min.node.size
are shown in the bottom three panels. Figure 4 thus shows
the possibility of improving the random forest derivation of
[CCN0.4] by changing the default choices of Wright and
Ziegler (2017) for this specific work. It must be kept in mind
that a reasonable cutoff, beyond which there is imperceptible
gain in performance at increased computational cost, should
be considered.

The results shown in Fig. 4 motivate a zoomed-in hyper-
parameter grid search to choose the optimal (accurate and
fast) RFRM. Figure 5 shows this for the best-performing ran-
dom forest models with numtrees ranging from 600 to 1400,
mtry from 6 to 18, and min.node.size from 3 to 6. While
there is variability, it must be noted that the y axes range
over 2 %, 0.2 %, and 2 % of the values of OOB error, R2, and
IQR(MFB), respectively. While, indeed, considering a larger
(numtrees) forest is beneficial, considering the cost-to-benefit
ratio, the hyperparameters we choose are a maximum num-
ber of 800 trees in the forest, 12 (mtry) variables randomly
chosen at each split, a minimum node size of 3 as the only
control on tree depth, and the splitting rule as the minimiza-
tion of variance. With these hyperparameters, the random
forest has IQR(MFB), R2, and OOB error of ≈ 100.34%,
≈ 99.93%, and≈ 100.56% of the best-performing model for
each hyperparameter, respectively.

3.2 What the model learns

We train the optimized RFRM using the 19 predictors listed
in Table 2 as predictors of [CCN0.4]; these are as follows:
eight fractions of PM2.5 (ammonium, sulfate, nitrate, sec-
ondary organic aerosol (SOA), black carbon (BC), primary
organic carbon (POC), dust, and salt), seven gaseous species
(nitrogen oxides (NOx), ammonia (NH3), ozone (O3), sul-
fur dioxide (SO2), hydroxyl radical (OH), isoprene, and
monoterpene), and four meteorological variables (tempera-
ture, relative humidity (RH), precipitation, and solar radia-
tion).

Figure 6 shows the importance of each predictor in de-
termining the CCN0.4 number concentration in the above-
trained RFRM. This importance measure is obtained by ran-
domly permuting values of each predictor to break the as-
sociation with CCN0.4. Also, the model is fed a pseudo-
predictor of randomly generated white noise, labeled “Ran-
dom” in Fig. 6. Most important are component mass fractions
of PM2.5, especially its inorganic fraction (ammonium, sul-
fate, and nitrate), [SO2], the other PM2.5 fractions excluding
the salt and dust fractions, [NOx], and [NH3]. The Random
predictor is least important, contributing imperceptibly to the
[CCN0.4] prediction.

To quantify the importance of each of the 19 predic-
tors, we do the following: (1) RFRM-Blind – train RFRMs
without considering one variable at a time; (2) RFRM-
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Figure 5. RFRM evaluation through OOB error (a), R2 (b), and
IQR(MFB) (c) with varying hyperparameters selected from the best
balanced (accuracy and computational expense) ranges in Fig. 4.

Figure 6. Importance (in decreasing order) of each predictor in the
RFRM derivation of [CCN0.4].

Random – randomize each predictor variable and input
into the RFRM. These exercises will provide a more ro-
bust, as well as more intuitive measure of the importance
of each predictor by analyzing and comparing the devia-
tion in predicted [CCN0.4] compared to the baseline opti-
mized RFRM (hereafter, RFRM-AllVars). Table 3 shows the
median±median absolute deviation of MFB for each such
trained RFRM-Blind and RFRM-Random evaluated with the
test dataset, with the values for the baseline RFRM-AllVars
at the bottom. For the MFB, its median absolute deviation

Table 3. Mean fractional bias (MFB) of each random forest regres-
sion model (RFRM). RFRM-Blind refers to the RFRM trained ig-
noring the particular predictor. RFRM-Random refers to the ran-
domization of the particular predictor before input into RFRM-
AllVars. RFRM-AllVars (at the bottom of the table) is the base-
line model where no variable is omitted or randomized. Values are
median ± median absolute deviation of MFB.

Predictor RFRM-Blind RFRM-Random

PM2.5SOA 0.056± 0.261 0.120± 0.888
PM2.5SO4 0.051± 0.238 0.133± 0.493
PM2.5NH4 0.044± 0.214 0.079± 0.345
Temperature 0.050± 0.221 0.109± 0.333
[SO2] 0.049± 0.215 0.059± 0.296
PM2.5BC 0.044± 0.211 0.094± 0.263
PM2.5SALT 0.044± 0.224 0.054± 0.256
PM2.5POC 0.044± 0.211 0.082± 0.246
[O3] 0.044± 0.212 0.056± 0.239
[NOx ] 0.043± 0.209 0.058± 0.223
PM2.5NO3 0.044± 0.208 0.059± 0.223
PM2.5DUST 0.044± 0.211 0.056± 0.221
Relative humidity 0.040± 0.208 0.047± 0.221
[NH3] 0.046± 0.209 0.052± 0.218
[Monoterpene] 0.045± 0.209 0.048± 0.213
[Isoprene] 0.044± 0.209 0.046± 0.211
[OH] 0.044± 0.208 0.048± 0.211
Precipitation 0.044± 0.209 0.046± 0.210
Solar radiation 0.044± 0.208 0.045± 0.209

RFRM-AllVars 0.044± 0.209

(and even IQR(MFB)) is a stronger indicator of the perfor-
mance than the median, due to the symmetry of MFB. Exam-
ining the median absolute deviation of the MFB, the “Blind”
approach shows that the ammonium (PM2.5NH4), sulfate
(PM2.5SO4), and secondary organic (PM2.5SOA) fractions
of PM2.5 are most important (in increasing order) in deter-
mining [CCN0.4]. The Blind approach may, however, under-
estimate the importance of a predictor due to possible corre-
lations with other predictors, as seen in Fig. 7. These cross
correlations could mean the implicit participation of a pre-
dictor despite its absence in training the RFRM. To over-
come this limitation, in the Random approach, the trained
RFRM-AllVars is then input randomized predictors (one at a
time) from the testing dataset. This breaks the association of
each predictor with the outcome ([CCN0.4]) as well as with
other predictors. The resulting change (if any) in the RFRM-
AllVars would show the importance of the specific predictor.
RFRM-Random for each predictor shows that all predictors
(except solar radiation) are important, with the most impor-
tant being PM2.5SOA, PM2.5SO4, and PM2.5NH4.

Table 3 thus shows the importance of each predictor to-
wards determining [CCN0.4] in decreasing order, which
complements the results in Fig. 6 that shows the out-of-
bag increase in mean square error upon the permutation of
a specific predictor. We modify the approach in Wright and
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Figure 7. Kendall rank correlation (τ ) for the 19 predictors and
[CCN0.4] in the RFRM training dataset (≈ 101 million rows). The
boxes show corresponding τ value according to color scale. Boxes
are divided vertically to represent τ for each selected model height:
surface, ≈ 1, ≈ 2, ≈ 4, ≈ 6, and ≈ 8 km.

Ziegler (2017) (a) to leverage the advantages of the MFB;
(b) to account for any implicit correlations between the data
used to train (bagged) and evaluate (out-of-bag) the RFRM
by using the unseen testing dataset; and (c) to dissociate
the effects of cross correlations between predictors. The re-
sults of this modified evaluation of the RFRM are in Ta-
ble 3. These exercises to probe into the working of the RFRM
show that all of the predictors were deemed necessary to cap-
ture [CCN0.4] magnitude and variability. The most important
predictors are the PM2.5 speciated components, gases includ-
ing [SO2], [O3], and [NOx], and temperature and relative hu-
midity.

3.2.1 Comparison with GCAPM [CCN0.4]

We examine the RFRM in further detail with the subset
of data excluded for testing, i.e., for the sites that RFRM-
AllVars has not been exposed to during its training. Fig-
ure 8a shows RFRM-AllVars derived [CCN0.4] against
that simulated by GCAPM for all of the testing dataset.
RFRM-AllVars predicted [CCN0.4] values are highly cor-
related with expected values from GCAPM, with a correla-
tion of τ ≈ 0.88 and highest density along the dashed black
line in Fig. 8a denoting MFB= 0 or complete agreement.
The dashed blue and red lines denote −1<MFB<+1;
≈ 99.69% of the values are within this factor of 3 times de-
viation. The dotted lighter blue and red lines denote −0.6<
MFB<+0.6; ≈ 96.33% of the values are within this range
of good agreement between derived and expected [CCN0.4]
values.

Overall, the RFRM is able to derive [CCN0.4] with a
median (median-absolute-deviation) MFB of 4.4(21)%. A
comparison to expected [CCN0.4] values from GCAPM
in Fig. 9 (a) by means of the MFB shows the robustness
of RFRM-AllVars in greater detail. The highest density of
MFBs is on or around 0, reiterating how well RFRM-AllVars
predictions of [CCN0.4] compares to GCAPM simulated val-
ues.

Figure 8a is faceted by height in Fig. 8b. Across the various
heights, with varied [CCN0.4] ranges, RFRM-AllVars per-
forms robustly with |MFB|< 2. Its robustness across varied
[CCN0.4] ranges is further shown in Fig. 9b, where Fig. 9a is
faceted by the deciles of the GCAPM simulated [CCN0.4].
RFRM-AllVars performs well over 4 orders of magnitude of
[CCN0.4] from 100 to 2.7× 104 cm−3.

3.2.2 Comparisons for the SGP site

We also examine the temporal trends of [CCN0.4] for the
SGP site (the surface 2◦× 2.5◦ model grid box), which was
completely excluded from the RFRM training. Figure 10
shows the weekly-aggregated time series from 1989 to 2018
for (a) GCAPM simulated and (b) RFRM-AllVars derived
[CCN0.4]. Also shown in Fig. 10d is the comparison, using
MFB, of the derived [CCN0.4] of RFRM-AllVars versus the
GCAPM [CCN0.4] values. The RFRM performs well, be-
ing able to capture weekly variations with good correlation
(τ ≈ 0.68) and low deviation (≈ 99.87% within the good
agreement range of |MFB|< 0.6).

RFRM application: measured predictors as input

As detailed in Sect. 2.4, there are numerous observations of
atmospheric state and composition for the SGP site that can
be utilized to validate the RFRM with empirical data. In an
ideal situation, continuous, long-term, high-quality measure-
ments for all the inputs to the RFRM (the predictor variables
listed in Table 2) would have aided in this analysis. How-
ever, due to the sparsity and absence of measurements of cer-
tain predictors, we are limited to the available factors listed
in Table 4. These are shown in Fig. 11, with the speciated
PM2.5 predictors in Fig. 11a, the trace gas measurements in
Fig. 11b, and the meteorological variables in Fig. 11c.

Thus, with a reduction from 19 to 9 predictor vari-
ables, we retrain the RFRM to use only these as inputs to
derive [CCN0.4]. The RFRM optimization is carried out
as described in Sect. 2.2; the RFRM hyperparameters are
numtrees= 1000, mtry= 3, and min.node.size= 3 and use
the nine predictors listed in Table 4 to derive [CCN0.4].
This retrained RFRM (henceforth, RFRM-ShortVars) is
evaluated using the testing dataset; with median (median-
absolute-deviation) MFB deteriorating from 0.044(0.209) to
−0.184(0.382), 96.33 to 80.30% of the derived [CCN0.4]
values in the good agreement range, and correlation reduc-
ing from τ ≈ 0.88 to 0.79. While RFRM-ShortVars is less
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Figure 8. Binned scatterplot of RFRM versus GCAPM simulated [CCN0.4]. Color bar shows the counts of points in each hexagonal bin.
Bins with low counts (< 1% of maximum count:≈ 3% of the data) are shaded gray. The lines indicate MFB of 0 (black; perfect agreement),
+1 (darker red), −1 (darker blue), +0.6 (lighter red), and −0.6 (lighter blue).

Figure 9. Mean fractional bias (MFB) of RFRM derived [CCN0.4] compared to expected values from GCAPM in the testing dataset (441 756
values). Histogram shows the counts of the pairs by MFB. The lines indicate perfect agreement (black), MFB of +1 (dashed red), and MFB
of −1 (dashed blue). The dotted lines indicate MFB of +0.6 (dotted red) and −0.6 (dotted blue).

robust compared to RFRM-AllVars, the statistical estimators
of model performance are still high for RFRM-ShortVars.

Specifically for the SGP site, Fig. 10c and e show the
weekly-aggregated RFRM-ShortVars derived [CCN0.4] and
its comparison with the GCAPM [CCN0.4] values, respec-
tively. RFRM-ShortVars performs well, being able to capture
these variations with good correlation (τ ≈ 0.66) and low de-
viation (≈ 98.72% within the good agreement range).

Using measurements of the nine predictor variables at
the SGP site for 2010–2020, we use the developed RFRM-
ShortVars to derive [CCN0.4]. Compared to [CCN0.4] mea-
surements, the RFRM performs well, with τ ≈ 0.36 and
≈ 67% with |MFB|< 0.6. We note that filling the mea-
surement gaps (per Sect. 2.4.2) could contribute to this
observed decrease in RFRM performance (from RFRM-
AllVars → RFRM-ShortVars). However, this contribu-
tion is minimal: when comparing the RFRM-ShortVars-

derived [CCN0.4] with measurements excluding the filled-
in [CCN0.4], Kendall’s τ correlation increased from 0.36 to
0.42 and the percentage within the good-agreement range
from 67.02% to 69.34%, with the sample size n reduc-
ing from 39811 to 29047. The deteriorated performance is
mainly due to the reduction in necessary predictors to the
available ones; the uncertainties associated with the mea-
surements themselves may compound this. Regardless, the
variability from diurnal to decadal scales is captured by the
RFRM (top-left panel in Fig. 12a) when compared to the
measurements (bottom-left panel in Fig. 12a) of [CCN0.4].
For reference, in Fig. 12a the top-right and bottom-right pan-
els are the same as in Fig. 10c and a, respectively, but for this
period of measurements.
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Figure 10. Time series (weekly-aggregated) for the surface 2◦×
2.5◦ GCAPM grid box containing the SGP site – (a) GCAPM
simulated, (b) RFRM-AllVars, and (c) RFRM-ShortVars derived
[CCN0.4] – and the mean fractional bias (MFB) of (d) RFRM-
AllVars and (e) RFRM-ShortVars. Dotted lines show the good
agreement range of |MFB|< 0.6.

Table 4. RFRM predictors for [CCN0.4] as listed in Table 2. Ital-
icized text shows those predictors determined (in Sect. 3.2) to not
strongly impact RFRM prediction of [CCN0.4]. Bold text shows the
absence of their hourly measurements.

Meteorological

Temperature Precipitation RH Solar radiation

Chemical species

[NOx ] [NH 3 ] [OH] [Isoprene]
[SO2] [O3] [Monoterpene]

PM2.5 speciated mass fraction

SO4 NO3 NH4 BC
POCa SOAa Dust Salt b

Note: a measurements for PM2.5 POC and SOA are reported as PM2.5 OC
(total organic carbon). b For PM2.5 salt, PM2.5 chloride measurements are
available but subject to a large percent of missing data.

Performance comparison of RFRM and GCAPM

Figure 12b compares GCAPM and RFRM performance in
quantifying [CCN0.4] for SGP with respect to its measure-
ments corresponding to Fig. 12a. In the left-hand panel,
GCAPM simulated [CCN0.4] shows fair correlation (τ ≈
0.27) with SGP measurements and 65 % within the good-
agreement range. The general tendency is overestimation
(median MFB≈ 0.25), seen as higher density above the per-
fect agreement line (dashed black). RFRM-ShortVars derives
[CCN0.4] (Fig. 12b: center) to a greater degree of agree-
ment than GCAPM does, with τ ≈ 0.37 % and ≈ 75 % with
|MFB|< 0.6 and median MFB≈−0.04 indicating a slight
tendency to underestimate.

It is to be recalled that the GCAPM [CCN0.4] is more
reflective of regional tendencies, simulating [CCN0.4] for
a 2◦× 2.5◦ grid box around the SGP site. The RFRM
is trained on GCAPM, from where the associations were
learned between atmospheric state and composition variables
and [CCN0.4], thus implicitly imbibing the effect of physi-
cal and chemical processes that control particle number con-
centrations. That RFRM-ShortVars-derived [CCN0.4] is bet-
ter representative is a demonstration that these processes are
well-represented within GCAPM. Leveraging this aspect as
well as utilizing localized conditions (actual measurements)
of atmospheric state and composition, the RFRM performs
significantly better than GCAPM. These results and the abil-
ity to capture the variability of [CCN0.4] across temporal
scales demonstrate the derivation of [CCN0.4] through the
more commonly available measurements of meteorology: at-
mospheric chemical species including speciation of particu-
late matter.

The right-hand panel of Fig. 12b shows how RFRM-
ShortVars performs when using GCAPM simulated values
of the input predictor variables. τ ≈ 0.24 and 71 % with
|MFB|< 0.6 indicates that the RFRM model performance is
comparable to GCAPM for the SGP site in alignment with
our observations in Sect. 3.2.1. This is encouraging towards
further development of this machine learning approach for
potential application in Earth system models (ESMs). The
random forest technique discussed here has two key virtues:
(1) its computational advantages as discussed in Sect. 2.2 and
(2) its learning from a state-of-the-science chemical transport
model coupled with size-resolved microphysics. In ESMs,
where the demand for computational efficiency results in
using simplified bulk microphysical treatment, the RFRM
can provide a more accurate representation of particle num-
bers, especially those that mediate aerosol–cloud interac-
tions, while remaining computationally efficient.

RFRM trained using measurements

Development of the machine learning model generally re-
quires a large number of training examples; however, we
also investigate the possibility of developing an RFRM with

https://doi.org/10.5194/acp-20-12853-2020 Atmos. Chem. Phys., 20, 12853–12869, 2020



12864 A. A. Nair and F. Yu: Machine learning derivation of CCN

Figure 11. Time series (daily-aggregated) for predictors at the ARM SGP site: (a) PM2.5 speciation; (b) trace gas; and (c) meteorological
measurements.

the measurement data alone. The RFRM optimization is car-
ried out as described in Sect. 2.2; this RFRM trained on ac-
tual measurements at SGP has numtrees = 1000, mtry= 3,
and min.node.size= 5. Compared to the RFRM trained on
GCAPM simulated data (≈ 150 million training examples),
such an RFRM has only ≈ 34 000 training examples for the
SGP site. We train such an RFRM, henceforth denoted as
ORF (observation-based random forest regression model),
and examine its performance.

In comparison with SGP measured [CCN0.4], ORF shows
correlation of τ ≈ 0.53 and good agreement with ≈ 81.22%
of its derived [CCN0.4] values. The time series (daily-
aggregated) of ORF-derived [CCN0.4] is shown in Fig. 12a,
with measured predictors as input to the RFRM in the
middle-left panel and GCAPM predictors as input to the
RFRM in the middle-right panel. In Fig. 13b ORF-derived
[CCN0.4] is compared to hourly measurements. ORF ap-
pears to perform better than RFRM-ShortVars from the sum-
mary statistics. However, it is unable to capture the range
of variations in magnitude (middle-left panel in Fig. 12a).
Similar results are observed (Figs. 13d and 12a middle-right)
when ORF is applied to GCAPM simulated data. This exer-
cise of developing an observation-based RFRM is, however,
not technically justifiable due to the small number of training
examples and applicability to only the SGP site. Regardless,
this exercise provides insight into whether considering only
9 out of the 19 required predictor variables is sufficient for
RFRM-ShortVars, an examination of which suggests the af-
firmative. Further, this exercise is insightful in demonstrating
the unlikelihood of missing any important predictor in the

RFRM, providing an additional check on the importance of
the RFRM predictors, and the potential utility of this machine
learning approach being trained directly, without a physico-
chemically informed model, on atmospheric state and com-
position measurements to derive [CCN0.4].

4 Summary

We develop an RFRM to predict the number concentra-
tions of cloud condensation nuclei at 0.4 % supersatura-
tion ([CCN0.4]) from atmospheric state and composition
variables. This RFRM, trained on 30-year simulations by
a chemical transport model (GEOS-Chem) with a detailed
microphysics scheme (APM), is able to predict [CCN0.4]
values. The RFRM learns that the PM2.5 fractions (except
salt and dust) and gases such as SO2 and NOx are the
most important determinants of [CCN0.4]. The RFRM is ro-
bust in its derivation of [CCN0.4], with a median (median-
absolute-deviation) mean fractional bias of 4.4(21)% with
96.33% of the derived values within the good agreement
range (|MFB|< 0.6) and strong correlation of Kendall’s
τ ≈ 0.88 for various locations around the globe, at vari-
ous altitudes in the troposphere, and across a varied range
of [CCN0.4] magnitudes. We also demonstrate the applica-
tion of this technique for deriving [CCN0.4] from measure-
ments of [CCN] at other supersaturations. For a location in
the Southern Great Plains region of the United States, us-
ing real measurements as input to the RFRM demonstrates
its applicability. To use the measurement data as input to the
RFRM required its tweaking to account for unavailable mea-
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Figure 12. (a) Time series (daily-aggregated) for [CCN0.4] derived by RFRM-ShortVars (top two) and ORF (middle two), compared to
SGP measured (bottom-left) and GCAPM-simulated (bottom-right). (b) Performance comparison of the models in quantifying [CCN0.4]
compared to its measured values for the SGP site: left – GCAPM; center – RFRM-ShortVars with measurements of predictors as input;
right – RFRM-ShortVars with GCAPM-simulated predictors as input. The summary performance metrics are τ : Kendall’s rank correlation
coefficient and %-Agree: the percentage of pairwise model–observation compared values within the good-agreement range defined as−0.6<
MFB<+0.6.

surements for certain predictors. The truncated RFRM per-
forms robustly despite these adjustments: median (median-
absolute-deviation) MFB of −18(38)% with 80.30% of the
derived [CCN0.4] in good agreement and strong correlation
of Kendall’s τ ≈ 0.79. Specifically for the ARM SGP site,
using measured predictors as input to the RFRM and compar-
ison with measured [CCN0.4], the median (median-absolute-
deviation) MFB is −6(61)% with 67.02% of the derived

[CCN0.4] in good agreement and Kendall’s correlation co-
efficient τ ≈ 0.36.

4.1 Further discussion and outlook

There are a number of limitations in the application of the
present study to augment empirical measurements of [CCN].
These are as follows:
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Figure 13. Mean fractional bias (MFB) of the random forest derived [CCN0.4] compared to expected values. (a, b) Comparison with
measured [CCN0.4]. (c, d) Comparison with GCAPM simulated [CCN0.4]. The histograms show the pairwise counts (total is inset top-left
in each panel) by MFB. The lines indicate MFB of 0 (black), +1 (dashed red), −1 (dashed blue), +0.6 (dotted red), and −0.6 (dotted blue).
The percentage of RFRM derived values in good (|MFB|< 0.6) and fair (|MFB|< 1) agreement are shown close to the+0.6 and+1.0 MFB
lines, respectively.

– The RFRM is trained on GCAPM, with the assump-
tion that the physical and chemical processes that relate
the “predictor” variables to the [CCN0.4] outcome are
accurate. Previous studies show that GCAPM performs
reasonably when compared to observations, but uncer-
tainties in both model and observation may contribute
to uncertainties in the RFRM derivation.

– Co-located and simultaneous (with [CCN0.4] measure-
ments) measurements of the required predictor variables
were available only for certain predictors. We had to re-
train the RFRM to account for these constraints, which
sacrificed its accuracy in deriving [CCN0.4]. Other is-
sues with measurements arise from the limitations of
their accuracy, precision, and detection limits. Further
sources of error are the utilization of predictor measure-
ments from nearby (but not co-located) monitors to fill
in significant gaps in the required data for the SGP site.

– Random forest was the machine learning tool of choice
due to its parallelizability and high degree of accuracy.
There are, however, other tools such as XGBoost (a
choice for many winners of machine learning compe-
titions) or regression neural networks. These, among
others, could offer improved [CCN0.4] derivation. A
cursory examination for the present study, however,

showed no significant improvement at the cost of much
higher computational expense.

– To overcome some of the gaps in the [CCN0.4] mea-
surement data from the SGP site, we proposed and im-
plemented a derivation of [CCN0.4] from [CCN] mea-
surements at other supersaturations using the random
forest technique. While this derivation was confirmed
to be exceptionally good, this is an approximation.

– Development of an observation-based RFRM is pre-
sented in this study. However, it can be significantly
improved with more observations for the SGP site, and
generalizable if trained with observations from numer-
ous other sites. This was presently not possible.

Despite the caveats associated with this work, this proof of
concept shows promise for wide-ranging development and
deployment. This machine learning approach can provide
improved representation of cloud condensation nuclei num-
bers:

– in locations where their direct measurements are lim-
ited, but measurements of other atmospheric state and
composition variables are available. Typically, since
measurements of PM2.5 speciation, trace gases, and
meteorology are easier than those of [CCN0.4], there
are longer and more widely (spatially) distributed in
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situ measurement records, especially through air quality
monitoring networks. The developed RFRM can derive
[CCN0.4] from these ubiquitous measurements to com-
plement [CCN0.4] measurements when available and
fill in the gaps in their absence.

– in Earth system models:

– by providing a more accurate alternative to bulk mi-
crophysical parameterizations

– by providing a computationally less intensive alter-
native to explicit bin-resolving microphysics mod-
els.

This work is an initial step towards fast and accurate
derivation of [CCN0.4], in the absence of its measurements,
constrained by empirical data for other measurements of at-
mospheric state and composition. This work demonstrates
the possible applications of machine learning tools in han-
dling the complex, nonlinear, ordinal, and large amounts of
data in the atmospheric sciences.
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Ng et al., 2011; Hageman et al., 1996; Shi and Flynn, 2007; Smith
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