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Abstract: Mass absorption cross-section of black carbon (MACBC) describes the absorptive
cross-section per unit mass of black carbon, and is, thus, an essential parameter to estimate the radiative
forcing of black carbon. Many studies have sought to estimate MACBC from a theoretical perspective,
but these studies require the knowledge of a set of aerosol properties, which are difficult and/or
labor-intensive to measure. We therefore investigate the ability of seven data analytical approaches
(including different multivariate regressions, support vector machine, and neural networks) in
predicting MACBC for both ambient and biomass burning measurements. Our model utilizes
multi-wavelength light absorption and scattering as well as the aerosol size distributions as input
variables to predict MACBC across different wavelengths. We assessed the applicability of the
proposed approaches in estimating MACBC using different statistical metrics (such as coefficient
of determination (R2), mean square error (MSE), fractional error, and fractional bias). Overall,
the approaches used in this study can estimate MACBC appropriately, but the prediction performance
varies across approaches and atmospheric environments. Based on an uncertainty evaluation of our
models and the empirical and theoretical approaches to predict MACBC, we preliminarily put forth
support vector machine (SVM) as a recommended data analytical technique for use. We provide
an operational tool built with the approaches presented in this paper to facilitate this procedure for
future users.

Keywords: black carbon; mass absorption cross section (MAC); aerosol light absorption; machine
learning; deep learning

1. Introduction

Black carbon (BC) aerosols are emitted from incomplete combustion processes (e.g., fossil fuel
and biomass burning) as fine particles [1,2]. BC has a major role in the climate system due to its ability
to absorb solar radiation and interactions with clouds [3–5]. Understanding the properties of BC and
quantifying its mass concentration in the atmosphere are essential to estimate its impacts on climate
change. One widely used method to determine BC mass concentration is dividing light absorption
coefficient (Babs) by mass absorption cross-section (MAC) [6–8]. Although Babs can be measured using
various instruments (such as in situ and filter-based optical instruments [7,9]), the value of MAC
needs to be estimated or known in advance when performing the numerical calculation of BC mass.
Consequently, the derived BC mass is sensitive to the adopted MAC value, so improved estimation of
MACBC will improve estimates of BC mass concentration from ground-based networks providing Babs,
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which can, in turn, result in improvements to chemistry-climate models and our understanding of the
radiative impacts of BC.

Historically, MAC of 7.5 ± 1.2 m2 g−1 (550 nm) for “fresh” and uncoated BC has been
recommended [6,10]. In a recent review of 10 published reports of MAC values for freshly emitted BC,
Liu et al. [11] conclude that the averaged MAC is 8.0 ± 0.7 m2 g−1 (550 nm), generally agreeing with the
values recommended in Bond and Bergstrom [6]. However, MAC of atmospheric BC particles is more
variable and more uncertain than that of fresh BC. For example, MAC of atmospheric BC may be lower
(e.g., Nordmann et al. [12] report values of 3.9 to 7.4 m2 g−1 at 550 nm) or larger (e.g., Gyawali et al. [13]
and Kondo et al. [8] report values ranging from roughly 10 to 14 m2 g−1 at 550 nm) than the “typical”
value of 7.5 m2 g−1. Similarly, the value of MAC used in different climate models spans a broad range
(2.3 to 10.5 m2 g−1 (550 nm); e.g., [14] and references therein). Differences in MAC values can exist due
to differences in the aerosol mixing state, the underlying size distribution of BC-containing particles,
and the effective density of the BC-containing particles. This is further complicated by uncertainty in
the complex refractive index of BC; for example, Bond and Bergstrom [6] provide a range of real and
imaginary complex refractive indices that may be representative of BC. Moreover, atmospheric aging
may result in MAC values that differ from the Bond and Bergstrom [6] value (e.g., [15]); therefore,
MAC is likely a function of time, not a constant value (e.g., [16]). Finally, although 550 nm is often
the focus for reporting MAC, BC absorbs light across all wavelengths. To extend this value to other
wavelengths of light (λ) a power law relationship [3,17,18] is used:

MAC(λ) = MAC(550 nm) ×
(
λ

550

)−AAE
(1)

where AAE is the absorption Ångström exponent. AAE is commonly assumed to be unity for BC,
but it varies in the literature between ~0.6 and ~1.6 [3,19–21].

The presence of other absorbing materials in the atmosphere further complicates the application of
MAC to derive BC mass. Brown carbon (BrC) has been found to absorb light across ultraviolet-visible
wavelengths, with MAC lower than that of BC [1,22,23]. Tar balls have attracted considerable attention
recently as absorbers of light at visible and near-infrared spectral regions (e.g., [24–26]). One important
source of atmospheric BrC and tar balls is biomass burning [6,27,28]. Another source of absorbing
aerosols is wind erosion of the Earth’s surface, releasing mineral dusts, which are non-carbonaceous
material that weakly absorb light across all wavelengths [9,29–31]. Therefore, due to different spectral
dependence of light absorbing materials, simply dividing Babs by MAC may introduce uncertainties
to the derived BC mass. Even at longer wavelengths (for example, 870 nm) where light absorption
by most BrC is negligible, the computed BC mass may be overestimated if tar balls and mineral dust
contribute to the light absorption.

Theoretically, MAC can be calculated from formulations using aerosol complex refractive indices,
mixing state, size, and morphology as input variables [11,32–35], all of which are difficult and/or
labor-intensive to measure. Necessary assumptions within these calculations can also add uncertainty
to the derived MAC. Hence, alternative approaches, such as the use of statistical methods and machine
learning approaches may provide a new insight to predict values of MAC with comparable accuracy.

The goal of the present study is to explore and develop a straightforward yet accurate model
for predicting temporal variations in the MAC of BC (MACBC). This model does not require the
knowledge of aerosol composition or any assumptions of complex refractive indices and mixing
state. In situ measurements are input to the model, including multiple wavelength Babs and light
scattering coefficients (Bscat) as well as aerosol size distributions. One advantage of incorporating
these measurements is that they are likely to be available at the majority of long-term monitoring
sites [36–39], while aerosol composition is often not. To build the model, we examine several popular
data analytical approaches. These approaches include classical statistical techniques and machine
learning techniques (see Section 2.4 for details). We also provide several modules related to data
preprocessing (see Section 2.3).
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We present here the framework of the model, together with an evaluation of model by testing
aerosols from various environments using different statistical metrics. A forthcoming companion work
will describe an extension of these models to predict MACBC across different wavelengths using the
model output. This future work will also include a sensitivity analysis of the models to different inputs
variables (e.g., if only measurements of single-wavelength Babs and Bscat exist) and a discussion of the
influence of varying chemical composition and related optical properties (e.g., AAE, single scatting
albedo (SSA)).

2. Methodology

2.1. Dataset Description

We applied the data analytical approaches to two publicly available U.S. Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM) field campaigns, the Two-Column Aerosol Project
(TCAP) and the Cloud, Aerosol and Complex Terrain Interactions (CACTI) project, as well as biomass
burning emissions collected during the U.S.’s National Oceanic and Atmospheric Administration
(NOAA)-sponsored Fire Influence on Regional to Global Environments Experiment (FIREX) laboratory
campaign. A summary of aerosol properties obtained from each dataset is provided in Table 1. Values
represent the mean across the entire sampling period along with the standard deviation across the
period; hence, there is a temporal variability of ~50% in MACBC for each dataset.

Table 1. Overview of the studies and aerosol properties. Aerosol properties are expressed as mean
(standard deviation) a.

Dataset Number
of Data b

MACBC (870 nm)
(m2 g−1) c,d,e

Absorption
Ångström
Exponent

(AAE)

Scattering
Ångström
Exponent

(SAE)

SSA528
f D50

(nm) g
Dv50

(nm) h

Li et al.
[40]

Bond et al.
[41]

Li et al.
[40]

Bond et al.
[41]

TCAP
(training set) 7321 3.87

(1.92)
7.81

(4.11)
1.50

(0.96)
1.27

(0.46)
0.98

(0.01)
0.95

(0.03)
68.40

(20.12)
1543

(1093)

TCAP
(test set) 1830 3.85

(1.90)
7.78

(4.06)
1.48

(0.97)
1.30

(0.46)
0.98

(0.01)
0.96

(0.03)
69.10

(20.48)
1544

(1091)

CACTI 10,709 2.94
(1.68)

7.36
(3.53)

1.32
(0.56)

1.20
(0.64)

0.96
(0.02)

0.92
(0.03)

56.15
(32.83)

2275
(1286)

FIREX h 6745 3.35
(1.45)

7.53
(3.25)

2.02
(0.74)

2.26
(0.64)

0.66
(0.25)

0.52
(0.28)

109.05
(46.26)

310
(218)

a See Figure 1 for the temporal variability of mass absorption cross-section of black carbon (MACBC); b The datasets
presented here are reported on a per-minute basis; c When calculating the MACBC in this table, we use the black
carbon (BC) mass concentration from the Single Particle Soot Photometers (SP2) and the filter-based light absorption
coefficient (Babs) corrected by either Li et al. [40] or Bond et al. [41], which was further modified in Ogren [42].
Hereafter, when we refer to Bond et al. [41], we mean the correction method which has been modified in Ogren [42];
d The results are compared to the predicted MACBC presented in Table S5; e Using the “standard” MACBC from
Bond and Bergstrom [6] and an assumed absorption Ångström exponent (AAE) = 1, the “expected” MACBC at
870 nm is 4.74 ± 0.75 m2 g−1, suggesting that both correction equations may be imperfect; f SSA528: single scattering
albedo at 528 nm, calculated as Bscat/(Babs + Bscat); g D50 and Dv50: median diameter of the number and volume
size distribution, respectively. The values are reported over the entire size distribution, which may have multiple
modes, so D50 and Dv50 can be different from the geometric mean value of any individual modes; h During the
Fire Influence on Regional to Global Environments Experiment (FIREX) campaign, only Scanning Mobility Particle
Sizers (SMPS) was used to detect aerosol size distribution.

The TCAP (Cape Cod, Massachusetts, USA; roughly 60 miles southeast of Boston) and CACTI
(mountain area of north-central Argentina; roughly 50 miles west of the city of Córdoba) field
campaigns reported ground measurements of Babs using Particle Soot Absorption Photometer (PSAP),
Bscat using multi-wavelength nephelometers, aerosol size distributions using Scanning Mobility
Particle Sizers (SMPS) and Aerodynamic Particle Sizers (APS) (spanning 11.3–461.4 nm for the
SMPS and 444.6–18,747.4 nm for the APS, the latter converted to mobility diameter), and BC mass
concentration using Single Particle Soot Photometers (SP2) [43–45]. For both campaigns, we randomly
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selected a period when all measurements were available and without bad and/or missing data (TCAP:
16 July 2012 to 14 August 2012, CACTI: 1 December 2018 to 20 December 2018). The major aerosol
sources at the two observational sites are likely to be different. Kassianov et al. [45] found that both
marine aerosols and aerosols transported from continental North America over the Atlantic Ocean
contributed to the observations at TCAP. Different from TCAP, the major sources of aerosols at CACTI
likely included local and secondary biomass burning emissions and wind-blown dust [46].
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As the ultimate goal of comparing different techniques is to evaluate their generalizability on 

new datasets other than TCAP data, we apply all techniques to two independent validation sets: field 

data from the CACTI campaign and laboratory data from the FIREX campaign. 

Figure 1. True response and predicted time series of MACBC using (a) training dataset, (b) test
dataset, (c) validation dataset (CACTI), and (d) validation dataset (FIREX). Only the curves for three
representative techniques (OLS, LASSO, and SVM) are included in the figure. Note that in panel (d),
the OLS technique yields severe overprediction of MACBC (>10,000 m2 g−1) for fire numbers of 33, 37,
41, 43, 51, and 65. To better view the results, the OLS-derived MACBC for these fires are not shown in
the figure (as well as the other figures in this work).

The purpose of the laboratory portion of the FIREX campaign (Fire Sciences Laboratory, Montana,
USA) conducted in 2016 was to understand how wildfire smoke influences the atmosphere [47].
There were slight differences in instruments used at FIREX compared to the DOE campaigns. During
FIREX, Babs was quantified using a PSAP “successor” (Continuous Light Absorption Photometer,
CLAP), Bscat was detected by two Photoacoustic Extinctiometers (PAXs) at 405 and 870 nm, and a
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relatively narrower size distribution was obtained by an SMPS (14.6–736.5 nm, mobility diameter);
however, BC mass concentrations were still available from an SP2 [48].

In the present work, data preparation was performed in two steps: (1) observations of Babs and
Bscat were discarded if they fell below the estimated detection limits (PSAP: 0.30 Mm−1 [49]; CLAP:
0.60 Mm−1 [50]; Nephelometer: 0.29, 0.11, and 0.17 Mm−1 at 450, 550, and 700 nm respectively [51];
PAX (Bscat only): 0.60 and 0.66 Mm−1 at 405 and 870 nm respectively); and (2) all data were converted
to a 1-min time interval. For example, Babs and Bscat were smoothed from 1-s data into 1-min averages,
and the time series of particles size distributions were linearly interpolated from 5-min values to
1-min values.

2.2. Construction of Model

In this section, we first present how we utilize the above datasets to build the model. Then,
we summarize the input and output parameters of the model and present the calculation details.
Even though we focus on the Babs quantified by PSAP and CLAP in the present work, our model
could be also implemented on Babs measured by the other instruments (such as the aethalometer or
any photoacoustic technique). Similarly, the particle size distributions derived by other instruments
(e.g., the Ultra-High-Sensitivity Aerosol Spectrometer (UHSAS, Droplet Measurement Technologies) or
the Laser Aerosol Spectrometer (TSI Inc.)) could be used as input in our model (see Section 2.3.1 for
more details). To build the model, we follow a common data partition method used in the machine
learning community [52,53]. Specifically, we first randomly split the TCAP data into training set and
test set (80% and 20%, respectively). The data analytical techniques are initially applied to the training
set to derive parameters and then are evaluated using the test set. The test data are used as new data
in order to independently assess the goodness of fit for our data analytical techniques. To further
investigate the generalizability of the techniques, we extend the fitted models to another ambient
observation site (CACTI) and aerosols obtained from laboratory biomass burning (FIREX). The latter
two datasets are referred to as independent validation datasets in this work.

Selecting the appropriate input parameters for model development can affect the quality of
MACBC prediction. Therefore, we use the underlying physics for inspiration in identifying candidate
parameters for our statistical models. MACBC (at 870 nm) can be calculated following:

MACBC (870 nm) =
Babs (870 nm)

MBC
(2)

where MBC is the mass concentration of BC. Light scattering theories (such as Mie theory and the
Rayleigh–Debye–Gans approximation) can be used to calculate Babs using an aerosol population’s
complex refractive index and particle number distribution as inputs, while calculations of MBC depend
on the aerosol population’s density and particle volume distribution. The complex refractive index
and density are both related to aerosol composition. However, because complete aerosol speciation is
rare at the majority of long-term monitoring sites, we attempt to use empirical observations of Babs

and Bscat as an alternative; the basis for this is that previous studies have utilized AAE and scattering
Ångström exponent (SAE) (i.e., an “AAE-SAE space”, [30,54–56]) to categorize absorbing aerosols
(e.g., BC-dominant, dust-dominant, BC/BrC mixtures). We also include parameterizations of both
empirical particle number distributions and particle volume distributions as candidates for our models.
Even though these are inherently related, we argue that including representations of both is somewhat
analogous to the TwO-Moment Aerosol Sectional (TOMAS) model [57], which tracks both number and
mass distributions, and has been implemented in chemistry-climate models (e.g., [58,59]) to predict
aerosol microphysics. Consequently, there are 20 candidate input variables in our statistical and
machine learning models (Table 2). Pre-processing of these variables is described in Section 2.3, and
the specific modeling approaches are described in Section 2.4.
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Table 2. Input variables in the model.

Absorption
Coefficient

Scattering
Coefficient

Number
Concentration a

Fractional
Number

Concentration b

Volume
Concentration a

Fractional
Volume

Concentration b

Babs Bscat N1 FN V1 FV1
(467 nm) (467 nm) (0–dN1 nm) (0–dN1 nm) (0–dV1 nm) (0–dV1 nm)

Babs Bscat N2 FN2 V2 FV2
(528 nm) (528 nm) (dN1–dN2 nm) (dN1–dN2 nm) (dV1–dV2 nm) (dV1–dV2 nm)

Babs Bscat N3 FN3 V3 FV3
(652 nm) (652 nm) (>dN2 nm) (>dN2 nm) (>dV2 nm) (>dV2 nm)

Ntotal Vtotal
a dN1 and dN2 represent the user-specified upper or lower bound of each size class. The sum of N1, N2, and N3
equals to Ntotal. The same definition and relationship applies for volume concentration. See Section 2.3.1 for more
details; b Fractional number concentration is derived by dividing the number concentration within each size class by
Ntotal, e.g., FN1 = N1/Ntotal. The same definition and relationship applies for fractional volume concentration.

When developing the model, we select the desired output to be MACBC at 870 nm because this
wavelength has traditionally been associated solely with BC (e.g., there is limited influence from other
absorbing species), although we acknowledge that tar balls and/or mineral dust does absorb at this
wavelength. To yield Babs (870 nm), the Babs values from the filter-based photometers corrected by either
Li et al. [40] or Bond et al. [41] are extrapolated to 870 nm, following Babs ~ λ−AAE, where AAE is first
calculated by the Babs at multiple wavelengths using a power-law fit. To derive the observation-based
MACBC (the true response of MACBC), MBC quantified by the SP2 at the observational site is utilized.

2.3. Data Preprocessing

In this section, we present a few preprocessing steps (summarized as three modules at https:
//doi.org/10.5281/zenodo.3967833 [60]) that are necessary to enable model implementation. Readers
should be aware that these modules are optional if they have data formatted as summarized in Table 2
or if they wish to conduct their own data preparation. For example, we provide the implementation of
the correction algorithm described in Li et al. [40] and Bond et al. [41] for filter-based Babs, but various
other correction techniques exist (e.g., Müller et al. [61] and Virkkula et al. [62] for the PSAP and
CLAP; Collaud Coen et al. [63] and Weingartner et al. [64] for aethalometers). As the final step of
data preprocessing, we normalize the raw data with different scales of values into scaled data within
a specific range [65], which can significantly improve the prediction accuracy of models (see the
Supplementary Material for more details).

2.3.1. Preprocessing Size Distribution Data

Both number and volume size distributions are selected as input variables in our model as they
can provide different information about the aerosol properties. For example, large particles (such as
mineral dust and sea salt) primarily affect the volume concentration, without substantially affecting the
number concentration. In this work, aerosol volume distribution (NV(DP)) is calculated from number
size distribution (NN(DP)) assuming that the aerosols are spherical, following:

NV(DP) =
π

6
DP

3NN(DP) (3)

where DP is aerosol mobility diameter (nm). When processing the ARM datasets, we first convert the
APS data from aerodynamic to mobility diameters assuming that the particles are spherical with a
density of 1.2 g cm−3, same as the procedure used in Ondráček et al. [66] and Shen et al. [67].

Considering that the size bins of the distributions may differ based on pre-defined parameters
(such as the selected size range, size resolution, etc.), we use a few size classes to represent the entire
size distribution; effectively, we represent both the number and volume size distributions using
three bins (see Table 2). The corresponding aerosol concentration and percentage of total aerosol

https://doi.org/10.5281/zenodo.3967833
https://doi.org/10.5281/zenodo.3967833
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concentration falling within each class are calculated using Module A, which are later input to our
model. Furthermore, the measured particle size range may vary from instrument to instrument.
For example, the combination of SMPS and APS can provide a broad size range from roughly 10 nm to
20 µm, while the UHSAS measures particles with sizes ranged from 55 nm to 1 µm. In order to capture
the effect of measured size range on the size classes used in our model, the ranges of each size class
(dN1 and dN2, dV1 and dV2) are selected as input parameters in Module A. Our default size boundaries
are dN1 = 50 nm, dN2 = 200 nm, dV1 = 1000 nm, and dV2 = 2500 nm, but users can manually input lower
and upper limits of each size class prior to module implementation. For example, when preprocessing
the FIREX dataset, we used dN1 = 80 nm, dN2 = 200 nm, dV1 = 200 nm, and dV2 = 800 nm, since only
an SMPS was deployed during the campaign. The sensitivity analysis of the predicted MACBC due to
the selected size bins will be discussed elsewhere.

2.3.2. Preprocessing Absorption and Scattering Measurements

Filter-based absorption photometers have known biases, largely due to the presence of the filter.
To minimize measurement biases, we include the correction algorithms developed by Li et al. [40]
and Bond et al. [41] as an optional module (Module B). One advantage of the correction algorithm
presented in Li et al. [40] is that it updates the correction coefficients based on the optical properties
(i.e., SSA and AAE) computed by the input aerosol data. However, considering that the correction
method described in Bond et al. [41] is still widely used, we incorporate this method in our module.

Furthermore, because filter-based absorption photometers and nephelometers may operate at
different wavelengths, we provide another optional module (Module C) to convert absorption and
scattering measurements to “standard” wavelengths (467, 528, and 652 nm in the present work).
For example, we use the following equation to convert Babs and Bscat from the measured wavelength
(λmeas) to 652 nm:

B(652 nm) = B(λmeas) ×
( 652
λmeas

)−AE
(4)

where B can be either Babs or Bscat and AE can be either AAE or SAE. AAE and SAE are calculated by
fitting exponential curves on the measured Babs and Bscat, respectively [68,69].

2.4. Basic Principles of Data Analytical Techniques

Different data analytical approaches, including multiple linear regression model using ordinary
least squares (OLS), stepwise regression, least absolute shrinkage and selection operation (LASSO),
support vector machine (SVM), artificial neural network (ANN), and convolutional neural network
(CNN), are introduced and applied to our datasets to find the optimal model for MACBC prediction.
The basis, advantages, and limitations of each approach are provided in Table 3. A detailed description
of the mechanics for each approach can be found in the Supplementary Material.

2.5. Analytical Tools

The data analysis is performed using the programming language Python (version 3.7.5) for
Windows in an “Anaconda” environment. Creating an “Anaconda” environment allows the installation
and implementation of libraries and packages needed for processing data analytical techniques
mentioned in this work. We provide a “User’s Guide” including a detailed description of procedures
to install packages, set the working environment, and apply our modules and models at https:
//doi.org/10.5281/zenodo.3967833 [60].

https://doi.org/10.5281/zenodo.3967833
https://doi.org/10.5281/zenodo.3967833
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Table 3. Comparison of different data analytical approaches.

Approach Basis Advantage Limitation References

multiple linear regression using OLS

minimize the sum of squared distances
between the “true” observations and
predictions (the sum of squared residual
errors, SSE)

• simple and powerful for
linear prediction

• backbone for many advanced data
analytical methods

highly depend on the assumptions:

• The relationship between the output
variable and input variables is linear

• Residual errors are distributed normally
• Input variables have equal variance

[70]

stepwise regression

choose a group of “best” independent
variables based upon some statistical
criteria (Akaike Information Criterion
(AIC) in this work)

• test relationships for different
combinations of independent variables

• easy to implement

• If two independent variables are highly
correlated, the one has the highest
correlation with the dependent variable
will be left in the model.

• The “best stepwise model” may not be
the “true model”

[71–73]

LASSO
automatically select independent
variables by adding a penalty term to
the SSE

• retain the ability of selecting important
variables (similar to
stepwise regression)

• reduce over-fitting through the
penalty term

If several independent variables are
inter-correlated, LASSO tends to arbitrarily
select only one variable.

[74]

SVM a
map the independent variables into a
higher dimensional space where linear
regression is performed

• deal with nonlinear problems with the
help of nonlinear kernels

• less prone to over-fitting, compared to
classical regression techniques

• computational expensive
• sensitive to noises and outliers
• difficult to interpret the derived model

[75–77]

ANN

compare the desired output and
modelled output (randomly initialized)
and then adjust the network weights
using back-propagation rule

• handle complex nonlinear relationships
• not sensitive to noises
• require no assumptions about the

underlying function

• computational expensive
• require “big” data for training
• The model is not interpretable

(black box)
• Model development is empirical

[78]

CNN b
pass a convolutional kernel over the
sequence of data and generate a feature
map to represent the data

• automatically detect important features
of the dataset

• less complex than a fully
connected ANN

• The order of input variable is important
• require “big” data for training [79,80]

a A version of support vector machine (SVM) for regression (support vector regression (SVR)) is used in this work to predict MACBC; b We use a modified one-dimensional convolutional
neural network (1D-CNN) in this work. The 1D sequence of CNN is the 20 input variables. See the Supplementary Material for more details.
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3. Results

As presented in Table 1, Babs corrected by different correction methods can cause variation in
the observation-based MACBC, with mean values differing by roughly a factor of two. Therefore,
we considered two versions of model, one using Babs corrected by Li et al. [40] as input variables and the
numerator in Equation (2) to calculate MACBC, and another using Babs corrected by Bond et al. [41] to
build the model. In the main text, we focus on the results from the former model as Li et al. [40] observed
good agreement between corrected filter-based Babs and reference Babs using photoacoustic instruments.
The evaluation of the latter model can be found in the Supplementary Material (Tables S9 and S10,
Figures S10–S12). We also input Babs corrected by Bond et al. [41] into the first model (without
rebuilding the model from scratch) and compare the predicted MACBC against our original results
(Tables S11–S13).

3.1. Performance of Models on the Training and Test Datasets

The parameters of the seven data analytical techniques are trained using 7321 TCAP records and
tested using 1830 remaining TCAP records. The results of coefficient values output from the models
can be found in the Supplementary Material (Figure S6). The performance of the techniques is assessed
according to statistical criteria, including coefficient of determination (R2) and mean square error (MSE).
As seen in Table 4, all techniques are able to predict the changes of MACBC to some extent, although
some models are better than others based on these statistical criteria. We have also included results
considering the use of the “standard” assumptions (MACBC = 7.5 m2 g−1 and AAEBC = 1) to determine
MACBC at 870 nm; based on the statistical criteria, this is unequivocally the worst-performing approach
to predict the hourly MACBC for any dataset.

Table 4. The performance of the seven data analytical techniques along with the “standard” assumption
of MACBC

a.

Approach R2 MSE

Training Test Validation
(CACTI)

Validation
(FIREX) Training Test Validation

(CACTI)
Validation
(FIREX)

OLS 0.467 0.465 0.272 0.50 b 0.932 0.961 1.738 9 × 1021 b

Forward stepwise 0.459 0.461 0.218 0.354 0.965 1.015 2.148 6.442
Backward stepwise 0.468 0.468 0.283 0.343 0.932 0.944 2.538 5.914

LASSO 0.420 0.412 0.201 0.321 0.964 0.970 2.175 4.977
SVM 0.781 0.766 0.247 0.413 0.284 0.375 2.991 2.299
ANN 0.798 0.778 0.251 0.367 0.227 0.370 2.715 6.401
CNN 0.735 0.728 0.222 0.390 0.488 0.579 3.440 3.400

“Standard” 0.246 0.279 <0 c 0.258 2.083 2.075 4.242 7.018
a The results are generated with lower time resolutions (TCAP and CACTI: hourly-averaged data (687 and
480 timestamps, respectively); FIREX: fire-averaged data (30 fires)). The results generated using minute-basis can
be found in Table S6; b It is important not to misinterpret the R2 calculated by the OLS model implemented on
the FIREX dataset, because an extreme value of mean square error (MSE) (9 × 1021) is obtained from this analysis;
c A negative coefficient of determination (R2) is because the “standard” MACBC (4.74 m2 g−1 at 870 nm) is greater
than the “true” response of MACBC at the site (2.94 ± 1.68 m2 g−1).

During the training phase, ANN features the highest statistical accuracy (R2 = 0.798
and MSE = 0.227), although the second and third highest accuracy techniques (SVM and CNN) are not
very different from ANN. However, traditional statistical approaches (OLS, forward and backward
regressions) and LASSO have lower accuracies (R2

≈ 0.450 and MSE ≈ 0.950). The complicated model
structures of ANN, SVM and CNN allow them to better capture nonlinear relationships between
MACBC and the aerosol properties than traditional statistical models. Moreover, the slightly better
performance of ANN than CNN is consistent with our expectation, since the ANN algorithm has a
deeper network structure (more parameters in the network) than the CNN algorithm.

During the testing phase, there are no major differences in the techniques’ performance compared
to the results from the training phase (i.e., R2 and MSE are similar for both phases). Overall, the similar
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performance of the models on training and test datasets suggests that the models have achieved a
satisfactory generalization capability for new and “unseen” MACBC data at the TCAP observational site.

Figure 1a,b shows the time series of predicted MACBC by different techniques from the training
and test sets, respectively, as well as the “true” MACBC. We only present the results of OLS, LASSO,
and SVM in this figure; results for the other models are provided in Figures S7 and S8. We apply the
same time resolution to generate the figures as we calculated the results in Table 4. For both the training
and test sets, the predicted MACBC follows closely to “true” MACBC with no signs of systematic errors.

3.2. Performance of Models on the Independent Validation Datasets

As the ultimate goal of comparing different techniques is to evaluate their generalizability on new
datasets other than TCAP data, we apply all techniques to two independent validation sets: field data
from the CACTI campaign and laboratory data from the FIREX campaign.

The CACTI campaign deployed the same instrumentation as the TCAP campaign but was
conducted at a different observational site, resulting in different aerosol properties (Table 1). Hence,
the CACTI data provide us with an opportunity to explore how the models may be applicable to
different sampling locations and ambient aerosol sources. As seen in Figure 1c, Figure 2a and Figure S9,
the seven approaches are capable of predicting MACBC within a factor of two of the “true” MACBC

(i.e., predicted errors < ± 50%) for most of the sampling days, which suggests that our models may be
valid for new datasets. However, there are some times during which our models are consistently biased
high (e.g., 6–9 December) or low (e.g., a ~6 h window on 20 December). Yuan et al. [16] demonstrate
that MACBC can vary with BC mixing state, so these discrepancies could be the result of an aerosol
mixing state that differs from the training data. We will explore the role of mixing state and other
potential explanatory variables for these systematic biases in a forthcoming companion paper.
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Figure 2. Comparison between the predicted MACBC and “true” MACBC using independent validation
CACTI (a) and FIREX (b) datasets. Only three representative techniques (OLS, LASSO, and SVM) are
included in the figure. The results of the other techniques can be found in Figure S9. The grey and
brown shaded regions represent predicted errors < ±25% and < ±50% referenced to the line of perfect
agreement (1:1).

We quantitatively assess the model scatter by calculating the percentage of points that lay within
a factor of two of the true response (Table S7). Overall, over 80% of the MACBC from CACTI can be
estimated by our models within a factor of two, and the OLS yields the greatest percentage (92.4%).
When comparing the R2 and MSE across the approaches for the CACTI dataset (Table 4), we find that
the traditional statistical approaches tend to yield similar or even better results than the deep learning
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approaches, which is different from the TCAP results. However, in the case of these CACTI data,
the performance of all models is arguably similar (see also Figure 3 and relevant discussion).
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analytical approaches. When deriving the points with error bars, the “standard” MACBC from Bond
and Bergstrom [6] is used as predicted MACBC, and “true” MACBC is used as desired output of MACBC.

We also applied these models to our FIREX dataset (laboratory study of biomass burning) to
determine how our models work for aerosols that are vastly different than the ambient datasets, e.g.,
the mean SSA532 is 0.66 ± 0.32 for the FIREX dataset, whereas SSA532 for the ambient datasets tends
to be >0.95 (Table 1). Consequently, the FIREX data provide a challenge for some, but not all, of our
models. This could, at least in part, be due to an inadequate representation of chemical composition
by Babs and Bscat for these biomass burning aerosols. However, it could also be related to differences
between the mixing state of the aerosols, the presence of tar balls, or the fact that we are extrapolating
the model away from the (presumably) aged BC in the training data to fresh BC in the emissions data.
We will further investigate some of these factors in our forthcoming companion paper. Nevertheless,
our SVM model does not appear to be very sensitive to the observed differences in aerosol optical
properties or the likely differences in aerosol chemical composition (Figure 2).

3.3. Comparison across Datasets

We next adopt the model performance criteria proposed by Morris et al. [81] to quantitatively
inter-compare our models across different datasets. According to the criteria, the models can be
classified as “excellent”, “good”, “average”, and “[having a] fundamental problem”, based on the
fractional error and fractional bias. The fractional error is defined as:

2
N

∑
|Pi − Ti|

Pi + Ti
(5)

while fractional bias is defined as:
2
N

∑ Pi − Ti

Pi + Ti
(6)

where Pi is the predicted MACBC and Ti is the “true” MACBC.
The results for our models are provided in Figure 3 (see Table S8 for the detailed results). All models

applied on the training and test datasets meet the criteria for “excellent”, with fractional bias close to
zero and fractional error around 0.1. The models also have similar performance for the CACTI dataset,
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falling along the “excellent”/“good” boundary with fractional error of roughly 0.35 and fractional bias
of roughly 0.15. For the domains around the boundary, the traditional statistical approaches applied on
the CACTI data lay inside the “excellent” region, while the SVM and neural networks fall outside (but
within the “good” region), which is consistent with the results of R2 and MSE in Table 4. Performance
begins to diverge on the FIREX data set; while the fractional biases are within ±0.10, the fractional
errors range from roughly 0.35 (SVM) to roughly 1.15 (OLS), with the majority falling around the
“good”/“average” boundary. The greater value of fractional error in the case of the OLS approach
is because it tends to predict a MACBC value that is the most different compared to the true value
(e.g., Figures 1d and 2b). While the performance of the other approaches remains statistically worse
than those applied to the training and test datasets (Table 4), their ability to predict MACBC still seems
reasonable for FIREX (either “good” or “average”).

For the datasets included in Figure 3, we also compute the fractional error and fractional bias using
the “standard” MACBC values (4.74 ± 0.76 m2 g−1, 870 nm) as the “predicted” MACBC. The “standard”
MACBC is derived using MACBC (550 nm) of 7.5± 1.2 m2 g−1 (recommended by Bond and Bergstrom [6])
and AAE of 1, following Equation (1) The “standard” MACBC results in greater fractional bias and
fractional error than most of the combinations of our dataset and approaches. The better performance of
our approaches could be explained by their ability to incorporate temporally varying input parameters
in the calculation of MACBC. Such variations in MACBC cannot be captured by the “standard” MACBC

since it is reported as a single value with a standard deviation and was recommended for fresh and
uncoated BC particles.

We explore bias as a function of time in the Supplementary Materials. Specifically, we compare
the time series residuals (residuals = predicted MACBC – MACBC.true) computed by our models and
the one using the “standard” MACBC (see Table S15 and Figure S13). We find that our models have
residuals closer to zero than the standard approach for all datasets. However, our models have a
greater standard deviation than the standard approach for the validation datasets, which may be
related to the fact that the standard approach is generally biased high. Conversely, the SVM model for
the CACTI dataset, for example, has periods where it is biased high (e.g., that 6–9 December window),
biased low (e.g., 1–3 December), and has practically no bias (e.g., 15–17 December). Nevertheless,
these results suggest that our models, while uncertain, may have the potential to capture temporal
variability in MACBC.

Consequently, our results indicate that the proposed data analytical approaches work reasonably
well on datasets that are not very different from our training dataset (e.g., ambient measurements
from different environmental conditions) and the MACBC estimated by these approaches are very
likely to provide better predictions of BC mass than using a constant value of MACBC. Furthermore,
under this condition, the performance of different models is not very different. For datasets that are
vastly different than our training dataset (e.g., aerosols with high BrC concentrations as in biomass
burning), the machine learning approaches (e.g., SVM and ANN) yield lower fractional errors and
fractional biases closer to zero compared to the traditional statistical approaches and the “standard”
MACBC. Moreover, our FIREX dataset (laboratory emissions) resulted in a mean SSA of 0.66 while field
measurements of the aerosol optical properties in biomass burning plumes tend to report SSA > 0.9
(e.g., [82–85] and references within [86]); thus, it is possible that we have used an “extreme” dataset
that may not be realistic for real world biomass burning plumes. In other words, our models may have
limited utility for measurements of fresh emissions from combustion sources.

3.4. Comparison to a Different Correction for Babs

In this section, we provide a brief discussion of the results using the Bond et al. [41] correction on
the model outputs. We rebuilt the models using this correction, providing values of R2 and MSE in
Table S9 and fractional error and fraction bias in Table S10. Compared to the results using the models
built using the Li et al. [40] correction, the values of R2 are slightly better for the training, test, CACTI,
and some of the FIREX data in these rebuilt models, but MSE is, on average, about a factor of 5 larger.
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Likewise, the fractional error is roughly 0.03 greater (on average) for the rebuilt models in the hourly
training and test data, while in the validation data, the fractional error is sometimes lower (e.g., 0.484 in
the original ANN model and 0.418 in the rebuilt ANN model). There are similar results for fractional
bias, with the original models having slightly lower fractional bias for the training and test hourly
data, while the comparison for the validation data sets are more varied (considering both magnitude
and direction). Interestingly, the rebuilt machine learning models all have slightly lower fractional bias
in the CACTI data but slightly larger fractional bias in the FIREX data.

To understand how the choice of Babs correction affects model output when simply running the
models, we corrected Babs values using Bond et al. [41] and input these into our original models built
using the Li et al. [40] correction; statistical metrics (R2, MSE, fractional error, and fractional bias) in
Tables S11 and S12. When comparing these to the original model results presented in earlier sections,
R2 is typically lower using the Bond et al. [41] correction. Interestingly, the Li et al. [40] correction
nearly always results in better performance (lower MSE, lower fractional error, fractional bias closer
to zero) for the CACTI data, while the Bond et al. [41] correction nearly always has less error for the
FIREX data (fractional bias varies by model).

As a further comparison between these two correction equations, we conducted t-tests using the
1-min data to determine if their mean MACBC values were significantly different from each other in the
original models (using the Li et al. [40] correction to build the model); results are provided in Table S13.
All models were significantly different (p < 0.05) for the TCAP dataset, for two models in the CACTI
dataset (OLS, backward stepwise), and for all but the SVM and ANN models in the FIREX dataset.
Some of these statistical differences may be related to the relatively large sample sizes (>6700), because
the relative percent different between the means ranged from 0.0 to 5.2%. Moreover, these differences
are small compared to the estimated uncertainties in the model outputs (see Section 4).

Consequently, a holistic consideration of these metrics suggests that the Li et al. [40] correction
appears to result in better performance when building the models. However, there is no strong
evidence that suggests either correction model is better when running the models to predict MACBC.

4. Discussion

In this section, we present an uncertainty assessment of MACBC quantified by our data analytical
models. For comparison, we also compute the uncertainties of MACBC derived by various empirical
and theoretical approaches. At the end of this section, we provide some insights for the application of
these approaches.

Empirical MACBC determined from direct measurements of BC mass and absorption is probably
the least controversial, as we can estimate a 24% uncertainty in MACBC via quadrature, based on
10% in Babs [40] and 22% in SP2-measured BC mass concentrations [87]. However, for the data
analytical approaches developed in this paper, the “standard” MACBC values reviewed by Bond
and Bergstrom [6], and the theoretical approaches, each of the contributing terms may propagate
uncertainties to the derived MACBC. Therefore, we provide the following uncertainty estimations
using both quadrature (because all models will be affected by random error in the input variables) and
Monte Carlo approaches [88–90].

4.1. Uncertainty in Data Analytical Approaches

All models will have some uncertainty due to random error in the model inputs. To compare
to the uncertainty of empirical MACBC, we consider Babs to have 10% uncertainty [40] and Bscat to
have 10% uncertainty [91], and we assume that all of the parameters related to aerosol size have 10%
uncertainty, based on [92] for SMPS and [93] for APS. Using quadrature, the models including all
20 input parameters (OLS, SVM, ANN, and CNN) have an estimated uncertainty of roughly 45%,
while LASSO, with only 9 input parameters, has an estimated uncertainty of roughly 30%. This is
likely an imperfect approach because the machine learning models, in particular, are very complex and
because some of the model inputs are related to each other. For example, the total number (volume)
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concentration is equal to the sum of the number (volume) concentrations within the coarse bins, while
the fractional number concentration is equal to the number (volume) concentration in a given bin
divided by the total number (volume) concentration. Moreover, there are analogous equations to
Equation (1) that describe the relationship between Bscat and Babs across the different wavelengths.

We also consider an uncertainty analysis using the bootstrap approach (a nonparametric Monte
Carlo analysis [89,90]). In our analysis, bootstrap mimics the process of obtaining new data from the
TCAP site, and these data have the same underlying distribution as our original TCAP dataset. We then
rebuild different data analytical models using the new datasets. The relative standard deviation
(i.e., standard deviation/mean) of R2 and MSE derived by the new models are presented in Table 5.
Using the resampled datasets, the rebuilt models based for SVM and CNN tend to be more stable
(i.e., lower relative standard deviations) than the traditional regression approaches and the other
machine learning approaches when considering the validation datasets, so there appears to be lower
model uncertainty when applying those models to new datasets.

Table 5. The relative standard deviation of R2 and MSE derived by the bootstrap resampling approach
a.

Approach R2 MSE

Training Test Validation
(CACTI)

Validation
(FIREX) Training Test Validation

(CACTI)
Validation
(FIREX)

OLS 3.39% 9.28% / b / b 4.03% 12.60% / b / b

Forward stepwise 2.86% 9.20% 5.56% 11.73% 3.54% 12.10% 35.10% 21.35%
Backward stepwise 3.11% 9.26% 33.06% / b 3.91% 12.49% 52.51% / b

LASSO 3.29% 9.34% / b 20.98% 5.45% 13.11% / b 28.74%
SVM 5.16% 5.84% 8.06% 3.98% 16.67% 17.87% 19.03% 6.49%
ANN 3.80% 2.48% 5.12% 4.81% 16.22% 15.15% 10.82% 35.77%
CNN 3.57% 5.51% 7.00% 14.72% 9.57% 18.95% 6.39% 18.85%

a The Bootstrap resampling process is repeated five times. The mean and standard deviation of R2 and MSE can be
found in Table S14; b the result is not interpretable, because extreme values of MSE are computed when using the
new datasets to rebuild the model. We have also excluded the R2 value for these cases.

In Figure 2 and Figure S9 and in Table S7, we demonstrate that all of our data analytical approaches
can predict the majority (>63%) of the empirical MACBC within ±50%, with one exception (the OLS
model for the FIREX data). Considering that none of these models include aerosol composition or
explicitly consider aerosol optical properties such as SSA and AAE, we argue that this performance is
robust. Moreover, all of these models may capture temporal variability due to their use of time-resolved
input data. Consequently, our models provide considerable improvements over the assumption of a
constant value of MACBC.

However, given that our models have not been evaluated using, e.g., urban aerosols, the model
performance for some atmospheric environments is unknown. Considering that the inherent limitation
of machine learning approaches is that they tend to perform worse for extrapolation than interpolation
problems [94], our models may only have utility for environments that are similar to the training data
(e.g., highly aged/mixed BC).

4.2. Uncertainty in the “Standard Approach”

As discussed previously, the standard approach to calculate MACBC is based on MACBC at
550 nm = 7.5 m2 g−1 and AAE = 1, although discrepancies with both of these values exist in the
literature. Therefore, uncertainties may exist when extending MACBC to 870 nm. We conduct a Monte
Carlo simulation to quantify this uncertainty, assuming that MACBC values are normally distributed
about 7.5 m2 g−1 with a standard deviation of 1.2 and that AAE is uniformly distributed between 0.6
and 1.6. Using 10,000 iterations, we estimate an uncertainty of roughly 21% in MACBC at 870 nm based
on the standard assumption. However, it is also worth noting that this represents the uncertainty for a
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constant value, and therefore, cannot capture any spatial or temporal variability in the “true” MACBC,
which may be around 50% following Table 1.

4.3. Uncertainty in Theoretical Approaches

It is difficult to quantify uncertainties in theoretical approaches due to the number of requisite
assumptions. For any of the number of optical models that could be used to predict MACBC (e.g., [9]
and references therein), one requires the BC mixing state, BC complex refractive index, and BC density,
along with the aerosol size distribution and a representation of BC-containing particles across that
distribution. Moreover, the choice of a given optical model itself depends on the BC morphology.
In the literature, Curci et al. [95] estimate an uncertainty of ~30–35% in calculations of SSA and aerosol
optical depth due to different model input assumptions, and mixing state plays a large role in these
uncertainties. Similarly, Tuccella et al. [96] find the BC direct radiative effect varies by 50%, depending
on the assumed mixing state.

We attempt to estimate uncertainty in MACBC from a theoretical approach as follows. We assume
that the calculation incorporates an empirical aerosol size distribution, with 10% uncertainty.
We conservatively estimate that mixing state contributes ~25% uncertainty based on Curci et al. [95]
and Tuccella et al. [96], and we consider the range in recommended complex refractive index and
density recommended by Bond and Bergstrom [6] to each contribute ~10% uncertainty. We have no a
priori estimates for uncertainty related to the apportionment of BC across the aerosol size distribution
or BC morphology, so we conservatively estimate 10% uncertainty for each. Therefore, we estimate
roughly 34% uncertainty (via quadrature) in predicted MACBC from a theoretical approach.

4.4. Recommendations

There are benefits and limitations to each of the approaches discussed above. Experimental
MACBC requires the concurrent measurements of Babs and MBC, which is not often available at
long-term monitoring sites. Our data analytical approaches may capture temporal variations in
MACBC using empirical observations of Babs, Bscat, and aerosol size distributions, but they have the
largest estimated uncertainties propagated from the input variables and their performance for different
aerosol types than what we consider here is unknown. Conversely, the standard approach has the
lowest estimated uncertainty, but because this uses a constant value, it will never capture any temporal
variability in MACBC at a given location. Moreover, while the theoretical approaches are physics-based
models, each require major assumptions that may not be constrained by empirical observations.

Considering all of these factors, we recommend the use of our SVM model for further exploration in
the calculation of MACBC. Any of our models can predict MACBC using data common to ground-based
monitoring networks, but the SVM model appears to be the least sensitive to different aerosol types,
based on a holistic consideration of R2, MSE, fractional error, and fractional bias for both evaluation
datasets, and its performance is relatively stable when rebuilding the model using the bootstrap
approach. Moreover, SVM is the least sensitive to variations in empirical limitations (e.g., if a single
wavelength of Babs and Bscat are available, if only an APS is available), which will be discussed in
a forthcoming companion study. Finally, while an argument could be made for the ANN or CNN
models, the SVM model is more computationally efficient than those other two machine learning
models, which suggests utility in processing large datasets from long-term field sites.

However, we add the caveat that when applying our model to aerosols whose properties are very
different from our training datasets (see Table 1), the model performance is unknown and could result in
substantial error. For example, the analysis of fresh aerosol emissions from fossil fuel combustion (such
as diesel engines) may result in similar issues to those in some of our FIREX data; therefore, when the
aerosols are likely dominated by BC (SSA < 0.5), using the standard assumptions (MACBC = 7.5 m2 g−1;
AAEBC = 1) may be more appropriate than any of our models.
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5. Conclusions

In this exploratory study we apply OLS regression, forward stepwise regression, backward
stepwise regression, LASSO, SVM, ANN and CNN to three datasets (TCAP and CACTI ambient data
and FIREX laboratory biomass burning data), in order to study their applicability to estimate MACBC of
black carbon aerosols. The inputs of the model simply include Babs, Bscat, and aerosol size distribution.
The nonlinear approaches (SVM, ANN and CNN) perform much better than the traditional regressions
and the LASSO approach for the training and test set (TCAP data). When applying the approaches on
independent validation datasets, the models can capture the overall trends in MACBC, although there
is some degree of decreased performance for some of the data. Arguably, no model is unequivocally
the best for the CACTI data when holistically considering R2, MSE, fractional error, and fractional bias.
However, SVM and CNN appear to perform the best for the FIREX data, and therefore, may be less
sensitive to extreme variations in aerosol optical properties. Notably, there appears to be no obvious
difference in model outputs when the input Babs data are corrected using a different approach for any
of the models.

Our uncertainty analysis (via quadrature) suggests ~24% uncertainty in empirically-derived
MACBC, compared to ~21% in the standard approach, ~34% in a theoretical formulation, and up to
~45% in our statistical models due to the random error of our 20 input variables. However, the standard
approach cannot account for temporal variations in MACBC, which are on the order of ±50% (Table 1),
while numerous assumptions are required for any theoretical formulations. Therefore, even though our
analysis suggests the highest propagated uncertainty, we recommend the use of our SVM model for the
calculation of MACBC for long-term field monitoring sites because it requires no assumptions, and it
incorporates temporally varying aerosol properties and therefore, has the potential to capture temporal
variations in MACBC. Ultimately, we anticipate that the exploratory approaches in this work can pave
the way for design of data-driven models to estimate complex aerosol properties in future studies.

In a forthcoming paper, we will discuss the extension of the predicted MACBC to different
wavelengths. The extension requires underlying assumptions to establish the relationship among
MACBC, wavelength, and AAEBC (Equation (1)), where AAEBC can be assumed either to be constant or
to vary with local aerosol properties. We will also explore how the predicted MACBC are impacted by
varying atmospheric parameters and changing input variables (such as using single-wavelength Babs,
rather than three-wavelength Babs), in order to quantify to what extent our model results are sensitive
and robust.
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