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Abstract  

The correspondence between mean sea surface temperature (SST) biases in retrospective  

seasonal forecasts (hindcasts) and long-term climate simulations from five global climate  

models is examined to diagnose the degree to which systematic SST biases develop on  

seasonal time scales. The hindcasts are from the North American Multi-Model Ensemble and  

the climate simulations are from the Coupled Model Intercomparison Project. The analysis  

suggests that most robust climatological SST biases begin to form within 6 months of a  

realistically initialized integration, although the growth rate varies with location, time, and  

model. In regions with large biases, interannual variability and ensemble spread is much  

smaller than the climatological bias. Additional ensemble hindcasts of the Community Earth  

System Model with a different initialization method suggest that initial conditions do matter  

for the initial bias growth, but the overall global bias patterns are similar after 6 months. A  

hindcast approach is more suitable to study biases over the tropics and sub-tropics than over  

the extra-tropics because of smaller initial biases and faster bias growth. The rapid emergence  

of SST biases makes it likely that fast processes with times scales shorter than the seasonal  

time scales in the atmosphere and upper ocean are responsible for a substantial part of the  

climatological SST biases. Studying the growth of biases may provide important clues to the  

causes and ultimately the amelioration of these biases. Further, initialized seasonal hindcasts  

can profitably be used in the development of high-resolution coupled ocean-atmosphere  

models.  
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1 Introduction 

As more than two-thirds of Earth’s surface is covered by ocean, sea surface 

temperature (SST hereafter) plays a crucial role in the Earth system because it regulates ocean 

surface water and energy budgets and affects the weather and climate. However, recent 

generations of state-of-the-art Global Climate Models (GCMs) or Earth System Models 

(ESMs) have often suffered from similar systematic biases in SST (Mechoso et al. 1995; Lin 

2007; De Szoeke and Xie 2008; Wang et al 2014; Richter 2015; Zhang et al. 2015; Zuidema 

et al. 2016; Lee et al. 2019). Here, we define the bias as the difference between model 

simulations and observations (or analyses). Figure 1 shows the annual multi-model mean SST 

biases from the historical simulations of the fifth and sixth phase of the Coupled Model 

Intercomparison Project (CMIP5, Taylor et al. 2012; CMIP6, Eyring et al. 2016). Large 

systematic cold biases are present over the equatorial Pacific, sub-tropical north and south 

Pacific Ocean, sub-tropical Indian Ocean, and sub-tropical and north Atlantic Ocean. Large 

warm biases are present over the eastern equatorial Pacific and Atlantic, southeastern Pacific 

and Atlantic, northeastern Pacific, northwestern Atlantic, and Southern Ocean. From CMIP5 

to CMIP6, similar bias patterns with comparable bias magnitudes are still present in the latest 

generation of ESMs. These biases can hinder model prediction skills on seasonal to decadal 

time scales, and potentially impact the fidelity of simulated future temperature changes (e.g., 

Palmer et al., 2008; Richter et al., 2018).  

Identifying the causes of SST biases from these long-term, fully coupled model 

simulations is challenging because a bias over a particular region may be due to either local 

oceanic or atmospheric processes, or both. A bias may also come from remote locations 

through teleconnections. There are also feedback processes from different component models 

(atmosphere, land and sea ice) involving different time scales. Furthermore, reducing a bias 
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by model tuning or changing model parameterizations may or may not resolve the root  

problem because of compensating biases. As a result, a similar SST bias may appear in future  

model versions. Therefore, it is critical to identify and understand the underlying causes of a  

model’s bias.  

While identifying causes of a particular regional bias is challenging from the long- 

term, fully coupled model simulations, significant progress has been made in recent years  

through diagnosing SST biases in realistically initialized seasonal or decadal coupled  

hindcasts (Huang et al. 2007, 2014; Liu et al. 2012; Hazeleger et al. 2013; Toniazzo and  

Woolnough 2014; Vannière et al. 2013, 2014; Voldoire et al. 2014, 2019; Sanchez-Gomez et  

al. 2016; Shonk et al. 2018; da Silveira et al. 2019; Siongco et al. 2020). With the Met Office  

Unified Model, there is a strong qualitative similarity in tropical and sub-tropical SST bias  

patterns between short-term forecasts (a few days to weeks) and long-term climate runs from  

the same model (Brown et al. 2012). The use of a seamless modeling approach to diagnose  

and correct initial bias growth can lead to improving long-term coupled model climate,  

particularly if biases in the short-term forecasts or hindcasts can be better understood (Hurrell  

et al. 2009; Martin et al. 2010). The initialized coupled model framework is a potentially  

powerful approach in that it can address: (a) over what time-scales do biases develop; (b) how  

much of the bias is due to atmospheric biases, oceanic biases, or biases from coupled ocean- 

atmospheric feedbacks; and (c) whether a given atmospheric or oceanic physical  

parameterization will be suitable as a core component of the model.  

A number of studies have used this framework to diagnose the origin of tropical SST  

biases. For example, Vannière et al. (2013; 2014), Shonk et al. (2019) and Siongco et al.  

(2020) investigate the biases in the equatorial Pacific cold tongue and the double intertropical  

convergence zone (ITCZ) with seasonal hindcasts. The cold tongue bias is present within a  

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0338.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-20-0338.1/5014677/jclid200338.pdf by BATTELLE PAC
IFIC

 N
W

 LAB, M
ary Frances Lem

bo on 09 N
ovem

ber 2020



 5 

few weeks or months of lead time in all the models except one (IPSLCM5A-LR, Vannière et 

al. 2014), and the initial development of atmospheric surface wind bias, which drives the 

excessive equatorial upwelling, is the primary cause for the cold bias. Over the tropical 

eastern and southeastern Atlantic, the warm bias appears to be a combination of the excessive 

surface shortwave radiative forcing due to the insufficient low-cloud cover, weak upwelling 

resulting from the too weak equatorial trade winds, too weak coastal upwelling, and the 

deficiencies in the regional wind-SST-precipitation coupling, based on series of seasonal and 

decadal hindcast studies (Huang et al. 2007; Toniazzo and Woolnough 2014; Voldoire et al. 

2014, 2019). A recent study by Hermanson et al., (2018) examined drifts in SST from the 

initial state with two seasonal forecast systems (Beijing Climate Center-Climate Prediction 

System and Met Office Global Seasonal forecast system version 5), and compared the drifts 

to the long-term bias in the free-running version of each model at eight selected locations. 

They found that SST drifts on seasonal time scales vary between the two forecasting systems 

at the selected locations with the former often showing larger mean forecast bias than the 

long-term bias, and the latter often showing the opposite relation between mean forecast bias 

and the long-term bias While these studies demonstrate the utility of the initialized coupled 

framework for model biases, it is not yet clear whether the hindcast approach is useful across 

the global oceans in a multi-model context. 

To that end, we systematically diagnose in a multi-model context, the correspondences 

between short- and long-term SST biases around the global oceans, which has not been 

systematically addressed in previous studies. This is similar to the diagnosis performed on 

systematic biases in atmosphere models in Xie et al. (2012) and Ma et al. (2013, 2014). To do 

so, we analyze six sets of seasonal hindcasts and their corresponding long-term climate 

simulations from models participating in the North American Multi-Model Ensemble 

(NMME, Kirtman et al. 2014) project. Our objectives are to identify whether there is good 
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correspondence between short- and long-term SST biases over regions of large biases shown  

in Figure 1, and whether the correspondence is consistent across all the models analyzed in  

this study. Furthermore, we propose a set of criteria for identifying whether a hindcast  

approach is useful for a specific regional bias study. The remainder of this manuscript is  

organized into four sections. Section 2 describes the model experiments and validation  

datasets. Section 3 examines the correspondence between short- and long-term biases from  

the seasonal hindcasts and long-term fully coupled climate simulations. Section 4 summarizes  

our findings and draws conclusions.  

2 Model experiments and validation datasets  

2.1 Models and experiments  

2.1.1 Ensemble seasonal hindcasts  

Ensemble seasonal hindcasts are obtained from Phase-II of the NMME project  

(Kirtman et al. 2014). NMME is an intra-seasonal to seasonal to interannual multi-model  

ensemble prediction experiment for characterizing forecast uncertainty and improving  

predictability for operational needs. The project is coordinated by various U.S. and Canadian  

modeling centers. The NMME hindcasts are available from the Earth System Grid Federation  

(ESGF, https://www.earthsystemgrid.org/search.html?Project=NMME). Table 1 lists  

information about five GCMs that we selected for seasonal hindcasts from the NMME  

project; these five models were selected because long-term coupled climate simulations were  

available for analysis. The five models are the Coupled Climate Model versions 3 and 4  

(CanCM3 and CanCM4, respectively, Merryfield et al. 2013) from the Canadian Centre for  

Climate Modeling and Analysis (CCCma); the Community Climate System Model version 4  

(CCSM4, Gent et al. 2011) and Community Earth System Model version 1 (CESM1, Hurrell  

et al. 2013) from the National Center for Atmospheric Research (NCAR); the Forecast- 
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Oriented Low Ocean Resolution version of the Coupled Model version 2.5 (FLORB01,  

Vecchi et al. 2014) from the National Oceanic and Atmospheric Administration (NOAA) /  

Geophysical Fluid Dynamics Laboratory (GFDL). We also performed an additional set of  

ensemble seasonal hindcasts for the year 2005 with CESM1 using a different initialization  

method for all model components as part of the Lawrence Livermore National Laboratory  

Cloud-Associated Parameterizations Testbed (CAPT) project (Phillips et al. 2004, Ma et al.  

2015). A description of the procedure of how these coupled hindcasts were performed is  

described in Appendix B. We refer to the CESM1 hindcasts from the NMME project as  

CESM1-NMME and hindcasts from the CAPT as CESM1-CAPT hereafter.   

Figure 2 illustrates the hindcast procedure for these NMME models. For each  

modeling group, a 10-member ensemble of 12-month long hindcasts were performed starting  

at 00Z on the first day of each month between January 1980 and December 2014. For the  

hindcast month 1 (Mon1 or the 0-month lead), SSTs are averaged for the first month of the  

hindcasts over all the ensemble members. SSTs of the hindcast month 2 (Mon2 or the 1- 

month lead) are averaged for the second month and so on for hindcast month 3 to month 12  

(Mon3 to Mon12, or 2-month to 11-month lead).  

Initialization and ensemble generation procedures differ among modeling centers as  

the NMME project did not ask for its synchronization. For CanCM3, CanCM4, and  

FLORB01, initial conditions are from their own data assimilation systems (Merryfield et al.  

2013 for CanCM3 and CanCM4; Zhang et al. 2007 for FLORB01). For CCSM4, initial  

conditions are taken from the National Centers for Environmental Prediction (NCEP) Climate  

Forecast System Reanalysis (CFSR). For CESM1-NMME, the ocean and sea ice initial  

conditions are from a Coordinated Ocean-Ice Reference Experiment (CORE, Griffies et al  

2009) and the atmosphere and land models are initialized from a long-term, spun-up  

climatology. We assume that these initialization procedures provide model initial conditions  
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 8 

close to observed. For CESM-CAPT, the procedure of generating initial conditions for  

atmospheric and land initial conditions of CESM1 is described in Ma et al. (2015). The ocean  

initial conditions were generated by applying a forty-eight-member ensemble adjustment  

Kalman filter data assimilation system (Karspeck et al. 2013) from the Data Assimilations  

Research Testbed (DART, Anderson et al. 2009) at NCAR (see Appendix B). In the case of  

SST, we will test below how close each model’s initial condition is to the observations.   

2.1.2 Long-term climatological coupled simulations  

To obtain long-term climatological SST mean biases, we also used the corresponding  

historical simulations from Phase 5 of the Coupled Model Intercomparison Project (CMIP5,  

Taylor et al. 2012). The CMIP5 historical simulations for CCSM4 (six ensemble members)  

and CESM1 (three ensemble members) cover the years from 1850 to 2005. The CMIP5  

historical simulations for CanCM4 (ten ensemble members) are only available from 1961 to  

2005. Climatological SST of CanCM3 and FLORB01 with the same models was obtained  

directly from the CCCma and NOAA/GFDL modeling groups, respectively. For CanCM3,  

SST is taken from a 40-year long coupled climate simulation from 1971 to 2010 using  

historical forcings (Merryfield et al. 2013). For FLORB01 model, SST is taken from the last  

300 years of a 1500-year long coupled climate simulation using radiative forcing and land-use  

conditions representative of the year 1990 (Vecchi et al. 2014, Murakami et al. 2015). We  

believe that the SST mean biases from these simulations should be very representative of the  

climatological mean biases.   

2.2 Validation datasets  

Global analyses of monthly SST are from the Met Office Hadley Centre's SST data set  

(HadISST, Rayner et al. 2003, https://www.metoffice.gov.uk/hadobs/hadisst/). This dataset is  

on a 1° latitude × 1° longitude horizontal grid from 1870 to present. To assess SST  
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uncertainty from different analysis products, we also compared our hindcasts to the National 

Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation SST Version 2 

(OISST, https://www.esrl.noaa.gov/psd/). The OISST has two versions, a monthly resolution 

version on a 1° latitude × 1° longitude horizontal grid (Reynolds et al. 2002) and a daily 

resolution version on a 0.25° latitude × 0.25° longitude horizontal grid (Reynolds et al. 2007). 

Both versions cover from 1981 to present. The overall annual mean bias patterns in SST from 

the hindcasts are very similar with HadISST and OISST (not shown here). The differences in 

the bias magnitude of using different SST analyses are generally small (< 1º C) in the low 

latitudes. There are some large differences (~3º C) in the bias magnitude over high latitudes, 

especially near the storm tracks or sea ice. Nevertheless, most systematic SST biases are 

much larger than the differences from different SST datasets so the results we present in the 

later sections are not affected by the choice of either observed SST dataset. We decided to use 

the HadISST for most of our analysis as it covers the much longer historical period from 1870 

to present. The daily OISST is only used to determine biases in the initial conditions for the 

hindcasts. Observed and modeled SSTs are linearly interpolated to a resolution of 1° 

longitude by 1° latitude for comparison. 

3 Correspondence between short- and long-term systematic SST biases   

3.1 Biases in the initial SST  

Our primary goal is to identify regions where large SST biases in the long-term 

climatological simulations appear within the first few months of seasonal hindcasts. One can 

then use initialized seasonal hindcasts to diagnose SST bias growth over those particular 

regions. The ideal scenario for doing this is when the initial conditions, especially the upper 

ocean state, are as close to observations as possible. If the initial SST bias is already large 

compared to a model’s climatological SST bias, attribution of SST bias to certain processes 
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would be challenging1. Therefore, an important first step is to check whether there are large  

biases in the initial state.   

To examine the magnitude of initial biases in SST, Figure 3 shows the SST ensemble  

mean biases averaged over the first day of model integrations with the starting dates of  

January 1, 2005 and July 1, 2005 (Results are not shown for CESM1-NMME and FLORB01  

because daily SSTs were not available). Table 2 lists the root mean square errors (RMSEs) of  

SST calculated over the tropics and sub-tropics (0°–360°E, 30°S–30°N), as well as extra- 

tropics (0°–360°E, 30°N–60°N or 60°S–30°S) for the same starting dates. We examined 1- 

day biases because the initial conditions for ocean models are not available for analysis from  

the NMME project. Since the ocean heat capacity is large, we assume that large biases in the  

SST after one day of integration are representative of biases in the initial state for all the  

models. We have verified that this is the case for CESM-CAPT as the differences in SST  

between the initial state and 1-day hindcast are generally less than 0.1°C.   

The day-1 tropical SST biases are in general smaller than the extra-tropical SST  

biases, regardless of season or hemisphere. SST biases are within ±0.5°C in most tropical and  

sub-tropical oceans for both starting dates, especially in CCSM4 (Figure 3). For the starting  

date of January 1, 2005, CanCM3, CanCM4, and CESM1-CAPT show warm biases with  

magnitude of ~1-2°C over the Indian Ocean and subtropical north Atlantic. For the starting  

date of July 1, 2005, these three models show cold biases with magnitudes of ~1-2°C over the  

Indian Ocean and sub-tropical north Atlantic. There are also warm biases with magnitude of  

~1-3°C near the coast of Peru, Chile, Angola and Namibia. In the extra-tropics, large biases  

with magnitude of ~3-4°C are mostly found over the storm tracks in the North Pacific, North  

Atlantic and Southern Ocean. This is consistent with the RMSEs in Table 2. The RMSEs are  

                                                 

1 Biases in the initial conditions may provide information if a model was using its own data assimilation system. 
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 11 

smaller than 0.5°C between 30°S and 30°N for both starting dates. Slightly larger RMSEs are  

found in mid-latitudes with CanCM3, CanCM4, and CESM1-CAPT showing ~1.1-1.3°C in  

magnitudes in northern hemisphere, and ~0.7-1.2°C in southern hemisphere in both January  

and July. Large biases in the initial states may come from the imperfect data assimilation  

systems or initialization procedures, imperfect model physics, or insufficient observations to  

assimilate.   

3.2 Bias correspondence in SST mean state  

To evaluate the bias correspondence between seasonal hindcasts and long-term climate  

biases over the global oceans across all the models, we first present in Figures 4 and 5 the  

ensemble annual mean biases for SST at selected hindcast lead times along with the SST  

annual mean biases from the corresponding long-term climatological simulations. This is to  

identify regions where large SST biases in the long-term climatological simulations appear  

within the first few months of seasonal hindcasts, and to examine how similar the bias pattern  

and magnitude in the hindcasts are to the long-term climatology. All the calculations in the  

rest of the text were done with all ensemble members and all hindcast years listed in Table 1  

with the corresponding observed SST unless otherwise noted.   

The biases present at Mon1 show little resemblance to the systematic biases shown in  

Figure 1 or even the climatological bias of the same model (Figure 5, right column), and they  

are considerably smaller than the biases at longer lead times. We start to see the growth of  

SST bias magnitude and extent for hindcasts in all models between Mon2 and Mon4 in the  

tropics and sub-tropics, such as the equatorial Pacific cold tongue bias (except for CCSM4  

and FLORB01), warm biases over the coastal southeastern Pacific and Atlantic, and cold  

biases over the sub-tropical Pacific and Atlantic in both hemispheres (except CESM1  

southern hemisphere). From Mon6 to Mon12 for any model, the bias pattern and magnitudes  

are very similar indicating the saturation of initial growth of bias in SST after Mon6. When  
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comparing hindcast biases at Mon6 or later hindcast lead times to climate biases (Figure 5)  

for any given model, we observe a similar bias pattern of SST to the corresponding  

climatological bias pattern globally as we will discuss in detail later using Taylor diagrams  

(Figure 7). For CESM1-CAPT, there is only one year (2005) for analysis. Nevertheless, the  

bias pattern looks very similar to that of CESM1-NMME. This suggests that one year of  

hindcasts with enough ensemble members would be enough to exhibit the mean bias pattern  

of the long-term climatology, especially over the tropics and sub-tropics. We will have further  

discussion in Section 3.3.  

The bias magnitudes, however, are quite variable across models. Figure 6 shows the  

RMSE of annual mean SST calculated over the tropics and sub-tropics, as well as extra- 

tropics from hindcasts with different hindcast lead times and the long-term climatology. We  

find that the RMSEs in the tropics and sub-tropics are generally smaller than those in the  

extra-tropics for all the models. Compared to the RMSEs in the tropics and sub-tropics, the  

hindcast RMSEs in the northern mid-latitudes for all the models are ~ 0.2 – 1°C larger. The  

hindcast RMSEs in the southern mid-latitudes are also ~ 0.2 – 0.5°C larger for CanCM4,  

CCSM4, CESM1-NMME, and CESM-CAPT, while CanCM3 and FLORB01 show  

comparable RMSEs. The Mon12 bias magnitudes for all the models are ~ 80 – 105% the size  

of climatological bias except for FLORB01 in the southern mid-latitudes where much larger  

warm biases are present in the long-term climatology.   

To quantitively demonstrate the bias correspondence, Figure 7 shows the pattern  

statistics of spatial correlations and normalized spatial standard deviations between the  

average hindcast bias and the long-term climatological bias on a Taylor diagram. Unlike the  

canonical Taylor diagram that uses the observation field as the reference field, the reference  

SST field for each model in the diagrams is the annual mean bias from its corresponding long- 

term climatology with respect to HadISST. The analysis is separated into four domains with  
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one covering nearly the entire global oceans (60°S - 60°N), one covering the tropical and sub- 

tropical oceans (30°S - 30°N), and another two for mid-latitude oceans in both hemispheres  

(30°N - 60°N and 30°S - 60°S). For most lead times, all four domains have spatial standard  

deviations of the hindcasts (i.e. bias magnitudes) that are smaller than their long-term  

climatological counterparts. Standard deviations also increase with hindcast lead time to  

values close to that of the climatological bias indicating the growth of average bias magnitude  

to near full amplitude by the end of Mon12. The standard deviations in the low-latitudes  

(30°S to 30°N) are much closer to the climatological values than those in the mid-latitudes  

(30°N to 60°N and 60°S to 30°S), which are about 70% of the climatological values.  

While it is subject to expert judgement and it can vary from one to another, we  

consider that small initial SST biases in the hindcasts, high bias correlation coefficients (~  

>0.6) by Mon6, and comparable spatial standard deviation (~ 1 normalized spatial standard  

deviation) or bias magnitude constitutes a good bias correspondence in our global analysis.  

For bias correlation globally (Figure 7a), all six experiments for nearly all lead times from the  

five models have correlations larger than 0.4 with their corresponding long-term climate  

biases. CanCM3, CanCM4, CESM1-NMME, CESM1-CAPT and FLORB01 have bias  

correlations larger than 0.8 by Mon6. The low correlations in CCSM4 hindcasts in Figure 7a  

are mostly due to the large warm bias between 40°-60°N over the north Atlantic Ocean where  

a cold bias is present in the long-term climatology (see Figure 5). This causes the very small  

(less than 0.3) or even negative correlations (at later lead times) in the northern mid-latitudes  

(Figure 7c). The bias correlations are much larger (> 0.8) for CCSM4 and other models if the  

analysis domain is only the tropics and sub-tropics (Figure 7b). This is consistent with all the  

bias attribution studies mentioned in the introduction, which focused on regions within this  

domain. It is also worth noting that bias correlations in all hindcasts increase with lead time  

(except for CCSM4 over northern mid-latitudes), suggesting the biases gradually evolve  

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0338.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-20-0338.1/5014677/jclid200338.pdf by BATTELLE PAC
IFIC

 N
W

 LAB, M
ary Frances Lem

bo on 09 N
ovem

ber 2020



 14 

toward the long-term climate biases with lead time. Other than CCSM4, all other models also  

show bias correlations between 0.7 and 0.95 in mid-latitudes in both hemispheres.  

The bias correlations and standard deviations do not change much after Mon7. With  

the correlation coefficients at 7 months typically around 0.8 in the tropics and sub-tropics, this  

suggests that a large portion of climatological bias pattern is associated with fast upper ocean  

and atmospheric processes given the relatively small SST biases in the initial conditions.  

Here, we define fast processes as processes in the atmosphere or ocean with time scales  

shorter than the seasonal time scales. Examples include the wind-driven Ekman upwelling  

over the equatorial Pacific which occurs at time scales of about one month (Nigam and Chao,  

1996; Neelin 1996), or the surface heat flux and heat storage balance in mid-latitudes at  

seasonal time scales (Wang and Carton, 2002). For specific regions, the fast response of the  

equatorial Pacific cold tongue biases is mainly associated with biases in the atmospheric  

surface wind stress (e.g., Shonk et al. 2019; Siongco et al. 2020), and the fast response of the  

tropical eastern and southeastern Atlantic warm biases is mainly associated with biases in the  

low clouds, surface shortwave radiation and ocean upwelling (e.g., Huang et al. 2007;  

Toniazzo and Woolnough 2014; Voldoire et al. 2014, 2019). For the extra-tropics in both  

hemispheres, the correlation coefficients at 7 months are typically ~ 0.5-0.6, this suggests that  

the climatological bias pattern is also influenced by teleconnections and feedbacks over a  

longer timescale. Two examples are that the cold SST biases over the mid-latitude Atlantic  

Ocean may be affected by the biases in the Atlantic meridional overturning circulation, while  

the warm SST biases over the Southern Ocean may be affected by slower vertical mixing due  

to a deeper mixed layer. Both processes have time scales much longer than a season.   

While we examined the mean biases of ensemble seasonal hindcasts over a thirty-year  

period, one important question to ask is whether these SST biases are robust and whether  

there is large interannual variability in the mean biases. To explore this, we can examine the  
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magnitude of the ensemble spread of SST in the hindcasts. Figure 8 and 9 shows the ensemble  

monthly mean SST biases for January and July 2005 from the hindcasts at Mon6 (i.e. from the  

hindcasts starting on August 1, 2004 and February 1, 2005, respectively). Also shown are the  

standard deviations of the ensemble mean biases at Mon6 and the ratios of the mean biases to  

the standard deviations. While the procedures for generating the ensembles in each of the  

models are different, larger values of standard deviations ~1.2-1.6 ºC are only found over the  

mid-latitudes and within a narrow region along the equator. The large standard deviations in  

these regions are consistent with the active upper ocean dynamics in the mid-latitudes and  

equatorial wave guide. It is also clear that the standard deviations are larger in mid-latitudes  

associated with storm tracks. However, for many other regions of large SST mean biases  

shown in Figures 1 and 5, such as cold biases over the equatorial Pacific, sub-tropical north  

and south Pacific Ocean, sub-tropical Indian Ocean, sub-tropical and north Atlantic Ocean, or  

warm biases over the eastern equatorial Pacific and Atlantic, southeastern Pacific and  

Atlantic, Northeastern Pacific, and northwestern Atlantic, the ratios of mean bias to standard  

deviation are also larger than one. This suggests that the mean biases over these regions are  

robust.   

To verify whether there is large interannual variability in the mean biases, we examine  

in Figure 10 the interannual standard deviations from the annual mean bias of SST at Mon12,  

and the ratios of the annual mean bias of SST to the interannual standard deviation of SST.  

The average SST bias from all hindcasts within a given year were first calculated, and then at  

each point the standard deviation across years in the hindcast period (Table 1) were  

calculated. The largest interannual standard deviations are over the Equatorial Pacific  

associated with the El Niño-Southern Oscillation (ENSO), and over the mid-latitude oceans  

particularly near the Northwest Atlantic to the north of the Gulf Stream separation point.  

Comparing the ratios of mean bias to the standard deviations (right column of Figure 10) with  
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the Mon12 biases in Figure 5 shows that regions of large SST biases generally show ratios  

larger than 2 with some regions larger than 10. This suggests that the average of an ensemble  

of hindcasts from a single year can be representative of the long-term bias in most places with  

the exception of the Equatorial Pacific and the northwest Atlantic where bias magnitude and  

extent may depend on the year.   

3.3 Impact of initialization procedure on SST biases  

As we have observed in Figures 4 and 7, the bias pattern in CESM1-NMME looks  

similar to that of CESM1-CAPT although the bias magnitudes vary between the two sets of  

hindcasts. While the reasons for such differences mainly come from the simulated years in the  

composites and the initialization procedures (see Section 2.1 and Appendix B), we can further  

investigate the impact of the latter by examining the hindcasts from the same year for both  

runs.    

As we will demonstrate shortly, the initial conditions do matter for the initial bias  

growth, but the overall global bias patterns are similar after 6 months. The annual mean SST  

biases at Mon1, Mon6, and Mon12 for 2005 hindcasts only are shown in Figure 11. The  

choice of the year is due to the availability of initial conditions from the ocean for CESM1- 

CAPT, and limited by computational resources. We also present in Table 3 the SST bias  

correlation coefficients between the two simulations from CESM1, which allows for  

quantitative comparison of bias pattern. We further separate the calculations into tropics/sub- 

tropics, and extra-tropics. The correlations in Table 3 indicate whether SST bias patterns from  

CESM-NMME and CESM-CAPT for the year of 2005 are similar to each other. Table 3 also  

indicates whether SST bias pattern of one-year hindcasts from either NMME or CAPT  

procedure would be representative to that from the full 30 years of hindcasts from CESM1- 

NMME. At Mon1, there are substantially larger biases (by up to 2 ºC) in CESM1-NMME in  

the northern mid-latitudes (Figure 11), which are likely due to differences in initialization  
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procedures. This is mainly because DART will adjust ocean states closer to observations  

especially for the upper ocean where the quality of observations is better, whereas the CORE  

forced ocean does not adjust ocean states directly. Nevertheless, the bias correlations between  

the NMME and CAPT is still large (0.65 in northern mid-latitudes) as indicated in Table 3. At  

Mon6 and Mon12, the bias patterns in the tropics and sub-tropics qualitatively look even  

more similar to each other with bias correlation of 0.84 and 0.78 respectively. The hindcast  

bias patterns also look similar to the model’s climatological bias with correlations of 0.88 and  

0.89 for CAPT, and 0.81 and 0.73 for NMME (Figure 5). There are, however, still large  

differences in bias magnitude in mid-latitudes, especially in the Southern Ocean, where 

CESM1-NMME shows more cold biases and CESM1-CAPT shows more warm biases. Other 

than the initialization procedures, some of the differences in the SST mean biases in the mid-

latitudes may also come from natural variability of the atmospheric synoptic waves or the 

ocean circulation. It is, however, difficult to quantify their relative impact. Nevertheless, the 

bias magnitudes are sensitive to the initialization procedure, while the SST bias pattern is less 

sensitive, especially over tropics and sub-tropics.  

 The bias correlation is ~0.9 or higher between NMME-2005 and NMME-all (30-year, 

Table 3) for any hindcast lead times in any latitude bands. This further suggests that the SST 

bias pattern does not vary too much from year to year. While comparing the bias correlations 

between hindcasts and the long-term climatology (the last 9 rows of Table 3), one single year 

of hindcasts does show high bias correlations of 0.8 at Mon6 over low latitudes and northern 

mid-latitudes (0.1 or 0.2 smaller in southern mid-latitudes). It is not surprising that the bias 

correlations increase by ~0.1 to 0.2 when all the NMME years are compared to the long-term 

climatological biases. Nevertheless, to diagnose systematic SST biases using initialized 

coupled hindcast approach, one year of coupled hindcasts can provide substantial and robust  

information.   
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3.4 Applicability of an initialized hindcast approach for diagnosing 

regional SST biases   

Our earlier analysis focuses on the bias correspondence over tropical, sub-tropical and 

extra-tropical domains in both hemispheres We further explore whether an initialized coupled 

hindcast approach would be suitable for specific regional bias diagnosis and attribution 

studies, such as those regions with large systematic climate biases identified in Figure 1. We 

will also present a quantitative set of criteria to identify such a region.  

To measure how close the SST mean bias magnitudes in the Mon12 hindcasts are to 

their climatological counterpart, we present in Figure 12 the ratio of SST annual mean bias for 

Mon12 hindcasts to their corresponding climatological annual mean bias (i.e., bias ratio). 

Positive values of the ratio indicate the hindcast and climatology share the same bias sign, 

with value closer to 1 being better correspondence. Ratios that are negative or far from 1 

suggest longer time scale feedback processes at work. We also calculated the RMSE of 

annual mean SST from hindcasts with different lead times and long-term climatology over ten 

selected regions (Figure 13). The RMSEs from different hindcast lead times indicate the 

growth of bias magnitude over that particular region. Here, we use RMSEs rather than the 

mean bias because using regional mean bias may be misleading. If both positive and negative 

biases co-exist in the same region, the area mean bias could be small while the RMSE could 

be large. This is the case in some of our regions. As we will demonstrate, the rapid emergence 

of SST biases in the hindcasts with comparable bias magnitudes to their climate biases in 

most regions over the tropics and sub-tropics make them good candidates for using an 

initialized coupled hindcast approach.  

A coupled hindcast approach would be useful for the equatorial Pacific cold tongue 

bias (EQ Pacific, 150-260°E, 2°S -2°N). All models except CCSM4 show a positive bias ratio 

of ~ 0.6–2 (Figure 12). The CCSM4 actually shows a negative bias ratio because CCSM4 
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does not simulate a cold bias over this region in the hindcasts while there is a weak cold SST  

bias in the long-term climatology. We also see smaller RMSEs for other models at Mon1 and  

a growth of SST RMSEs from the first month (Fig. 13a).   

For the systematic warm biases over the sub-tropical northeastern (NE Pacific, 110- 

130°W, 20-30°N) and southeastern Pacific (SE Pacific, 70-90°W, 10-25°S), and sub-tropical  

southeastern Atlantic (SE Atlantic, 0-15°E, 5-25°S), the bias extent and magnitude are quite  

variable across the models (Figure 4 and 5). For example, CESM1 shows warm biases  

confined to the coasts of California and Peru, while FLORB01 shows a much broader extent  

of warm biases in all three regions in both hindcasts and long-term climatology. For models  

with warm biases over these three regions, we see a bias ratio between ~0.6 and 2 (Figure 12).  

The RMSEs in most models are already greater than 1ºC at Mon1, and we also see a growth  

of RMSEs in the hindcasts for all these regions although the magnitude of RMSEs do not  

change much after 6-Mon lead (Figures 13b, 13c and 13d). There are large initial warm biases  

in some of the models (CanCM3, CAM4, and CESM1-CAPT) near the coastal regions that  

spread westward from the ocean boundaries  (Figure 3). Therefore, it is better to diagnose the  

causes of warm biases over regions away from the coasts if better initial conditions cannot be  

obtained.   

For regions over the sub-tropical Pacific and Atlantic oceans in both hemispheres (N  

Pacific, 160-210°E, 20-35°N; S Pacific, 130-170°W, N Atlantic, 15-25°S; 30-60°W, S  

Atlantic, 15-25°N; 15-40°W, 15-25°S), not all models show large cold bias extent (Figures 4  

and 5) as suggested in the multi-model mean (Figure 1). The cold biases are small or not  

significant in the CCSM4 and FLORB01 climatology in the southern hemisphere although the  

hindcasts do simulate cold biases over these regions. The bias ratios are also quite variable for  

these regions with values between ~0.4 and 2 (Figure 12), mostly due to the different extent  

of cold bias in each model between hindcasts and long-term climatology. The cold biases in  
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these regions are less severe with smaller RMSEs (< 1.5 ºC for most hindcasts lead times,  

Figures 13e, 13f, 13g, and 13h) compared to the previous four regions. Nevertheless, these  

regions are also suitable for using hindcast approach for bias diagnosis.  

For the cold bias over the mid-latitude north Atlantic (Mid-Lat N Atlantic, 20-45°W,  

40-55°N), all models except CCSM4 show a positive bias ratio between ~0.4 and 2. CanCM3,  

CanCM4, and FLORB01 all show a growth of RMSEs with hindcast lead time. For CESM1- 

NNME or CESM-CAPT, the RMSEs are relatively constant from Mon1. This is mostly  

because the cold biases already exist in the initial states. We also see an initial cold bias in  

CanCM3, and CanCM4 with magnitude of ~1-2°C from Figure 3. Even though we see the  

growth of biases in some of the models, the large biases in the initial states would make the  

bias attribution difficult.   

For SST biases over the Southern Ocean (0-120°E, 60-45°S), regional SST variability  

is quite large due to the large natural variability in the atmospheric surface winds associated  

with storm tracks and their interactions with the upper ocean circulation and currents. Only  

FLORB01 shows a warm bias in most Southern Ocean regions in both hindcasts and long- 

term climatology (see Figures 4 and 5). Other models simulate both warm and cold biases.  

Although the bias correlations between the hindcasts and long-term climatology in Figure 7  

show an average of 0.5-0.6 for the Southern Ocean (0°–360°E, 60°S–30°S) and the bias ratios  

in Figure 12 are closer to 1 for some regions in the Southern Ocean, there are still large initial  

biases (Figure 3). This also makes using a coupled hindcast approach to diagnose SST bias in  

this region challenging.   

To quantitively examine whether an initialized coupled hindcast approach would be  

suitable for a certain regional bias diagnosis, we propose the following criteria: (1) the RMSE  

of the climatological SST is > 0.5 ºC, (2) the initial SST RMSE is < 0.5 ºC, (3) the RMSE  

magnitude at Mon12 is at least 60% of the climatological RMSE (indicating a growth of SST  
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bias), and (4) the Mon12 hindcast and the climatological bias have the same bias sign. As we  

have pre-selected ten regions of large SST bias (Figure 1), most regions in the models satisfy  

the first criterion. For the second criterion, we used the Mon1 RMSEs instead of the initial  

SST RMSEs because the latter are not available for every model. We understand that using  

Mon1 RMSEs is not ideal and can affect the results. Nevertheless, the regional RMSEs (or the  

mean biases) at Mon1 are still small in many regions as shown in Figure 13 (or Figure 4).  

Table 4 summarizes the suitability for these 10 regions. Consistent with our analysis in  

Section 3.2 and here, regions in the tropics and sub-tropics are generally suitable for using an  

initialized coupled hindcast approach to diagnose SST bias growth as long as biases in the  

initial states are small. Only CCSM4 is suitable for warm bias study over the sub-tropical  

northeastern and southeastern Pacific, and sub-tropical southeastern Atlantic, because large  

Mon1 bias near the coastal regions are present in other models. Over the extra-tropics, using a  

hindcast approach is more challenging for all the models given large initial biases, large  

natural variability (Figures 8-10), and possible bias contribution from slow atmosphere or  

ocean feedback processes indicated by the relatively low bias correlations (Figure 7).  

Comparing our findings here and those in Hermanson et al., (2018) for the common  

regions (EQ Pacific, SE Atlantic, Mid-Lat N Atlantic, and Southern Ocean), one model in  

Hermanson et al., (2018) could be used to study initial growth of SST biases in EQ Pacific,  

SE Atlantic and Mid-Lat N Atlantic based on the criteria proposed here and in their study.  

The other model in Hermanson et al., (2018) generally shows the opposite signs between  

mean forecast bias and the long-term bias on the seasonal time scales, which makes an  

initialized coupled hindcast approach not suitable for studying long-term SST biases in these  

regions. Note that Hermanson et al., (2018) only examined ensemble hindcasts with starting  

dates from May 1st and November 1st of each year. The results may change if more starting  

dates were used in their study.   
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4 Summary and discussion  

In this study, we examine the SST bias correspondence between ensemble mean  

seasonal hindcasts and long-term climate simulations from five GCMs to diagnose over what  

time scales the systematic SST biases develop, and to identify regions where an initialized  

coupled hindcast approach would be useful for bias diagnosis and attribution. We also  

propose a set of criteria for the latter. The seasonal hindcasts are from the NMME Project and  

the long-term climate simulations are from the CMIP5 experiments (CanCM3 from a 40-year  

long historical coupled simulation and FLORB01 from a 300-year long coupled climate  

simulation). An additional set of hindcast experiments are performed with CESM1 using a  

different initialization approach to further diagnose the impact of initialization procedure on  

the simulated SST biases in the hindcasts.   

Our analysis suggests that most robust climatological SST mean biases shown in  

Figure 1 form within 6 months of the hindcasts. The bias patterns and magnitudes do not  

change much after Mon7. With the correlation coefficients at 7 months typically around 0.8 in  

the tropics and sub-tropics, this suggests that a significant portion of the climatological bias  

pattern is associated with fast upper ocean and atmospheric processes given the relatively  

small SST biases in the initial conditions. For the extra-tropics in both hemispheres, the  

correlation coefficients at 7 months are typically ~ 0.5-0.6, suggesting that the climatological  

bias pattern is less associated with fast upper ocean and atmospheric processes.   

The ensemble spread and the interannual variability in the SST mean bias are much  

smaller than the mean bias over regions with large SST biases, which suggests the robustness  

of these systematic biases in the hindcasts. Comparing hindcasts from CESM1-NMME and  

CESM1-CAPT suggests that initialization procedures do matter for bias magnitude and  

pattern in the first few months of a hindcast. Nevertheless, the overall global mean bias  

patterns are still similar to the climatological bias patterns by six months.   
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We further investigated ten selected locations with large systematic SST climate  

biases and identify whether an initialized coupled hindcast approach is suitable for bias  

diagnosis and attribution. The rapid emergence of SST biases in the hindcasts with  

comparable bias magnitudes to their climate biases in most regions over the tropics and sub- 

tropics, such as the cold bias over the equatorial Pacific, warm biases over the subtropical  

eastern oceans, and cold biases over the subtropical Pacific and Atlantic in both hemispheres,  

make them good candidates for using an initialized coupled hindcast approach. Over the  

extra-tropics, such as the Southern Ocean or north Atlantic, a hindcast approach is more  

challenging given large initial biases, large natural variability, and possible bias contribution  

from slow atmosphere or ocean feedback processes indicated by the lower bias correlations  

(~0.5). Studying the growth of biases using initialized hindcasts over regions with good bias  

correspondence and smaller biases in the initial states can provide important clues to the  

causes and ultimately the amelioration of these systematic biases. This was demonstrated in  

many recent studies using initialized seasonal or decadal hindcasts (Huang et al. 2007, 2014;  

Liu et al. 2012; Hazeleger et al. 2013; Toniazzo and Woolnough 2014; Vannière et al. 2013,  

2014; Voldoire et al. 2014, 2019; Sanchez-Gomez et al. 2016; Shonk et al. 2019; Siongco et  

al. 2020).  While the hindcast approach is useful in diagnosing fast growing biases within the  

hindcast time scales, it is an approach to complement the CMIP-type long-term coupled  

experiments. In many cases, to further understand the causes of a particular bias usually  

requires additional hypothesis-testing experiments, either in the hindcast mode or long-term  

climate mode.   

In addition to diagnosing biases in the fully coupled models, another application for  

the short-duration coupled hindcasts is the development of new model parameterizations,  

especially those relevant to atmospheric moist processes. During the development phase of a  

scheme, it is usually tested in a stand-alone model component (e.g., atmospheric-only model  
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configuration). When the scheme is ready to be tested in the fully coupled configuration, it is  

usually challenging to assess the impact of the new scheme from the coupled feedbacks in the  

long-term climatological simulations. The initial drift of the model state in the ocean from the  

hindcasts, however, can help determine the impacts of the new scheme as most drift in the  

ocean is likely connected to the atmospheric moist processes, such as convection (Song and  

Zhang 2018). Another benefit of using coupled model hindcasts is that one can perform  

hindcasts for more recent years when more observations are available, especially in the ocean.   

Finally, as it becomes more common for modeling centers and groups to use high- 

resolution coupled models to simulate more processes in detail and on a smaller spatial scale,  

initialized coupled model hindcasts can be used to greatly reduce computation costs for model  

evaluation (e.g., da Silveira et al. 2019), and possibly tuning, which is usually challenging to  

do for very high-resolution coupled GCMs.  
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Appendix A: List of CMIP5 and CMIP6 models    

In Figure 1, the multi-model ensemble mean SST is computed from twenty-five (25)  

CMIP5 models (ACCESS1.3,  BCC-CSM1.1, CanCM4, CanESM2, CCSM4, CESM1- 

CAM5, CMCC-CM, CNRM-CM5, CSIRO-Mk3.6.0, FGOALS-g2, GFDL-CM2p1, GFDL- 

CM3, GISS-E2-H, GISS-E2-R, HadCM3, HadGEM2-ES, INMCM4, IPSL-CM5A-LR, IPSL- 

CM5A-MR, MIROC5, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, NorESM1-ME,  

NorESM1-M), and thirty-four (34) CMIP6 models (ACCESS-CM2, ACCESS-ESM1-5,  

BCC-CSM2-MR, BCC-ESM1, CAMS-CSM1.0, CanESM5, CESM2, CESM2-FV2, CESM2- 

WACCM, CESM2-WACCM-FV2, CIESM, CNRM-CM6.1, CNRM-ESM2.1, E3SM-1-0,  

E3SM-1-1, EC-Earth3, EC-Earth3-Veg, FIO-ESM-2-0, GFDL-CM4, GFDL-ESM4, GISS- 

E2-1-G, GISS-E2-1-H, HadGEM3-GC31-LL, INM-CM4-8, IPSL-CM6A-LR, MCM-UA-1-0,  

MIROC-ES2L, MIROC6, MPI-ESM-1-2-HAM, MRI-ESM2-0, NESM3, NorCPM1, SAM0- 

UNICON, UKESM1-0-LL). The SSTs are averaged over the historical period, 1850-2005 for  

CMIP5 and 1850-2014 for CMIP6. SST biases are calculated using HadISST as observational  

reference, covering the period from 1870 to present. Statistical significance was calculated  

with t-tests using yearly, multi-model data and yearly observations.   

Appendix B: Initialization procedure for the Coupled Cloud-Associated  

Parameterizations Testbed   

The Cloud-Associated Parameterizations Testbed (CAPT) is a joint project between  

the U.S. Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL) and  

National Center for Atmospheric Research (NCAR), designed to diagnose and improve  

representation of cloud-associated physical processes in climate models by applying a  

weather forecast technique to climate models (e.g., Phillips et al. 2004; Williams et al. 2013;  

Ma et al. 2015). As there are no real-time operational constraints, the CAPT is conducted  
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using retrospective forecasts (hindcasts) for which the verifying observations are already  

available.   

The current procedure for obtaining CAPT initial conditions for atmospheric and land  

initial conditions of CESM1 is described in Ma et al. (2015). In short, CAPT has primarily  

used initial conditions for the atmosphere that are generated at operational numerical weather  

prediction (NWP) centers like the National Centers for Environmental Prediction (NCEP) and  

the European Centre for Medium Range Weather Forecasting (ECMWF). In the present  

study, atmospheric state variables (horizontal velocity, specific humidity, and temperatures)  

are from the ECMWF ERA-Interim reanalysis (Dee et al. 2011). A nudging simulation was  

performed first to acquire necessary variables (e.g., cloud and aerosol fields), which are not  

available from the reanalysis for the atmospheric initial conditions. Land initial conditions are  

taken from an offline land model simulation forced by reanalysis and observations including  

precipitation, surface winds, and surface radiative fluxes.   

Initial conditions for the ocean model (POP2) were provided by the Data Assimilation  

Research Testbed (DART, Anderson et al. 2009; Karspeck et al. 2013) at NCAR. The ocean  

reanalysis/initial conditions are generated by applying a forty-eight-member ensemble  

adjustment Kalman filter (EAKF) data assimilation system with POP2 (Karspeck et al. 2013).  

Observations of subsurface temperature and salinity from the World Ocean Database 2009  

(Johnson et al. 2009) are assimilated into the ocean model at a daily frequency from 1998 to  

2005. The atmospheric forcing for the ocean model comes from an independently generated  

EAKF analysis with the Community Atmosphere Model version 4 (Raeder et al. 2012) forced  

by SST and sea ice prescribed from the NOAA Optimally Interpolated SST version 2 (OISST,  

Reynolds et al. (2002). Since the sea ice initial conditions were not available from the POP2- 

DART reanalysis, we simply used the observed sea ice concentration from the NOAA  

Optimally interpolated sea ice product  
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(https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). If one’s focus is on the  

tropical and sub-tropical SST on seasonal time scales, the impact from the sea ice is expected  

to be minimal and we have verified this.   

With the initial conditions from the above procedures, 12-month long ensemble  

coupled hindcasts started every first date of each month at 00Z between February 1, 2004 and  

December 1, 2005 were performed. For each start date, 24 ensemble members are generated,  

based on the ensemble initial conditions from the POP2-DART system. There is only one set  

of initial conditions for other model components.   
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Table 1. Summary of model information analyzed in this study. Note that CESM1-CAPT  

hindcasts were performed locally and are not part of the NMME project.  

Model Name Modeling Group Hindcast Period Ensemble Size References 

CanCM3 Canadian Centre for 

Climate Modelling and 

Analysis 

1982-2011 (30 

years) 

10 Merryfield et al. 

(2013) 

CanCM4 Canadian Centre for 

Climate Modelling and 

Analysis 

1982-2011 (30 

years) 

10 Merryfield et al. 

(2013) 

CCSM4 University of Miami 1983-2014 (32 

years) 

10 Gent et al. (2011) 

CESM1-

NMME 

National Center for 

Atmospheric Research 

1981-2010 (30 

years) 

10 Hurrell et al. 

(2013) 

*CESM1-

CAPT 

Lawrence Livermore 

National Laboratory 

2005 (1 year) 24 Hurrell et al. 

(2013) 

FLORB01 National Oceanic and 

Atmospheric 

Administration / 

Geophysical Fluid 

Dynamics Laboratory 

1981-2010 (30 

years) 

10 Vecchi et al. 

(2014) 
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Table 2. Root mean square errors of SST (°C) averaged over the first day of model  

integrations with the starting dates of January 1, 2005 and July 1, 2005. The reference SST is  

the daily OISST v2.   

 January 1, 2005 July 1, 2005 

 
0°–360°E, 

30°S–30°N 

0°–360°E, 

30°N–60°N 

0°–360°E, 

60°S–30°S 

0°–360°E, 

30°S–30°N 

0°–360°E, 

30°N–60°N 

0°–360°E, 

60°S–30°S 

CanCM3 0.42 1.08 0.88 0.39 1.04 0.74 

CanCM4 0.42 1.06 0.87 0.4 1.03 0.75 

CCSM4 0.14 0.27 0.24 0.15 0.54 0.26 

CESM1-

CAPT 
0.39 1.31 1.23 0.44 1.24 0.93 
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Table 3. Spatial correlation coefficients of SST annual mean biases (°C) for different CESM  

simulation pairs. The reference SST is the monthly HadISST.   

 
0°–360°E, 

30°S–30°N 

0°–360°E, 

30°N–60°N 

0°–360°E, 

60°S–30°S 

1-Mon-NMME-2005 vs 1-Mon-CAPT-2005 0.64 0.65 0.78 

6-Mon-NMME-2005 vs 6-Mon-CAPT-2005 0.94 0.77 0.85 

12-Mon-NMME-2005 vs 12-Mon-CAPT-2005 0.87 0.81 0.86 

1-Mon-NMME-2005 vs 1-Mon-NMME-all 0.95 0.96 0.96 

6-Mon-NMME-2005 vs 6-Mon-NMME-all 0.95 0.97 0.96 

12-Mon-NMME-2005 vs 12-Mon-NMME-all 0.88 0.97 0.95 

1-Mon-CAPT-2005 vs CLIM 0.49 0.65 0.39 

6-Mon-CAPT-2005 vs CLIM 0.88 0.85 0.57 

12-Mon-CAPT-2005 vs CLIM 0.89 0.85 0.69 

1-Mon-NMME-2005 vs CLIM 0.63 0.62 0.54 

6-Mon-NMME-2005 vs CLIM 0.9 0.81 0.69 

12-Mon-NMME-2005 vs CLIM 0.81 0.86 0.77 

1-Mon-NMME-all vs CLIM 0.69 0.74 0.65 

6-Mon-NMME-all vs CLIM 0.92 0.89 0.75 

12-Mon-NMME-all vs CLIM 0.94 0.92 0.81 
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Table 4. Summary of whether an initialized coupled hindcast approach would be suitable for  

diagnosing a certain regional bias based on the following criteria: (1) the RMSE of the  

climatological SST is > 0.5 ºC, (2) the RMSE of Mon1 SST is < 0.5 ºC, (3) the RMSE of  

Mon12 is at least 60% of the climatological RMSE (indicating a growth of SST bias), and (4)  

the Mon12 hindcast and the climatological SST have the same bias sign. “” indicates a  

specific region satisfy all the criteria, while “1”, “2”, “3”, or “4” indicates the first, second,  

third or fourth criterion is not satisfied.   

 CanCM3 CanCM4 CCSM4 
CESM1-

NMME 

CESM1-

CAPT 
FLORB01 

EQ Pacific 

(180°–240°E, 

2°S–2°N) 

  1,4    

NE Pacific 

(110°–130°W, 

20°–30°N) 
2 4    2 

SE Pacific 

(70°–90°W, 

10°–25°S) 
2 2  2 2 2 

SE Atlantic 

(0°–15°E, 

5°–25°S) 
2 2  2 2 2 

N Pacific 

(160°–210°E, 

20°–35°N) 
   2,3 3  

S Pacific 

(130°–170°W, 

15°–25°S) 
 3 1 4 4  

N Atlantic 

(30°–60°W, 

15°–25°N) 
      

S Atlantic 

(15°–40°W, 

15°–25°N) 
  1,4  3,4 1,4 

Mid-Lat N Atlantic 

(20°–45°W, 

40°–55°N) 
2 2,3 2,4 2 2 2 

Southern Ocean 

(0°–120°E, 

45°–60°S) 

2 2 4 2 2 2,3 
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Figure Captions  

Figure 1. Annual multi-model mean biases (°C) of SST from the CMIP5 (25 models) and  

CMIP6 (34 models) historical simulations. Regions where mean biases are statistically  

significant at the 95% confidence level are color shaded. The observational reference is the  

HadISST. See Appendix A for more information about the CMIP models. The boxes indicate  

the regions discussed in Section 3.4.  

Figure 2. Schematic diagram for the seasonal hindcast procedure for the NMME project. Each  

set of 10-member ensemble hindcasts started from 00Z on the first day of each month  

between January 1980 and December 2014 (abscissa). The duration of each hindcast is 12  

months (ordinate). For the hindcast month 1 (Mon1 or the 0-month lead), SSTs are averaged  

for the first month of the hindcasts over all the ensemble members. SSTs of the hindcast  

month 2 (Mon2 or the 1-month lead) are averaged for the second month and so on for  

hindcast month 3 to month 12 (Mon3 to Mon12, or 2-month to 11-month lead). See text for  

more details.  

Figure 3. SST biases (°C) averaged over the first day of model integrations with starting dates  

of January 1, 2005 (left panels) and July 1, 2005 (right panels). The observational reference is  

the NOAA OISST.  

Figure 4. Annual mean SST biases (°C) for hindcast ensembles of Mon1, Mon2, Mon3, and  

Mon4. Regions where annual mean biases are statistically significant different from zero at  

the 95% confidence level are color shaded in all the models except for CESM1-CAPT for  

which this test is not possible because only one year of hindcasts was performed. The  

observational reference is the HadISST and the hindcast period for each model is listed in  

Table 1.   
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Figure 5. Annual mean SST biases (°C) for hindcast ensembles of Mon6, Mon9 and Mon12,  

as well as for the corresponding annual long-term mean biases (a 40-year long historical  

coupled simulation for CanCM3; CMIP5/historical for CanCM4, CCSM4, and CESM1; a  

300-year long control coupled simulation for FLOR). Regions where annual mean biases are  

statistically significant at the 95% confidence level are color shaded in all the models except  

for CESM1-CAPT hindcasts for which this test is not possible because only one year of  

hindcasts was performed.   

Figure 6. Root mean square errors of annual mean SST (ºC) calculated over tropical and  

extra-tropical domains with different hindcast lead times and the long-term climatology  

(CLIM).    

Figure 7. Taylor diagrams illustrating the spatial correlation and normalized spatial standard  

deviation of SST annual mean biases from the seasonal hindcasts. The reference fields (REF)  

are the corresponding biases in the long-term climatological runs. Data are analyzed over (a)  

0°–360°E, 60°S–60°N, (b) 0°–360°E, 30°S–30°N, (c) 0°–360°E, 30°N–60°N, and (d) 0°– 

360°E, 60°S–30°S. The observational reference is the HadISST. Only grid points with biases  

that are statistically significant at 95% confidence level in both the hindcasts and climate runs  

are used for pattern statistics calculation in the Taylor diagrams.  

Figure 8. Ensemble monthly mean SST biases (ºC) of January 2005 from the seasonal  

hindcasts for Mon6 (left panels). Also shown are the standard deviations of the ensemble  

mean biases (ºC) for Mon6 (middle panels) and the ratios of the monthly mean biases to the  

standard deviation of ensemble mean biases (right panels). The observational reference is the  

HadISST.  

Figure 9. Ensemble monthly mean SST biases (ºC) of July 2005 from the seasonal hindcasts  

for Mon6 (left panels). Also shown are the standard deviations of the ensemble mean biases  
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(ºC) for Mon6 (middle panels) and the ratios of the monthly mean biases to the standard  

deviation of ensemble mean biases (right panels). The observational reference is the  

HadISST.  

Figure 10. Interannual standard deviation of annual mean SST biases (ºC) for Mon12 (left  

panels). Also shown on the right panels are the ratios of annual mean SST biases to the  

interannual standard deviation of SST mean biases. The observational reference is the  

HadISST.  

Figure 11. SST annual mean biases (ºC) of year 2005 from seasonal hindcasts for Mon1,  

Mon6, and Mon12 from CESM1-NMME (left panels) and CESM1-CAPT (right panels). The  

observational reference is the HadISST.  

Figure 12. Ratio of annual mean SST biases for Mon 12 seasonal hindcasts to their  

corresponding climatological annual mean SST biases. Only regions where the annual mean  

SST biases of the long-term climatology are statistically significant at the 95% confidence  

level and their absolute values are larger than 0.5 ºC, are color shaded  

Figure 13. Root mean square errors (RMSE ºC) of annual mean SST over ten selected  

locations (longitudes and latitudes are indicated on the top of each panel) with different  

hindcast lead times and the long-term climatology (CLIM). The RMSE for each model and  

hindcast month is calculated in reference to the HadISST.  
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Figure 1. Annual multi-model mean biases (°C) of SST from the CMIP5 (25 models) and  

CMIP6 (34 models) historical simulations. Regions where mean biases are statistically  

significant at the 95% confidence level are color shaded. The observational reference is the  

HadISST. See Appendix A for more information about the CMIP models. The boxes indicate  

the regions discussed in Section 3.4.  
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Figure 2. Schematic diagram for the seasonal hindcast procedure for the NMME project. Each  

set of 10-member ensemble hindcasts started from 00Z on the first day of each month  

between January 1980 and December 2014 (abscissa). The duration of each hindcast is 12  

months (ordinate). For the hindcast month 1 (Mon1 or the 0-month lead), SSTs are averaged  

for the first month of the hindcasts over all the ensemble members. SSTs of the hindcast  

month 2 (Mon2 or the 1-month lead) are averaged for the second month and so on for  

hindcast month 3 to month 12 (Mon3 to Mon12, or 2-month to 11-month lead). See text for  

more details.  
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Figure 3. SST biases (°C) averaged over the first day of model integrations with starting dates  

of January 1, 2005 (left panels) and July 1, 2005 (right panels). The observational reference is  

the NOAA OISST.  
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Figure 4. Annual mean SST biases (°C) for hindcast ensembles of Mon1, Mon2, Mon3, and  

Mon4. Regions where annual mean biases are statistically significant different from zero at  

the 95% confidence level are color shaded in all the models except for CESM1-CAPT for  

which this test is not possible because only one year of hindcasts was performed. The  

observational reference is the HadISST and the hindcast period for each model is listed in  

Table 1.   
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Figure 5. Annual mean SST biases (°C) for hindcast ensembles of Mon6, Mon9 and Mon12,  

as well as for the corresponding annual long-term mean biases (a 40-year long historical  

coupled simulation for CanCM3; CMIP5/historical for CanCM4, CCSM4, and CESM1; a  

300-year long control coupled simulation for FLOR). Regions where annual mean biases are  

statistically significant at the 95% confidence level are color shaded in all the models except  

for CESM1-CAPT hindcasts for which this test is not possible because only one year of  

hindcasts was performed.  
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Figure 6. Root mean square errors of annual mean SST (ºC) calculated over tropical and  

extra-tropical domains with different hindcast lead times and the long-term climatology  

(CLIM).    
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Figure 7. Taylor diagrams illustrating the spatial correlation and normalized spatial standard  

deviation of SST annual mean biases from the seasonal hindcasts. The reference fields (REF)  

are the corresponding biases in the long-term climatological runs. Data are analyzed over (a)  

0°–360°E, 60°S–60°N, (b) 0°–360°E, 30°S–30°N, (c) 0°–360°E, 30°N–60°N, and (d) 0°– 

360°E, 60°S–30°S. The observational reference is the HadISST. Only grid points with biases  

that are statistically significant at 95% confidence level in both the hindcasts and climate runs  

are used for pattern statistics calculation in the Taylor diagrams.  
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Figure 8. Ensemble monthly mean SST biases (ºC) of January 2005 from the seasonal  

hindcasts for Mon6 (left panels). Also shown are the standard deviations of the ensemble  

mean biases (ºC) for Mon6 (middle panels) and the ratios of the monthly mean biases to the  

standard deviation of ensemble mean biases (right panels). The observational reference is the  

HadISST.  
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Figure 9. Ensemble monthly mean SST biases (ºC) of July 2005 from the seasonal hindcasts  

for Mon6 (left panels). Also shown are the standard deviations of the ensemble mean biases  

(ºC) for Mon6 (middle panels) and the ratios of the monthly mean biases to the standard  

deviation of ensemble mean biases (right panels). The observational reference is the  

HadISST.  
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Figure 10. Interannual standard deviation of annual mean SST biases (ºC) for Mon12 (left  

panels). Also shown on the right panels are the ratios of annual mean SST biases to the  

interannual standard deviation of SST mean biases. The observational reference is the  

HadISST.  
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Figure 11. SST annual mean biases (ºC) of year 2005 from seasonal hindcasts for Mon1,  

Mon6, and Mon12 from CESM1-NMME (left panels) and CESM1-CAPT (right panels). The  

observational reference is the HadISST.  
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Figure 12. Ratio of annual mean SST biases for Mon 12 seasonal hindcasts to their  

corresponding climatological annual mean SST biases. Only regions where the annual mean  

SST biases of the long-term climatology are statistically significant at the 95% confidence  

level and their absolute values are larger than 0.5 ºC, are color shaded.  

  

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-20-0338.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-20-0338.1/5014677/jclid200338.pdf by BATTELLE PAC
IFIC

 N
W

 LAB, M
ary Frances Lem

bo on 09 N
ovem

ber 2020



 53 

 

Figure 13. Root mean square errors (RMSE ºC) of annual mean SST over ten selected 

locations (longitudes and latitudes are indicated on the top of each panel) with different 

hindcast lead times and the long-term climatology (CLIM). The RMSE for each model and 

hindcast month is calculated in reference to the HadISST. Note that the CLIM is the same for 

both CESM1-NMME and CESM-CAPT. 
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