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1.0 Cloud-to-Precipitation Transition 

Marine stratocumulus clouds exert significant negative radiative forcing due to their large areal extent, 
high albedo (shortwave forcing), and low cloud top (longwave forcing, e.g., Zelinka et al. 2012), yet the 
representation of these clouds in global climate models is problematic due to the small spatial scales of 
relevant physical processes (Hsieh et al. 2009). Along with entrainment, precipitation is one of the 
primary sinks of moisture and thus serves as a major determinant of the lifetime and morphology of these 
clouds (Stevens et al. 2005; Mechoso et al. 2014). Early detection of the onset of drizzle has therefore 
been a longtime goal of the observational community. Past work on this topic has led to diagnostic 
criteria that range from trivial passive techniques (collecting ground precipitation) to complex, active 
remote-sensing strategies (e.g., theoretically derived radar reflectivity thresholds as a function of altitude, 
Liu et al. 2008). Generally, these techniques may detect the presence of mature drizzle but are unable to 
diagnose the onset of precipitation—i.e., by the time drizzle is detected it is already fully developed. This 
work instead aims to develop a method to detect the presence of embryonic drizzle drops before 
precipitation is observed at cloud base. 

We used observational data to evaluate techniques for detecting drizzle. Two cases were selected from the 
ARM Mobile Facility deployment in the Azores, 27 July 2010 and 8 November 2010. We used the W- 
band ARM Cloud Radar (WACR) and Ceilometer observations from the MicroARSCL data set. 
Ceilometer first cloud base, radar reflectivity, and various Doppler moments (Doppler velocity power 
spectrum, spectrum width, and spectrum skewness) were smoothed to 2-, 5-, and 10-minute moving 
means. Previous studies have proposed using radar reflectivity thresholds as a basis for identifying the 
presence of drizzle (Chin et al.,2000; Kato et al. 2001; Kogan et al. 2005). For this study, -15 dBZ and -
20 dBZ were selected for comparison; a cloud is considered to be “drizzling” if maximum reflectivity 
exceeded those thresholds at any level. The 27 July case resulted in detection of drizzle 43.1% (-15 dBZ 
threshold) or 64.4% (-20 dBZ) of the time while the 8 November case detected drizzle 15.9% (-15 dBZ) 
or 24.0% (-20 dBZ) of the time. 

An alternative method for detecting drizzle involved Ceilometer first cloud base height and radar 
reflectivity. The Ceilometer cloud base is unaffected by light drizzle while the WACR reflectivity is 
highly sensitive to the presence of any drizzle drops. As a result, the difference between the Ceilometer 
first cloud base height and the Cloud Radar height are used to indicate drizzle when the difference in 
cloud base height exceeds 100 m. A threshold of -45 dBZ was used to identify cloud base from the cloud 
radar data. The unsmoothed data identified drizzle in the 27 July case 53.6% of the time and in the 8 
November case 56.4% of the time. The July detection rate is comparable to the reflectivity threshold 
technique while the November detection rate is much higher, identifying drizzle a significant portion of 
the time when the maximum reflectivity was only between -20 dBZ and -25 dBZ. 

The Doppler velocity power spectrum retrieved by the WACR encodes information about particle size via 
the monotonically increasing relationship between drop size and drop terminal velocity, although the 
spectrum does not correspond one to one with the particle size distribution (PSD) due to mean air motion, 
the spectrum-broadening effects of turbulence, and the strongly nonlinear relationship between drop size 
and reflected power (Z(v)~D6). Higher-order moments such as the skewness of the Doppler spectrum can 
be used to identify the onset of drizzle because of the link to the PSD: positive skewness indicates a “tail” 
of power returned from relatively large drops with small drops dominating the total reflectivity, while 
negative skewness indicates the converse (large drops dominate the spectrum, tail due to small drops). At 
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each time step, the cloud was subdivided into 10 normalized-height layers from cloud base to cloud top 
and reflectivity bins of 2 dBZ were used to analyze mean values of Doppler velocity and the skewness of 
the velocity spectrum as a function of radar reflectivity at each cloud layer. Skewness was found to be a 
powerful variable for understanding the relative contribution of cloud and drizzle particle-size 
distributions, as the earliest production of drizzle particles leads to positive skewness. At each level, we 
chose a value of half the observed maximum skewness as a threshold. To be designated as “drizzling,” a 
column must have multiple gates meeting the threshold criterion. This differs from the other techniques 
considered, which either use a single value at cloud base or the maximum value of an entire column as 
their detection criteria. 

In order to evaluate the detection techniques, we developed a forward model to simulate the Doppler 
radar spectrum, given a particle size distribution and tuned parameters of turbulence and noise level 
(Kollias et al. 2011). The initial droplet size-distribution profiles were prescribed as a combination of two 
modes: cloud droplets only and drizzle drops only. These spectra were derived from a single-column, 
steady-state microphysical model with only condensation/evaporation and collision-coalescence activated 
(i.e., no Cloud Condensation Nucleii [CNN] activation, sedimentation, breakup, etc.). Three cases with 
the same liquid water content profile but varying total drop number concentration (50 cm-3, 200 cm-3, 
and 400 cm-3) were tested to verify the feasibility of the detection techniques. Sensitivity testing using 
different turbulence broadening and noise levels was performed with 1,000 members for each 
combination of turbulent spectrum broadening and noise. The standard derivation of each ensemble is 
interpreted as the model uncertainty. 

Results from the two observational cases show that the skewness threshold technique agrees qualitatively 
with total radar reflectivity. Figure 1 shows the detection of drizzle onset using the skewness threshold for 
the 2-minute averaged November case. Generally, the detected drizzle events are correlated with strong 
radar reflectivity (Fig. 1b and 1c). The strong drizzle events just after 12:00 UTC and between 17:00-
24:00 UTC are accurately detected (nearly continuous black dots), with a more intermittent pattern of 
detection otherwise (Fig. 1b). Applying the threshold technique to the smoother time series (5- or 10-
minute moving mean) may improve the precision of drizzle onset by reducing noise. The detected events 
near the cloud top (Fig. 1a) most likely correspond with the initial stages of the collision-coalescence 
process (i.e., persistent autoconversion), which implies that the positive skewness of the Doppler 
spectrum may be considered a fingerprint of the evolution of the particle size distribution. 

Using the forward model, we demonstrated that the empirically derived skewness threshold techniques 
work well in the simulated parameter space. As shown in Figure 2, the skewness of the simulated Doppler 
spectra increases immediately below cloud top, dominated by the collisional growth of cloud droplets. 
After the skewness reaches a maximum value, drizzle drops form and the total skewness moves to 
negative values. As drizzle begins to dominate the shape of the Doppler spectrum, minimum skewness is 
reached. The thresholds derived from the two observational cases works well overall, as the intersection 
of simulated skewness profiles and thresholds are close to cloud top where drizzle is initiated. However, 
the sensitivity tests with a strong turbulence broadening effect show that there is no intersection between 
the simulated skewness and the thresholds (Fig. 2f), indicating that using skewness only may not be 
sufficient to detect drizzle onset in all cases. Better detection may be obtained by combining other 
parameters (e.g., radar reflectivity, mean Doppler velocity, or spectrum width) derived from the Doppler 
spectrum with the skewness threshold. Furthermore, the ratio of drizzle mass to cloud droplet mass in 
Figure 2(g-i) shows that less drizzle is formed when the total number concentration is increased, since 
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more drops are competing for the same amount of liquid water. As the mean drop size decreases, drop 
collision rates also decrease, pushing the formation of drizzle to lower levels in the cloud. 

As demonstrated by observation and a forward radar simulator, the skewness of the Doppler radar 
spectrum performs as well or better as a detector of drizzle onset than traditional radar reflectivity 
thresholds. Mathematically, skewness exhibits heightened sensitivity to large droplets (drizzle) because it 
is a high-order moment of the Doppler spectrum and thus identifies the onset of drizzle much earlier than 
radar reflectivity, the zeroth moment of the Doppler spectrum. Skewness detects the shape transition of 
the Doppler spectrum, which can be thought of as a measure of the evolution of the particle size 
distribution. The observational case studies indicate it detects both collision-coalescence and drizzle 
onset, so skewness also serves as a “fingerprint” of certain microphysical processes. Combination with 
other parameters such as radar reflectivity, mean Doppler velocity, and spectrum width are expected to 
better detect drizzle onset. Larger-scale tests based on long-term observations are also necessary to 
evaluate the feasibility and sensitivity of the skewness threshold technique under varying conditions. 

 
Figure 1. Detection of drizzle onset based on one-day (8 November 2010) of observed Doppler radar 

spectra from the ARM Mobile Facility deployment on Graciosa Island, Azores, smoothed to 
2-minute moving average. a) Pixels depict regions where the skewness (Sk) of the Doppler 
Radar spectrum is lower than the threshold (Skthresh, see Figure 2 for threshold derivation). 
b) Drizzle events (defined as 5 or more pixels in a column meeting the threshold criterion) 
are masked as black dots. c) Observed total Doppler Radar reflectivity (shaded, units: dBZ) 
by W-band ARM Cloud Radar (WACR) and first (lowest) cloud base height (black solid 
line, units: m) detected by the ceilometer. 
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