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Background

Precipitation strongly dependent on total column moisture in the tropics.
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Background

Precipitation strongly dependent on total column moisture in the tropics.
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Where do different convective modes and convective lifecycles fall along this curve?

Are MCSs associated with higher CWV/buoyancy than isolated deep convection (IDCs)?



Background

Precipitation strongly dependent on total column moisture in the tropics.

- Proxy for strongly entraining plume buoyancy

“Deep-layer inflow”

Schiro et al. (2018) I ety e | Example 1: .from
Lo N sy DOE ARM site data
08T = smaller-scale '." in Amazon
§i (GoAmazon2014/5)
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Are MCSs associated with higher CWV/buoyancy than isolated deep convection (IDCs)?

Some evidence suggests yes. Does this mean that higher CWV/buoyancy helps to organize deep convection?




Background

Precipitation strongly dependent on total column moisture in the tropics.

- Proxy for strongly entraining plume buoyancy
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Are MCSs associated with higher CWV/buoyancy than isolated deep convection (IDCs)?

Some evidence suggests yes. Does this mean that higher CWV/buoyancy helps to organize deep convection?




Project Summary

GOALS: To identify environmental thermodynamic perturbations that may support the

“organization” and maturation of deep convective cells into heavily precipitating MCSs.

APPROACH: Use an MCS/IDC identification/tracking database to compare

(a) the environment across the MCS lifecycle from growth to decay (in space and time)

(b) the pre-MCS and pre-IDC thermodynamic environments (in time)



Data and Methods

Thermodynamic profiles: AIRS
level 2, ERAS reanalysis, and
ARM site radiosondes

MCS tracking datasets:

a) Tracked IMERG Mesoscale
Precipitation System (TIMPS; U of
Utah; Rajagopal et al. 2023)

* 0.1° spatial and 30-min temporal
resolution; from 2011-2020

* Based on volumetric rain rate and
area, MCS can be segregated into
growth, mature, and decay stages

Identify MCS

Max. rainfall> 10 mmhr?
Area > 3000 km?
Duration > 6 hours

160,000 MC5s

Growth

10x increase in VRR
10x increase in Area

Mature

VRR and area remain
above 75% growth
maxima

Decay
VRR and area below
75% maximum

Rajagopal et al. (2023)



Data and Methods

Thermodynamic profiles: AIRS
level 2, ERAS reanalysis, and
ARM site radiosondes

MCS tracking datasets:

Tracked IMERG Mesoscale
Precipitation System (TIMPS; U of
Utah; Rajagopal et al. 2023)

* 0.1° spatial and 30-min temporal
resolution; from 2011-2020

* Based on volumetric rain rate and
area, MCS can be segregated into
growth, mature, and decay stages

Global and US-based FLEXTRKR
(Feng et al. 2018; Li et al. 2021)
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Project Summary

GOALS: To identify environmental thermodynamic perturbations that may support the

“organization” and maturation of deep convective cells into heavily precipitating MCSs.

APPROACH: Use an MCS/IDC identification/tracking database to compare

(a) the environment across the MCS lifecycle from growth to decay (in space and time)

(b) the pre-MCS and pre-IDC thermodynamic environments (in time)



What are the thermodynamic controls on tropical MCS lifecycles and
upscale growth?
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Data: TIMPS MCS tracking
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What are the thermodynamic controls on tropical MCS lifecycles and
upscale growth?

Data: TIMPS MCS track“’]g Anomalies are with respect to the mean profiles in each hourly bin in the lead-lag composite
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Warmer/moister before convection onset in both datasets, but T more confined to surface
in ERA5 and q increase smoother than in AIRS where there is clear BL drying.



What are the thermodynamic controls on tropical MCS lifecycles and
upscale growth?

Data: TIMPS MCS tracking Anomalies are with respect to the mean profiles in each hourly bin in the lead-lag composite

Amazon Nauru Darwin Manus

ARM

Warmer/moister before MCS detection — consistent with both AIRS and ERA5

ARM data is somewhat of a mix of what ERA5 shows and what AIRS shows: more
BL drying than ERAS5, less than AIRS (regionally dependent? see Amazon)




What are the thermodynamic controls on tropical MCS lifecycles and
upscale growth?

* Here, we estimate the buoyancy of an entraining plume (B) using a “deep-layer inflow” mixing assumption
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Increase in buoyancy below freezing level ahead of MCS detection in both AIRS and ERAS,
despite differences in observational products

Anomalies are with respect to the mean profiles in each hourly bin in the lead-lag composite



What are the thermodynamic controls on tropical MCS lifecycles and
upscale growth?

Data: TIMPS MCS tracking

TCWV around the storm extracted, rotated, and composited

such that system’s direction of motion is at 0° (North)

(Analysis controls for MCS sizes)

Motivation: to see if thermodynamic perturbations exist ahead of the system in space.




What are the thermodynamic controls on tropical MCS lifecycles and
upscale growth?

Data: TIMPS MCS tracking
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What are the thermodynamic controls on tropical MCS lifecycles and
upscale growth?

Data: TIMPS MCS tracking
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Project Summary

GOALS: To identify environmental thermodynamic perturbations that may support the

“organization” and maturation of deep convective cells into heavily precipitating MCSs.

APPROACH: Use an MCS/IDC identification/tracking database to compare

(a) the environment across the MCS lifecycle from growth to decay (in space and time)

(b) the pre-MCS and pre-IDC thermodynamic environments (in time)



How do pre-IDC and pre-MCS thermodynamics compare?

ARM vs. ERA5 Comparison @ SGP (JJA) Data: US-based FLEXTRKR, ERAS

. Enhanced moisture, especially in lower free troposphere, ahead of MCS and IDC occurrence
. Enhanced T in PBL
. ARM data results consistent with ERAS results.

Fressure {mb]

R

BOQ

Pressure (mib)
- Ba i B T
—

Anomalies are with respect to the mean profiles in each hourly bin in the lead-lag composite

Specific Humidity Temperature

IDC q 5GP ERAS B MCSqSGPERAS 1 A IDC t SGP ERAS e B MCSt SGP ERAS

S0 * 50 . i f ' 1
N | 0% - [ | s

&0
=
i o E qnol = g 00 | g 700 | '
a2 o o - @ =
= = = a =
a 3 o, = | =
-\.--: BOO Ty HW 800 |
& i b
500 i 800 i 600 | i“
ks - L o
5 a T, 5 o
Tursan {h] "n-m mj Trr'e 4]} Tena [h)
IDC g SGP DOE D MCS q SGP DOE s E IDC t S0P DOE g0 MLC3 L SGF DOE ~
okl el = r B r = . s 1 - e 5 - ’ 2
LY a | H g | | l
— o8 i 0
£ — = o | 1
o Edf & E4| E4
o B | 'y = | e
1'!: a 3 ] ::' .E ﬁ3 E' - | 1 =
BT S [T} £ 1] | 1
i s T
i F | 1] 1| 1
; [ 5 . | W
5 a A 5 a vl -1 ] o
T|rri.- i‘1'l Tirne (ki)

Time {h] Tire (h)



How do pre-IDC and pre-MCS thermodynamics compare?

ERA5 Comparison of SGP and SE US (JJA) Data: US-based FLEXTRKR, ERAS

. Enhanced moisture, especially in lower free troposphere, ahead of MCS and IDC occurrence
. Enhanced T in PBL

. LET'S COMPARE MORE CLOSELY

Anomalies are with respect to the mean profiles in each hourly bin in the lead-lag composite
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How do pre-IDC and pre-MCS thermodynamics compare?

ERA5 Comparison of SGP and SE US (JJA)

Data: US-based FLEXTRKR, ERA5

Enhanced moisture, especially in lower free troposphere, ahead of MCS and IDC occurrence

Enhanced T in PBL
LET'S COMPARE MORE CLOSELY

Moister environment ahead of MCSs
Warmer BL and LFT for MCS in SGP
Cooler BL and warmer LFT for MCS in SE

What does this mean in terms of
instability w.r.t. an entraining plume?
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How do pre-IDC and pre-MCS thermodynamics compare?

ERA5 Comparison of SGP and SE US (JJA) Data: Us-based FLEXTRKR, ERAS
. Enhanced buoyancy ahead of both MCSs and IDCs
. BUT the buoyancy is higher ahead of IDCs than MCSs in SE, the opposite of what we see at SGP
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How do pre-IDC and pre-MCS thermodynamics compare?

ERAS Global FLEXTRKR
. Both IDC and MCS show enhanced T and g ahead of detection
. Buoyancy is higher ahead of MCSs than IDC
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Conclusions

Enhanced lower tropospheric moisture leads MCS (and IDC) occurrence by multiple hours —

robust to chosen dataset
Lower tropospheric moisture is higher ahead of MCSs than IDCs

Pre-MCS conditions are generally more unstable w.r.t. an entraining plume than pre-IDC

conditions, but not always — as shown in SE US vs. SGP example

Enhanced BL cooling/drying and reduced buoyancy from growth to decay phases of the MCS

lifecycle, aiding in MCS demise. Cooling/drying captured differently in the different datasets.

Thanks! Contact: kschiro@virginia.edu
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What are the thermodynamic controls on tropical MCS lifecycles and
upscale growth?

Data: Tl M PS MCS trackl ng Anomalies are with respect to the -12 to 0 average pre-MCS conditions
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BL progressively dries and cools as lifecycle increases (except maybe for AIRS T)
**ERAGS still shows higher g than pre-MCS conditions



