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Why Machine Learning with ARM Data?

ARM’s extensive observational network (radars, lidars, BL profiles, in-situ sensors)
produces large volumes of data. Many remain unlabeled or partially labeled.
Challenges:

▶ Manual labeling for boundary-layer structures, cloud/rain features, is time-consuming.

▶ Existing supervised ML pipelines rely on annotated data, limiting the model’s ability to
discover novel features (e.g., anomalies in radar/lidar or synergy across instruments).

▶ Labeled subsets often represent only typical conditions, restricting learning of rarer
events (e.g., boundary layer transitions, multi-layer cloud systems).

Need: A robust approach to use large-scale, unlabeled data from multiple platforms to
improve model performance and reduce labeling costs.
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Joint embedding architecture for self-supervised learning
▶ SSL: compares augmentations without labels
▶ Focuses on embedding invariance and rich semantic features
▶ No direct reconstruction or discriminator modules, like GANs or AE

JEPA: Predictive approach with anchor vs. context; learns minimal, essential
representations.
DINO: Teacher-student distillation without labels; enforces semantic alignment
between different views.
VICReg: Three-term loss (Variance, Invariance, Covariance) to prevent collapsed
embeddings.
Comparison with Autoencoders and GANs
▶ Autoencoders: Learn pixel-level reconstruction
▶ GANs: Adversarial generation through discriminator feedback
▶ Joint Embedding: Maximizes latent alignment, not reconstruction or

generation
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Joint embedding architecture for self-supervised learning

Distillation with no labels (DINO) (Caron
et al., 2020, 2021)

How it is intended to use?
1. Train with raw data first, then

fine-tune with labeled data.
2. Any NN can be embedded with this

architecture: ViT, CNNs.
3. Selectively ignore features (here,

‘color order’ and ‘values’).
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Self-supervised learning for cloud segmentation and classification
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Self-supervised learning for classification (PCA1 Vs PCA2)

▶ Clear sky and cloudy
images occupy two large
regions.

▶ Overcast images with low
and mid-level clouds
separate into two regions.

▶ Partly cloudy images tend to
split into multiple regions
based on structure.
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Self-supervised learning for classification (SOM)

▶ Clusters reflect different cloud types,
coverage, and diurnal peaks.

▶ More details in Dematties et al.
(2023); Raut et al. (2023); Dematties
et al. (2024)
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Self-supervised learning for classification (SOM)

Clouds tend to form height-wise clusters (Dematties et al., 2023).

A0 (f=44, NA=66%) B0 (f=47, NA=97%) C0 (f=40, NA=99%) D0 (f=38, NA=99%)

A1 (f=40, NA=90%) B1 (f=49, NA=77%) C1 (f=74, NA=88%) D1 (f=63, NA=95%)

A2 (f=26, NA=80%) B2 (f=36, NA=75%) C2 (f=27, NA=87%) D2 (f=59, NA=95%)

A3 (f=21, NA=80%) B3 (f=19, NA=83%) C3 (f=20, NA=76%) D3 (f=59, NA=51%)

A4 (f=49, NA=30%) B4 (f=35, NA=23%) C4 (f=65, NA=32%) D4 (f=48, NA=39%)

0 250 500 750 1000 0 200 400 600 0 1 2 3 0 5 10 15

0 500 1000 1500 0 500 1000 1500 2000 0 400 800 1200 0 200 400 600 800

0 250 500 750 1000 12500 250 500 750 1000 0 500 1000 1500 0 50 100 150 200 250

0 50 100 150 0 100 200 300 0 500 1000 1500 2000 0 500 1000 1500 2000

0 2000 4000 6000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

Frequency
CB

H 
[k

m
]

8/13



Attentional maps for segmentation without labels

▶ Normalized attention values yield
cloud/no cloud segmentation.

▶ Attention aligns with cloud
transparency.

▶ Note: Interpreting attention as
transparency is nontrivial.
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Method Overview: Unleash SSL on ARM Data

Key Idea: Train a model to learn general atmospheric representations from unlabeled
data (radar, lidar, sky images, surface sensors), then fine-tune on small labeled datasets.
Workflow Steps:

1. Raw Input Aggregation: Collect diverse unlabeled data (e.g., Ka-Band ARM Zenith
Radar reflectivity, MPL lidar backscatter, boundary-layer profiles).

2. Augmentations: Random transformations emphasize relevant variance (temporal
shifts, intensity changes, 2D/3D subsetting).

3. Joint Embedding SSL: Contrastive or distillation-based methods (e.g., DINO,
SimCLR) learn instrument-agnostic feature representations.

4. Fine-Tuning: Use minimal labeled sets (e.g., known cloud boundaries, aerosol
types, or qc-labeled anomalies) to adapt the pretrained model.

Transfer Learning Potential: Pretrained embeddings accelerate downstream tasks
(classification, retrieval, anomaly detection) for any new ARM campaign.
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Foundation Models and Transfer Learning Outlook

▶ Toward Foundation Models: Train large-scale SSL across multiple ARM sites (SGP,
NSA, ENA, mobile campaigns) to capture universal atmospheric patterns.

▶ Cross-Platform Integration: Incorporate scanning radars, aerosol measurements,
surface flux towers, and more for a holistic Earth system representation.

▶ Data Sharing and Collaboration: Encourage community to pool unlabeled archives
and share pretrained models to accelerate ML-based VAP development.

▶ Uncertainty Quantification: Combine SSL with Bayesian or ensemble methods to
track predictive confidence for operational data quality insights.
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Challenges and Practical Insights

▶ Instrument Heterogeneity: Different sampling rates, noise levels, scanning
strategies; requires careful pre-processing.

▶ Scalability and Compute: SSL methods need large GPU resources for training on
high-frequency ARM data streams.

▶ Data Quality: Varying QC levels across deployments; anomalies in spatiotemporal
records can mislead SSL if not addressed.

▶ Validation Gap: Traditional metrics rely on labeled ground truth. SSL performance
assessment needs alternative measures (clustering, geophysical consistency).

▶ Community Adoption: Many are cautious about black-box ML and seek stable,
interpretable solutions. Clear guidelines for best practices are needed.

The biggest challenge is bridging the interdisciplinary divide between atmospheric
scientists and AI researchers. Dedicated funding for collaborative AI exploration is
essential.
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