Update on the ARM Raman and Doppler lidar systems

Rob Newsom¹, Raghu Krishnamurthy¹ and Ray Bambha²

¹ Pacific Northwest National Laboratory, Richland, WA
² Sandia National Laboratory, Livermore, CA
ARM currently operates 3 Raman Lidar Systems

- SGP C1 – since 1996
- ENA C1
 - Since 2015
 - Previously deployed at TWP C3 from December 2010 to January 2015
- AMF3 (Oliktok)
 - Since 2014
 - To be redeployed to SEUS in FY21/22

All systems were built by Sandia, and all use similar design

Measurements of:

- water vapor mixing ratio
- temperature
- aerosol and cloud properties (extinction, backscatter, depolarization ratio, etc...)
Raman Lidar Issues

• Both the ENA and SGP RLs are showing a gradual degradation in sensitivity
 ▪ Sensitivity = peak-background
 ✓ Pulse energy
 ✓ Receiver characteristics
 ✓ Atmosphere

• The sensitivity loss is larger at SGP
 ▪ Apparent in the last 3+ years of data
 ▪ Seen in all channels

• Time for a tune-up
 ▪ Refurbish telescope?
 ▪ Replace degraded optical components in the receiver
 ▪ Realignment
ARM Doppler Lidars

• Doppler lidars (DL) are operated at all fixed and mobile sites, including a network of five systems at SGP.

• The DLs provide time- and range-resolved measurements of:
 ▪ Radial (line-of-sight) velocity
 ▪ Attenuated aerosol backscatter
 ▪ Wideband signal-to-noise ratio
 ▪ Spectral width new!

• Current mode of operation is pretty simple
 ▪ PPI scans every 10-15 minutes
 ▪ Vertical stare otherwise
ARM Doppler Lidars

• All Systems
 ▪ Manufactured by Halo Photonics
 ▪ 1548 nm
 ▪ Class 1M
 ▪ Nyquist velocity = ±19.4 m s⁻¹

• Four different models: Pro, SL, XR, and XR+

Stream Line Pro
 • Profiler
 • ±20° from zenith
 • 15kHz

Stream Line
 • Full scanning
 • 15kHz

Stream Line XR
 • SL plus...
 • 4x pulse energy
 • Enhanced signal processing
 • 10kHz

Stream Line XR+
 • XR plus...
 • Redesigned optics to improve SNR
Doppler Lidar Instrument Status

- **SGP Network**
 - C1 (XR), E32(SL), E37(SL), E39(SL) and E41(SL)
 - Frequent failures have resulted in significant downtime at some facilities
 - In FY20 an XR+ system was procured for SGP as a spare unit
 ✓ Swapped with the AMF2 DL (Pro) for the SAIL campaign because Dan wants to scan
 ✓ This will enable scanning during SAIL.
 ✓ The AMF2 DL (Pro) is now operating at SGP E39.
 - Providing observational support for AWAKEN
 ✓ DOE/EERE funded wind energy study

- **NSA C1 DL (Pro)** – Very stable and continues to perform well
- **ENA C1 DL (SL)** – Very stable and continues to perform well
- **AMF1 DL (SL)** – Functioning well. Will be deployed in Houston for TRACER

- **Current and Planned Procurements**
 - FY21 (in progress): 2 XR+ systems for SGP and/or SEUS
 - FY22 (planned): 2 XR+ systems for SGP and/or SEUS
Other Tidbits

Development of a new PBL height VAP

- ENG0000893 – Integrate observations from multiple platforms to obtain best estimate zi
- Viasala ceilometers now routinely output zi estimates

• High-temporal resolution wind and vertical velocity measurements during the ECREASTUDY campaign at SGP C1 in the fall of 2020
 - Collocated measurements from the C1 and Spare DLs
 - Enables retrieval of TKE flux profiles, see https://asr.science.energy.gov/meetings/stm/posters/pdf/2021/P002757.pdf

• Examining methods for improving calibration of WVMR and temperature using machine learning techniques

• How can we make better use of the scanning capabilities of the Doppler lidars?