Part 3: LASSO-O Workflow Software

Presenters: Tami Fairless (BNL), Carina Lansing (PNNL)
What you will learn

Introduction:
- What is LASSO-O
- What is a container?
- The LASSO-O Container

LASSO-O Container:
- Workflow
- Input & Output

Running LASSO-O in a container:
- Getting started using LASSO-O in a container
- Steps to use LASSO-O in a container

Plotting the Results
What is LASSO-O?

- LASSO-O is the ARM Operationalization of the LASSO workflow
 - from WRF LES output
 - through to the model evaluation components of LASSO bundles

- Three categories of processes in LASSO-O:
 - Model
 - Observation
 - Obs & Model Blending

- Each process in the workflow is packaged as an RPM (i.e., binary)
What is a container?

- Software packaged into standardized units which include all dependencies
- Supports reproducible results from one environment to another
- Easy to ship and deploy

Common container technologies:
- Docker
- Singularity
- Shifter
The LASSO-O Container

- We assembled into a container the RPMs and input data necessary to produce LASSO bundle data using non-LASSO WRF simulation input.

- This means modelers can run their own simulations through the container to:
 - Evaluate them against the same observations used by LASSO.
 - Compare their simulations directly to LASSO simulations.
 - Compute the same skill scores as LASSO.
 - Develop new skill scores and easily apply them to simulations.
The portion of the LASSO-O workflow within the container is diagrammed at right.

Legend:
- **Input**: cidfracet01m/05m/15m, lassodiagobs
- **Process**: lassodiagobsmodz VAP, lassodiagobsmod SIMID, lassodiagmod VAP, lassodiagmod SIMID
- **Output**: lassoscore VAP, lassoscore, lassoscore VAP, lassoscore SIMID
LASSO-O Container Workflow

The portion of the LASSO-O workflow within the container is diagrammed at right.

Compute model variables at model time resolution

Legend
- input
- process
- output
The portion of the LASSO-O workflow within the container is diagrammed at right.
The portion of the LASSO-O workflow within the container is diagrammed at right

Compute model cloud fraction (CF) and obs vs. model CF mask ("Blending")
The portion of the LASSO-O workflow within the container is diagrammed at right.

Put hourly 1-D model and obs diagnostics into one file (“Blending”)
The portion of the LASSO-O workflow within the container is diagrammed at right.
The portion of the LASSO-O workflow within the container is diagrammed at right

- **Input provided in/by container:**
 - Cloud fraction profile observations (cldfracset)
 - 1D (in time) observations (lassodiagobs)
The portion of the LASSO-O workflow within the container is diagrammed at right

- **Input provided in/by container:**
 - Cloud fraction profile observations (cldfracset)
 - 1D (in time) observations (lassodiagobs)

- **Input provided by user:**
 - WRF LES raw output (wrfstat and wrfout files)
The portion of the LASSO-O workflow within the container is diagrammed at right:

- **Input provided in/by container:**
 - Cloud fraction profile observations (cldfracset)
 - 1D (in time) observations (lassodiagobs)

- **Input provided by user:**
 - WRF LES raw output (wrfstat and wrfout files)

- **Output (shown in green at right):**
 - Ingested WRF data
 - Contents of lassodiagconfobsmodSIMID bundle
LASSO-O Container User Input

- WRF LES output: wrfstat and wrfout files ... *That’s all!*

- **Details:**
 - User-provided WRF simulations must be for one of the [LASSO case dates](https://www.arm.gov/capabilities/modeling/lasso) during 2017, 2018, or 2019.
 - User-provided WRF simulations must be for the same duration and times as the LASSO simulations.
 - LASSO WRF simulation output has extra global netCDF attributes (e.g., `simulation_id_number`, `output_domain_size`, `output_number_of_levels`, `output_horizontal_grid_spacing`, etc.), but these are NOT required for user-provided WRF simulation input.
 - User-provided WRF simulations may have custom horizontal grid spacing, domain size, number of levels, and time resolution.
Output of container is the contents of lassodiagconfobsmod bundle:

- Results of model post-processing to compute variables comparable to observations (lassomod, native model time resolution)
Output of container is the contents of lassodiagconfobsmod bundle:

- Results of model post-processing to compute variables comparable to observations (lassomod, native model time resolution)
- Time series of 1D variables for observations and model (lassodiagobsmod, hourly)

Note: All examples use case day 2018-07-10

Plots produced from notebooks provided in the container repo: https://code.arm.gov/lasso/containers/run-lasso-o_shcu/-/tree/master/notebooks
LASSO-O Container Output

- Output of container is the contents of lassodiagconfobsmod bundle:
 - Results of model post-processing to compute variables comparable to observations (lassomod, native model time resolution)
 - Time series of 1D variables for observations and model (lassodiagobsmod, hourly)
 - Model cloud fraction profile and observation vs. model cloud (lassodiagobsmodz, native model time resolution)

Plots produced from notebooks provided in the container repo:
https://code.arm.gov/lasso/containers/run-lasso-o_shcu/-/tree/master/notebooks

Note: All examples use case day 2018-07-10
Output of container is the contents of lassodiagconfobsmod bundle:

- Results of model post-processing to compute variables comparable to observations (lassomod, native model time resolution)
- Time series of 1D variables for observations and model (lassodiagobsmod, hourly)
- Model cloud fraction profile and observation vs. model cloud (lassodiagobsmodz, native model time resolution)
- Skill scores (lassoscore, lassoscorez)

Note: All examples use case day 2018-07-10

Plots produced from notebooks provided in the container repo: https://code.arm.gov/lasso/containers/run-lasso-o_shcu/-/tree/master/notebooks
Getting Started Using LASSO-O in a Container

► You’ll likely want to run the container from somewhere you can access your WRF output, like an HPC cluster.

► The computer you use must be able to deploy one of the container platforms: Docker, Singularity, or Shifter.

► Start by going to the LASSO-O container gitlab repository:
 ■ https://code.arm.gov/lasso/containers/run-lasso-o_shcu/-/tree/master/

► Clone the repository and review the instructions in README.md
Steps to use LASSO-O in a Container

1. Set up your container runtime environment:
 - See the README-DOCKER.md, README-SHIFTER.md, or README-SINGULARITY.md for instructions specific to the available platform
1. Set up your container runtime environment:
 - See the README-DOCKER.md, README-SHIFTER.md, or README-SINGULARITY.md for instructions specific to the available platform

2. Prepare Simulation Data
 - Place or symbolically link your WRF LES simulation wrfstat and wrfout files into the data/inputs directory
 - Up to 10 simulations may be processed

```bash
$ ls data/inputs/*
data/inputs/sgp_{wrfstat|wrfout}?{3|5}{00|01|...}.nc
```

```bash
wrfout_d01_2017-04-03_12:00:00.nc  wrfout_d01_2017-04-03_20:00:00.nc
wrfout_d01_2017-04-03_13:00:00.nc  wrfout_d01_2017-04-03_21:00:00.nc
wrfout_d01_2017-04-03_14:00:00.nc  wrfout_d01_2017-04-03_22:00:00.nc
wrfout_d01_2017-04-03_15:00:00.nc  wrfout_d01_2017-04-03_23:00:00.nc
wrfout_d01_2017-04-03_16:00:00.nc  wrfout_d01_2017-04-04_00:00:00.nc
wrfout_d01_2017-04-03_17:00:00.nc  wrfout_d01_2017-04-04_01:00:00.nc
wrfout_d01_2017-04-03_18:00:00.nc  wrfout_d01_2017-04-04_02:00:00.nc
wrfout_d01_2017-04-03_19:00:00.nc  wrfout_d01_2017-04-04_03:00:00.nc
```
Steps to use LASSO-O in a Container

1. Set up your container runtime environment:
 - See the README-DOCKER.md, README-SHIFTER.md, or README-SINGULARITY.md for instructions specific to the available platform

2. Prepare Simulation Data
 - Place or symbolically link your WRF LES simulation wrfstat and wrfout files into the data/inputs directory
 - Up to 10 simulations may be processed

3. Edit date and container_runtime in config.yml file

```yaml
#begin datetimel
# The entered date MUST be one listed in the adjacent lasso_dates.txt file.
begin_datetime: 20180710.115900
```
Steps to use LASSO-O in a Container

1. Set up your container runtime environment:
 - See the README-DOCKER.md, README-SHIFTER.md, or README-SINGULARITY.md for instructions specific to the available platform

2. Prepare Simulation Data
 - Place or symbolically link your WRF LES simulation wrfstat and wrfout files into the data/inputs directory
 - Up to 10 simulations may be processed

3. Edit date and container_runtime in config.yml file

4. Run the LASSO-O container!
 - Refer back to the README-DOCKER.md, README-SHIFTER.md, or README-SINGULARITY.md for the container-platform-specific run command.
Steps to use LASSO-O in a Container

1. Set up your container runtime environment:
 - See the README-DOCKER.md, README-SHIFTER.md, or README-SINGULARITY.md for instructions specific to the available platform

2. Prepare Simulation Data
 - Place or symbolically link your WRF LES simulation wrfstat and wrfout files into the data/inputs directory
 - Up to 10 simulations may be processed

3. Edit date and container_runtime in config.yml file

4. Run the LASSO-O container!
 - Refer back to the README-DOCKER.md, README-SHIFTER.md, or README-SINGULARITY.md for the container-platform-specific run command.

Note:
Expect a single simulation with 226 levels, a domain size of 14.4 km, and grid spacing of 100 m to take about an hour to complete.
After the container runs, you’ll find the following in your data directory:

data/inputs:
- sgppwrfout4C1.00
- sgppwrfstat4C1.00

Your WRF LES Input

data/outputs:
- logs
- sgppclddfaret01mC1.c1
- sgppclddfaret15mC1.c1
- sgpllassodiagobsC1.c1

Input that was contained in the container, now accessible to you

- sgpllassodiagmod4C1.m1
- sgpllassodiagobsmod4C1.m1
- sgpllassodiagobsmodz4C1.m1
- sgpllassomod4C1.m1
- sgpllassoscoreC1.m1
- sgpllassoscorezC1.m1
- sgppwrfout4C1.m0
- sgppwrfstat4C1.m0

Output from the container
Plotting the Results

The LASSO-O container gitlab repository includes a notebooks folder which contains all the python code and instructions to produce plots from your results.

Prerequisites: Anaconda/Miniconda 3

Follow the instructions in the notebooks/README.md file to create the 'lasso' conda environment, which includes:

- CDAT (https://github.com/CDAT/cdat/wiki/install) is required for plotting the Taylor diagram in `plot_1d.ipynb`
- xarray is used for reading in most data
- netCDF4 is used for reading in data files with time-resolved height bins (e.g., data stream `lassodiagobsmodz.m1`)
The available notebooks include:

- `plot_1D.ipynb` for plotting time series, Taylor diagrams, and heatmaps

Note: All examples use case day 2018-07-10
Plotting the Results

The available notebooks include:

- plot_1D.ipynb for plotting time series, Taylor diagrams, and heatmaps
- plot_cloud_fraction.ipynb for plotting time-height cloud fraction plots

Note: All examples use case day 2018-07-10
Plotting the Results

The available notebooks include:

- plot_1D.ipynb for plotting time series, Taylor diagrams, and heatmaps
- plot_cloud_fraction.ipynb for plotting time-height cloud fraction plots
- plot_profiles.ipynb for plotting sounding profiles

Note: All examples use case day 2018-07-10
The available notebooks include:

- plot_1D.ipynb for plotting time series, Taylor diagrams, and heatmaps
- plot_cloud_fraction.ipynb for plotting time-height cloud fraction plots
- plot_profiles.ipynb for plotting sounding profiles
- plot_scores.ipynb for plotting scatter plots of the LASSO skill scores

Note: All examples use case day 2018-07-10
LASSO-O in a container gives modelers the ability to process their own WRF LES models in the same way LASSO sims are processed, which streamlines model evaluation.

LASSO-O in a container and all the documentation is available at:
https://code.arm.gov/lasso/containers/run-lasso-o_shcu

Running LASSO-O in a container requires:
- A computing platform with Docker, Singularity, or Shifter
- Access to LASSO-WRF raw output