varanal-29: Large-Scale Forcing Data for SCM/CRM/LES from Constrained Variational Analysis (VARANAL) Type: PI Product

The large-scale forcing data is developed using the constrained variational analysis approach developed by Zhang and Lin (1997) and Zhang et al. (2001). It calculates the time varying vertical profiles of large-scale forcing data for an atmospheric column by adjusting state variables (horizontal wind u, v, water vapor mixing ratio q, dry static energy s) from sounding measurements to satisfy the conservations of mass, moisture, heat, and momentum. To ease the requirement of this method on high-density sounding measurements which are only available during specific intensive operational periods (IOPs), and to reduce errors in the NWP-derived forcing data, Xie et al. (2004) combined RUC analysis with observed constraint variables to obtain long-term forcing data (the ARM Continuous Forcing Product).

The derived large-scale forcing data can be used to drive SCM/CRM/LES for different systems over long time periods. Results from these simulations are then used to improve cloud parameterizations in Global Climate Models (GCMs). It also includes diagnostic fields such as heating profiles and cloud fields to evaluate model results.

Currently two types of data are available.

IOP sounding-based forcings: State variables from a sounding array. The forcing is at 3-hr and 25-mb resolutions.

Continuous forcing: State variables from RUC analysis (replaced by RAP since May 2012) (Xie et al., 2004). The forcing is at 1-hr and 25-mb resolutions.



How to cite:

For IOP sounding-based forcings:

"The large-scale forcing data (ARM Climate Research Facility, 2001) is derived from a constrained variational analysis approach developed by Zhang and Lin (1997) and Zhang et al. (2001). The data can be obtained at http://www.arm.gov/data/eval/29."

For specific fields campaigns, please also refer to their introductive paper, which can be obtained by clicking the following links and are also listed in the reference section: M-PACE , TWP-ICE, MC3E, GOAmazon

For continuous forcing:

"The continuous forcing data (ARM Climate Research Facility, 2001) is derived from the NOAA rapid update cycle (RUC) (or rapid refresh [RAP]) analysis data constrained with the ARM surface and TOA measurements (Xie et al., 2004) using the constrained variational analysis approach developed by Zhang and Lin (1997) and Zhang et al. (2001). The data can be obtained at http://www.arm.gov/data/eval/29."

Purpose

The derived large-scale forcing data can be used to drive SCM/CRM/LES for different systems over long time periods. Results from these simulations are then used to improve cloud parameterizations in Global Climate Models (GCMs). It also includes diagnostic fields such as heating profiles and cloud fields to evaluate model results.

Locations

  • Fixed
  • Mobile

Data Details

Contact Shaocheng Xie
Resource(s) Data Directory
ReadMe
Data format netcdf, ascii
Site GAN
HFE
MAO
NSA
SGP
TWP
Content time range 1 January 1999 - 1 August 2015
Attribute accuracy No formal attribute accuracy tests were conducted.
Positional accuracy No formal positional accuracy tests were conducted.
Data Consistency and Completeness Data set is considered complete for the information presented, as described in the abstract.Users are advised to read the rest of the metadata record carefully for additional details.
Access Restriction No access constraints are associated with this data.
Use Restriction No use constraints are associated with this data.
Citations Zhang, M., and J. Lin (1997), Constrained Variational Analysis of Sounding Data Based on Column-Integrated Budgets of Mass, Heat, Moisture, and Momentum: Approach and Application to ARM Measurements, Journal of the Atmospheric Sciences, 54(11), 1503-1524, doi: 10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2.

Zhang, M., J. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie (2001), Objective Analysis of ARM IOP Data: Method and Sensitivity, Monthly Weather Review, 129(2), 295-311, doi: 10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2.

Xie, S., R. T. Cederwall, and M. Zhang (2004), Developing long-term single-column model/cloud system???resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations, Journal of Geophysical Research, 109(D1), doi: 10.1029/2003jd004045.

Xie, S., S. A. Klein, M. Zhang, J. J. Yio, R. T. Cederwall, and R. McCoy (2006), Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment, Journal of Geophysical Research, 111(D19), doi: 10.1029/2005jd006950.

Xie, S., T. Hume, C. Jakob, S. A. Klein, R. B. McCoy, and M. Zhang (2010), Observed Large-Scale Structures and Diabatic Heating and Drying Profiles during TWP-ICE, Journal of Climate, 23(1), 57-79, doi: 10.1175/2009jcli3071.1.

Xie, S., Y. Zhang, S. E. Giangrande, M. P. Jensen, R. McCoy, and M. Zhang (2014), Interactions between Cumulus Convection and its Environment as Revealed by the MC3E Sounding Array, Journal of Geophysical Research: Atmospheres, 2014JD022011, doi: 10.1002/2014JD022011.

Tang, S., Xie, S., Zhang, Y., Zhang, M., Schumacher, C., Upton, H., Jensen, M. P., Johnson, K. L., Wang, M., Ahlgrimm, M., Feng, Z., Minnis, P., and Thieman, M. (2016), Large-Scale Vertical Velocity, Diabatic Heating and Drying Profiles Associated with Seasonal and Diurnal Variations of Convective Systems Observed in the GoAmazon2014/5 Experiment, Atmospheric Chemistry and Physics Discussions, doi: 10.5194/acp-2016-644. in review.

Related Publications

2014

Hiranuma N, M Paukert, I Steinke, K Zhang, G Kulkarni, C Hoose, M Schnaiter, H Saathoff, and O Möhler. 2014. "A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models." Atmospheric Chemistry and Physics, 14, 10.5194/acp-14-13145-2014.

Xie S, Y Zhang, SE Giangrande, MP Jensen, R McCoy, and M Zhang. 2014. "Interactions between cumulus convection and its environment as revealed by the MC3E sounding array." Journal of Geophysical Research: Atmospheres, 119(20), 10.1002/2014JD022011.

2012

Mrowiec AA, C Rio, AM Fridlind, AS Ackerman, AD Del Genio, OM Pauluis, AC Varble, and J Fan. 2012. "Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions." Journal of Geophysical Research: Atmospheres, 117(D19), D19201, 10.1029/2012JD017759.

Del Genio AD, J Wu, and Y Chen. 2012. "Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE." Journal of Climate, 25(17), 5666, 10.1175/JCLI-D-11-00422.1.

Rio C, J Grandpeix, F Hourdin, F Guichard, F Couvreux, J Lafore, A Fridlind, A Mrowiec, R Roehrig, N Rochetin, M Lefebvre, and A Idelkadi. 2012. "Control of deep convection by sub-cloud lifting processes: the ALP closure in the LMDZ5B general circulation model." Climate Dynamics, 40(9-10), 10.1007/s00382-012-1506-x.

2011

Song X and GJ Zhang. 2011. "Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests." Journal of Geophysical Research, 116(D2), D02201, 10.1029/2010JD014833.

2009

Zeng X, WK Tao, M Zhang, AY Hou, S Xie, S Lang, X Li, DO Starr, and X Li. 2009. "A contribution by ice nuclei to global warming." Quarterly Journal of the Royal Meteorological Society, 135(643), 10.1002/qj.449.

Wu J, AD Del Genio, MS Yao, and AB Wolf. 2009. "WRF and GISS SCM simulations of convective updraft properties during TWP-ICE." Journal of Geophysical Research, 114(D4), D04206, 10.1029/2008JD010851.

Wu J, AD Del Genio, M Yao, and AB Wolf. 2009. "WRF and GISS SCM simulations of convective updraft properties during TWP-ICE." Journal of Geophysical Research, 114(D4), D04206, 10.1029/2008JD010851.

Zeng X, W Tao, M Zhang, AY Hou, S Xie, S Lang, X Li, DO Starr, X Li, and J Simpson. 2009. "An Indirect Effect of Ice Nuclei on Atmospheric Radiation." Journal of the Atmospheric Sciences, 66(1), 10.1175/2008JAS2778.1.


View All Related Publications