Development of a balloon-borne aerosol profiling system: *Applications in China*

Zahra Chaudhry, J. Vanderlei Martins, Zhanqing Li, Si-Chee Tsay, Qiang Ji, Tianxue Wen, Wu Zhang

DOE ARM Science Team Meeting April 2nd, 2009

Outline

- Briefly discuss why we built this instrument
- Show schematics of instrument design
- Validation via Intercomparison
- Experimental Plan
- Results

Motivation

- Aerosol optical and physical properties are highly variable both in time and space, and more accurate information is needed.
- Aerosols form mixtures as different types interact. These mixtures take on different optical properties than those of the originating species.
- Current commercially-available instruments for optical property measurements have inherent biases and involve considerable corrections (eg. Bond et al. 1999 PSAP correction, truncation errors in TSI Nephelometers).
- Optical properties reported as ground concentrations or total column amounts are only telling part of the story.

Radiative Forcing Components

IPCC, 2007

Methodology for EAST-AIRE 2005

Ground-based Aerosol Sampling

- A simple sampling apparatus collects aerosols in 2 size bins, coarse mode (2.5 μ m < d < 10 μ m) and fine mode (d < 2.5 μ m).
- The particles are collected on a smooth polycarbonate substrate, which lends well to optical measurements and chemical speciation.
- The filters are subjected to gravimetric analysis prior to and after field deployment.
- Blank filters are prepared and sent with sampling filters to monitor any contamination, and used to correct for surface reflection in the Optical Reflectance technique.

12-hour mass concentration of:

- a) coarse mode particles with aerodynamic diameter 2.5mm < d < 10mm
- b) fine mode particles with d < 2.5mm

From EAST-AIRE 2005

Comparison of Mass Concentration as a Proxy for Size Distribution to AERONET

Use co-located AERONET sunphotometer size distribution data to calculate a Small Mode Ratio (SMR)

SMR from Filters = (mass of fine)/(mass of fine + coarse)

SMR from AERONET = integrated the size distribution of the fine particles, up to 2.24μ m, integrated the size distribution of the coarse mode, all particles larger than 2.24μ m, then divided fine by total

From Chaudhry et al., 2007

March 15th: a more complex boundary layer with overnight residual

From Chaudhry et al., 2007

0.00

Experiment Objective

To examine the vertical profile of extinction by launching a "scattering and absorption sonde" and modeling how the optical properties of aerosol layers in the atmosphere affect atmospheric stability.

SAS Part I Inverse Nephelometer

From Concept to Prototype:

SAS in action

	β_{scat} (m ⁻¹)
Rayleigh at 595 nm	3.94 E -05
Rayleigh-T/P corrected	3.69 E -05
SAS with HEPA	3.79 E -05

Comparison of the SAS scattering coefficient with theoretical Rayleigh scattering--

Agreement within 2%!

Intercomparison of the SAS scattering coefficient with a TSI Nephelometer in Zhangye

Experiment Plan

EXPERIMENT 1

- Xianghe, Hebei Province
- IAP-UMD Joint Lab
- Max altitude: 450m
- Launches:
 - March 19, am
 - March 19, pm
 - March 26th, pm
 - March 27th, am
 - March 27th, pm

EXPERIMENT 2

- Zhangye, Gansu Province
- Co-located with NASA SMART/COMMIT trailers
- Max altitude: 800m
- Launches:
 - April 14th, pm
 - April 21st, pm
 - April 23rd, am***

*** Launch ended in balloon crashing into a gate, cutting the line and **sending the balloon and instrument off into the wild blue**

Xianghe Iaunch site 360°

Xianghe launches

March 19th, morning launch

March 19th, afternoon launch

March 26th, afternoon launch

March 27th, morning launch

March 27th, afternoon launch

Zhangye measurement site

April 14th, afternoon launch

April 21st, afternoon launch

Conclusions

- In cases where aerosol are well-mixed through the column, ground-based instruments are able to represent well the total column aerosol loading. When aerosols are not well-mixed, more information is needed on where the aerosols are located.
- Balloon-borne instruments have the advantage of measuring closer to the ground than lidar in measuring vertical profiles of aerosol optical properties.
- The Inverse Nephelometer on the SAS, through intercomparison, was determined to measure β_{scat} within an acceptable range of uncertainty, and was able to discern numerous aerosol layers when launched in China.

Future Work

- The scattering profiles can be used in a radiative transfer model to calculate the heating rate based on the strength of the scattering.
- The SAS is currently undergoing redesign to improve the resolution of the Reflectometer.

THANK YOU!

References:

Bond, T.C., T.L. Anderson, and D. Campbell (1999), Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols, *Aerosol Sci. Technol.*, *30*, 582-600.

Chaudhry, Z., J.V. Martins, Z. Li, S.-C. Tsay, H. Chen, P. Wang, T. Wen, C. Li and R.R. Dickerson (2007), In situ measurements of aerosol mass concentration and radiative properties in Xianghe, southeast of Beijing, *J. Geophys. Res.*, *112*, D23S90, doi:10.1029/2007JD009055.

Forster, P. et al. (2007), Changes in Atmospheric Constituents and in Radiative Forcing. *In: Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment of the Intergovernmental Panel on Climate Change* [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press,

Cambridge, United Kingdom and New York, NY, USA.