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Motivation for this study

Importance of cirrus cloud cover at
global scale

Optically thin cirrus not included in
historical climatologies, hence their i w
radiative forcing is not accounted for  mmm———r——
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Tenuous effects on radiation can be Stubenrauch et al. (2006)
difficult to measure: need accurate

references to quantify impact

Effect of cirrus clouds (and contrails) on:
BL dynamics, daily temperature range,
global dimming and brightening

= This study focuses on radiative forcing of non-opaque
(OD<3) cirrus clouds on surface-level irradiances




Outline

» Method to estimate radiative forcing
* Cloud and radiation measurements used in this study
» Clear-sky irradiance references

» Sensitivity of cirrus radiative forcing to aerosols and
water vapor

» Results at the global scale

= Conclusions




Deriving cirrus radiative forcing

Methodology
REGIONAL SCALE
=
Cirrus Aerosols Surface SW & LW g
properties Water Vapor Irradiances %
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Clear-sky Surface
SW & LW Irradiances

Radiative Forcing on
Surface Irradiances

SENSITIVITY ANALYSIS | guu——

Parametric equations
Dupont and Haeffelin, JGR 2008
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= Develop parametric representations of cirrus radiative forcing on surface-
level irradiances and its sensitivity to atmospheric properties.




Ground-based observatories
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= Data source from 4 observatories: large range of cirrus
occurrence, atmospheric moisture and aerosol load.




Measurements and data
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SIRTA ARMSGP |ARMTWP | ARMNSA
Palaiseau Lamont Nauru Barrow
. 1998 —
Period 2002 - 2007 2003 2003 2003-2005
RADIATIVE FLUXES Pyranometer, pyrgeometer heliometer
WATER VAPOR Sun-
. photometer, Microwave radiometer
(integrated water path)
GPS
r- !_ | At u o 3’ |_~_.
(optical thickness) Sun-photometer
CLOUDS Backscatter | Raman Micro-oulse lidar
(base and top altitude) lidar Lidar P
Temperature, humidity Ground station, radiosonding

= Colocated measurements of surface
radiation and atmospheric properties




Clear-sky irradiance references
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[Dutton et al. 2001] Corrective function [Dupont et al., 2008]
a : solar constant adjusted for the Earth-Sun T : 2m-height temperature (K)
distance for each site e : water vapor pressure near the surface (hPa)
b, ¢ : constants adjusted on clear-sky atmosphere c :5.67*10°% W m2 K+
and correspond to average scattering of a : constant adjusted on clear-sky periods
atmosphere for each site I' : proxy for vertical distribution of humidity
®: accounts for fast variations in AOT and IWV I1 : proxy for thermal inertia of atmosphere
Mean std error < 4 W/m?=2 Mean std error < 3 W/m=2

= Clear-sky parametric models are fitted to observed data
= Clear-sky data are identified by SW + LW + Lidar detection algorithms
(Long and Ackerman 2000, Durr and Philipona 2004, Morille et al. 2007)




Cirrus properties

Cirrus cloud occurrence, height and optical depth

Cirrus vertical distribution o Clrrus optlcal depth dlstrlbutlon
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= Mean occurrence range from 10% in Arctic to 80% in Tropics
= Nearly 50% non-opaque cirrus have COD < 0.1




Cirrus forcing on surface SW irradiance

Cirrus radiative forcing (cirrus-clear) as a function of cirrus
properties, aerosols, water vapor, solar radiation

For a cirrus with COD=1, the
40 : . .
I surface-level solar irradiance is

reduced by about 120W/m?
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Variability is associated with:
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» Scattering by aerosols and water
vapor
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» Solar illumination geometry
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-240 = Cirrus microphysics

Cirrus forcing on SW (W/m?)

[
[
L=

o

0.8 1.6 2.4 3.2
Cloud optical depth in
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Cirrus forcing on surface SW irradiance

Sensitivity of CRF,* to aerosols and water vapor (w m? cOT")

Stare of the SIRTA ARM SGP ARM TWP NSA SGP
atmosphere Palaiseau, 48°N Lamont, 36°N Nauru,0°S Barrow,71°N
All cases 131 %5 -123 £ 10 -123 5 2029
Turdid -8% -5% -% -43%

Pristine +11% +11% +28% +17%

= Aerosols and water vapor act as a significant mask
= Cirrus forcing is affected by -40% to +30%

Solar illumination geometry

As solar zenith angle increases, diffuse radiation increases but does not
compensate for a general decrease in solar irradiance

= Cirrus forcing -40% to +30%
Parametric equation cirrus radiative forcing

CRF, =[90 x (AOT+WVOT) + 0.0136 x SZA?-0.0612 x SZA — 156.2 ] x COD

= Equation for large scale analysis
= Accounts for solar geometry and atmospheric turbidity 10



Cirrus forcing on surface LW irradiance

Cirrus radiative forcing as a function of water vapor

For a cirrus of emissive power
100W/m2, about 10 W/m2 reaches
the surface
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Variability is associated with:

= absorption by water vapor

l l
= Cimrus
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cirrus

Cirrus forcing on LW (W/m?)

Measured
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Cirrus forcing on surface LW irradiance

Sensitivity of CRF, ,* to water vapor (%)

Stare of the SIRTA ARM SGP ARM TWP NSA SGP
atmosphere Palaiseau, 48°N Lamont, 36°N Nauru,0°S Barrow,71°N
All cases 123 82 12 17 %3
Wet “17% -13% % -24%
Dry +11% +13% +50% +18%

= Weak IR transmission (quasi-opaque) in Tropics (1%)

= Strong IR transmission IR in Arctic (20%)

Parametric equation of cirrus LW radiative forcing:

CRF,, =[2.95 x WVOT?- 2.0 x WVOT + 0.3 ] x LW,

irrus

= Equation for large scale analysis
= Cirrus IR signature on ground driven by water vapor
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Cirrus radiative forcing at the global scale

Methodology
Satellite Data
GLOBAL SCALE
=
Cirrus Aerosols S g
properties Water Vapor adian =
CALIOP CALIOP N o
(L2, v2) (L2, v2) , "
AIRS
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Cirrus radiative
forcing on

surface SW & LW
at global scale
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SENSITIVITY
Parametric Equations

= Use cirrus and atmospheric properties from satellite data as input to
parametric equation to compute cirrus radiative forcing




Consistency check: CRF computed from satellite vs
ground-based data

Satellite data
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= Sources of discrepancy: (1) parametric equations, (2) low bias in

cirrus OD in Caliop compared to ground-based lidar, (3) PDFs of IWV and
AOD narrower in satellite data.



Cirrus radiative forcing at the global scale

Instantaneous forcing when cirrus clouds are present

0 Zonal mean cirrus forcing
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Cumulative cirrus radiative forcing

Account for cirrus properties, aerosol and water vapor, and
day/night duration

Cirrus radiative forcing on
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L surface level net irradiances
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Latitude

= Heating effect dominates north of 30° N (+1.5 W m?)

= Cooling effect maximum at ITCZ and 30° S (-6 W m2),
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Cumulative cirrus radiative forcing

Account for cirrus properties, aerosol and water vapor, and
day/night duration

Cirrus radiative forcing on
surface-level net irradiances
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= Heating effect dominates south of 45° S (+1.5 W m?)

= Cooling effect maximum at ITCZ (-8 W m) 17



Conclusions

Because of their high occurrence, low optical depth cirrus
have a measurable effect on the surface energy budget:
» net cooling effect of -3.5W/m2
» strong meridian gradients with net heating at high
latitudes

» Mid-Latitude winter: SW cooling of cirrus compensated
by LW heating

Perspectives

= Parametric equations must be validated against other
datasets (e.g. ARM mobile facility, CERES/SARB)

» Sensitivity to cloud microphysics should be included

» Role of optically thin cirrus in the context of current
global brightening investigations.
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