

Prospects of Cloud Volume Imaging with the WSR-88D Radar

Valery Melnikov^{*} David Mechem⁺ Phillip Chilson[~] Richard Doviak[#] Dusan Zrnic[#] Yefim Kogan^{*}

*CIMMS, University of Oklahoma
*Dept. Of Geography, University of Kansas
*National Severe Storms Laboratory, OAR
~School of Meteorology, University of Oklahoma valery.melnikov@noaa.gov

ARM Science Team Meeting, 1 April 2009

Motivation

Observational sampling of 3D cloud fields has been a longstanding goal of ARM.

Cloud fields required for 3D radiative transfer calculations

Evaluation/formulation of overlap assumptions for statistical cloud schemes

The 157 WSR-88D weather radar sites exhibit a wide range of climatic regimes

Challenges

Scanning radars can deliver 3D fields in real time. Can the WSR-88D weather radar be used for 3D cloud sounding?

Reflectivities of -25...-30 dBZ @ 10 km should be measured with a radar to robustly detect clouds. Can this sensitivity be achieved on the WSR-88D?

Can the WSR-88D radars be used in cloud sounding? Volume Coverage Patterns (VCP) of the WSR-88Ds

Number of samples128Elevation step0.25°Maximum elevation60°Ground clutter filtering up to 60°Double range oversamplingNoise specle removerCorrelation estimators

"CLOUD" VCP of KOUN

Sensitivity of KOUN with enhanced signal processing.

Radar RHIs correspond to the vertical black lines in the pictures

Cirrus clouds: pictures of clouds, visible satellite, WSR-88D KTLX, and KOUN images

Comparison of sensitivity difference

KOUN cloud mode KOUN precip mode WSR-88D KOUN, Norman, OK. 03/23/2008 20:20 UT RHI Az=90.3 deg -30.0 -27.0 -24.0 -21.0 -18.0 -15.0 -12.0 -9.0 -6.0 -3.0 0.0 -30.0 -27.0 -24.0 -21.0 -18.0 -15.0 -12.0 -9.0 -6.0 -3.0 0.0 10 $EI = 20^{\circ}$ 10 Z (dBZ) $EI = 20^{\circ}$ Z(dBZ)(a) (b) 7.5 7.5 HEIGHT (km) SNR > 2 dBSNR > -7 dB2.5 2.5 50 12 24 36 24 36 12 DISTANCE (km) DISTANCE (km)

Experiment on cloud detectability with KOUN 15 February till 31 March, 2008: 45 days total. 8 days with precipitations, KOUN was not available 24 cloudy days without precipitation; on all those days KOUN detected clouds.

Comparison of radar parameters

	ARM MMCR	ARM WACR	NASA CPR	NOAA WSR- 88D
Wavelength, mm	8	3	3	109
Antenna beamwidth, deg	0.2	0.24	0.12	0.96
Radial resolution, m	45/90	45	500	250
Two-way transversal resolution, m	17@10 km	29@10 km	1400 x 2500	82@10 km
Z ₁₀ , dBZ	-30 (general mode)	-26	-26	-25.5 short pulse -33 long pulse
Attenuation	Strong	Severe	Severe	Negligible
Number of systems	5	3	1	157

Examples of multi-layer and multi-phase clouds.

Fields of reflectivity (Z), the Doppler velocity (V), and spectrum width (σ_v)

Long-range cloud observations – up to 150 km from radar

9

Polarimetric fields: reflectivity (Z) and differential reflectivity (Z_{DR})

Polarimetric fields: reflectivity (Z), differential reflectivity (Z_{DR}), and the correlation coefficient (ρ_{hv})

Using polarimetric measurements to identify scatterers

Simultaneous observations of clouds and precipitation

National US WSR-88D radar network

Conclusions

- •Observations from WSR-88D KOUN illustrate the advantage of scanning Doppler polarimetric radars: near-instantaneous sampling of 3D cloud fields and their evolution
- •Enhanced signal processing techniques applied to the WSR-88D increases sensitivity to -25.5 dBZ@10km in dual-polarization mode and -33 dBZ in single polarization mode

-Polarimetric capabilities of the WSR-88Ds allow for classification of hydrometeor types

-The existing NEXRAD radar network could be employed for cloud-climate studies and incorporation into NWP update cycles

Possible future work

-Design a VCP for the networking WSR-88D for 3D cloud imaging. Test the VCP remotely on one of the WSR-88Ds.

Establish detectability of clouds with the WSR-88D for different cloud types and seasons. Use enhanced signal processing on the WSR-88D. Obtain accuracy of cloud boundaries measurements with the WSR-88D comparing radar data with a ceilometer at ARM's BF-6 site.

Conduct simultaneous dual-polarization measurements on the WSR-88D and mobile 3-cm X-Pol to establish limitations of dual-pol cloud observations at X-band (this is in support of ARM's activity in designing of a scanning X-band radars)

> Design methods of estimation of ice content and liquid water content in mix phase clouds using polarimetric radar measurements.

BACKUP

Powers in the channels $P_h = < |E_h|^2 >$ $P_{\nu} = < |E_{\nu}|^2 >$

Differential reflectivity $Z_{DR} = 10 \log (P_h/P_x)$ Correlation coefficient $\rho_{hr} = |\langle E_h^* E_y \rangle|/(P_h P_y)^{1/2}$

3-Dimentional cloud imaging 28 November, 2008. 0041 UT. 14 elevations

Bragg and particulate scatter

21

Dual-polarization 3.2-cm-wavelength radar & KOUN

