The Aerosol (and Cloud) Modeling Testbed: A Community Tool to Objectively Evaluate Aerosol Process Modules

Jerome Fast, William Gustafson Jr., Elaine Chapman, Richard Easter, Jeremy Rishel ARM Science Team Meeting, Louisville KY, March 31, 2009

What is the Problem?

- Current aerosol modeling paradigm is haphazard and slow
 - Differences among predictions arise from many sources (emissions, meteorology, chemistry, configuration) rather than aerosol treatments
 - Traditional model comparisons that quantify range of uncertainty contain little insight on how to improve predictions

 Thus, it is difficult to improve predictions of direct and indirect forcing in a timely manner

What Are We Trying to Accomplish?

Aerosol Modeling Testbed

A computational framework that streamlines the process of testing and evaluating aerosol process modules over a range of spatial / temporal scales

- Systematically and objectively evaluate aerosol process modules
- Provide *tools* that facilitate science by minimizing redundant tasks
- Document performance and computational expense
- Better *quantify uncertainties* by targeting specific processes

What is Our Approach?

Model that Treats Aerosol Life Cycle

NATIONAL LABORATORY

Two Primary Components

- Use Weather Research and Forecasting (WRF) model as the foundation of computational framework
- Fully-coupled aerosol-radiation-cloud-chemistry interactions
- Handles multiple spatial scales (LES CRM regional global)
- Increasing use of WRF to simulate aerosols
- Community model facilitates distribution of process modules

Create a **community tool** in which aerosol process modules are evaluated systematically and objectively

- Provide transparent code control
- Enable targeting of specific processes modularity is critical
- Assess performance by fully-utilizing DOE field campaign datasets
- Maintain long-term archive of model output
- Customizable by users, but largely automatic

Evaluation Protocol

Software that Enables Scientific Analysis

- Parallel data structure for data and model output
 - > Focus on **field campaigns** with extensive measurements
 - > Multiple cases to evaluate process modules over **range of conditions**
- Programs that extract model output at measurement sites and times, creates plots, and performs statistical calculations
- Extracts everything available by default, but customizable

NATIONAL LABORATORY

"Quick-Look" Plots

Thousands of Plots Generated: Meteorology, Trace Gases, Aerosols, Others to browse model performance

AMT in Relation to CAPT and AeroCom

- **AMT** Aerosol Modeling Testbed
- **CAPT** CCPP ARM Parameterization Testbed

AeroCom Aerosol Comparisons between Observations and Models

	АМТ	САРТ	AeroCom
Model	WRF	CAM	multiple models
Spatial Scale	LES / CRM / mesoscale	global / single column	global
Simulation Period	days - month	~ month	~ year
Primary Processes Addressed	aerosols, cloud-aerosol interactions, trace gases	cloud properties	aerosols
Data Used for Evaluation	field campaign + operational data	operational + field campaign data (e.g. ARM)	operational data (e.g. satellite, AERONET, surface PM)

niche?

other cloud-working groups at CRM and regional scales

MILAGRO Testbed Case Example

Simulate aerosol transformation processes from urban to synoptic scales

Testbed Case Configuration

Extensive Meteorological, Chemical, and Particulate Measurements

Compare Two Aerosol Models

MADE/SORGAM: "simple"

- modal size distribution (3 modes),
- 38 prognostic species
- MOSAIC: "complex"
 - sectional size distribution (8 size bins)
 - (8 size bins), 104 prognostic species

Different treatments for: nucleation, coagulation, gas-to-particle partitioning, and deposition

Comparing predictions in the **AMT**:

Here, MADE/SORGAM and MOSAIC have identical:

- Anthropogenic, biomass burning, online sea-salt & dust emissions
- Boundary conditions from global chemistry model (MOZART)
- Photochemistry (CBM-Z)
- Aerosol optical properties
- Cloud-aerosol-radiation interactions

Carbonaceous Aerosols

- Since BC and OM treated as a scalars with no chemistry (SOA turned off), differences due solely to treatments of deposition
- Modular and interoperable deposition 'driver' will be implemented soon

Secondary Aerosols

 Deposition contributes to differences in secondary aerosols too, but different gas-to-particle partitioning treatments largely responsible

• $HNO_3 + dust \rightarrow NO_3$ included in MOSAIC, but not MADE/SORGAM

Evaluation of Aerosol Composition

G-1 Aircraft March 20, 2006 – Strong Ambient SW Winds

horizontal cross section at 17 UTC and ~ 0.7 km AGL

What's Next?

Future Testbed Cases

Multiple Testbed Cases Needed:

- Field campaigns usually focus on narrow set of processes
- Evaluate aerosol process modules over wider range of conditions
- Specific interests of modelers

International Field Campaigns ?

VOCALS

GOES LWP, 13 UTC October 25

WRF LWP, $\Delta x = 4 \ km$

Challenge: Evaluation needs to help unravel dynamics versus aerosol effects

How Will User's Access the AMT?

http://www.pnl.gov/atmospheric/research/aci/aci_proj_testbed.stm

(Under Construction)

Webmaster Christine Novak

Expected Outcomes

- Community tool to facilitate systematic and objective evaluation of aerosol process modules for real-world conditions
- Enhance research capabilities of DOE research (ASP, ARM, SciDAC) and its visibility in the scientific community

Long-Term Vision:

- New paradigm for aerosol science community that increases collaboration
- Reducing uncertainties in aerosol aging, cloud-aerosol interactions, and consqueantly aerosol radiative forcing in regional and global models

with support from:

